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Background: Coronavirus disease 2019 (COVID-19) is caused by the severe acute

respiratory syndrome coronavirus 2 (SARS-CoV-2) which since 2019 has caused over

5 million deaths to date. The pathogenicity of the virus is highly variable ranging from

asymptomatic to fatal. Evidence from experimental and observational studies suggests

that circulating micronutrients may affect COVID-19 outcomes.

Objectives: To complement and inform observational studies, we investigated the

associations of genetically predicted concentrations of 12 micronutrients (β-carotene,

calcium, copper, folate, iron, magnesium, phosphorus, selenium, vitamin B-6, vitamin

B-12, vitamin D, and zinc) with SARS-CoV-2 infection risk and COVID-19 severity using

Mendelian randomization (MR).

Methods: Two-sample MR was conducted using 87,870 individuals of European

descent with a COVID-19 diagnosis and 2,210,804 controls from the COVID-19

host genetics initiative. Inverse variance-weighted MR analyses were performed with

sensitivity analyses to assess the impact of potential violations of MR assumptions.

Results: Compared to the general population, nominally significant associations were

noted for higher genetically predicted vitamin B-6 (Odds ratio per standard deviation

[ORSD]: 1.06; 95% confidence interval [CI]: 1.00, 1.13; p-value = 0.036) and lower

magnesium concentrations (ORSD: 0.33; 95%CI: 0.11, 0.96; P = 0.042) with COVID-19

infection risk. However, the association for magnesium was not consistent in some

sensitivity analyses, and sensitivity analyses could not be performed for vitamin B-6

as only two genetic instruments were available. Genetically predicted levels of calcium,

folate, β-carotene, copper, iron, vitamin B-12, vitamin D, selenium, phosphorus, or zinc

were not associated with the outcomes from COVID-19 disease.

Conclusion: These results, though based only on genetically predicated circulating

micronutrient concentrations, provide scant evidence for possible associations of

micronutrients with COVID-19 outcomes.
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INTRODUCTION

Coronavirus disease 2019 (COVID-19) is caused by the severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Since
the beginning of the pandemic, there have been over 275,233,892

confirmed cases and over 5,364,966 deaths attributed to COVID-
19 (1). The pathogenicity of the virus is highly variable

ranging from asymptomatic to fatal. In severe cases, an immune
system hyper-reaction coupled with a marked cytokine and
chemokine release (“cytokine storm,” hypercytokinemia) has
been observed. This severely damages the lung epithelium,
exacerbates secondary microbial infections, and affects other

organ systems, which can result in septic shock, multi-
organ failure, and death (2). Factors associated with COVID-
19 outcomes include age, body mass index (BMI), physical

activity levels, and pre-existing conditions (3–6). To date, the
antiviral drugs Veklury (remdesivir) and Paxlovid (nirmatrelvir

and ritonavir) and the monoclonal antibodies casirivimab and
imdevimab are the approved treatments by the US Federal Drug

Administration (FDA). The European Medicines Agency (EMA)
has approved four vaccines for use: The Jansenn and AstraZeneca
vaccines utilize non replicating viral vectors while the Pfizer and
Moderna vaccines use newer mRNA technology (7). The FDA is
yet to approve the AstraZeneca vaccine.

Previously, various micronutrients have been identified
as essential for immunocompetence, particularly folate, iron,
selenium, zinc, and vitamins A, C, D, E, B2, B6, and B12 (8). By
extension, micronutrient deficiencies are recognized as a global
public health hurdle as poor nutritional status predisposes many
populations to infection (9).

Observational and ecologic studies have proposed a link
between the levels of micronutrients such as vitamin D,
selenium, and zinc with COVID-19 disease severity (10–12).
However, observational studies are vulnerable to confounding
and reverse causation bias. Mendelian randomisation (MR) is
a genetic epidemiology technique that uses genetic variants
as variables to determine the potential causal effect of
an exposure, such as micronutrient level (13). As genetic
alleles are randomly distributed throughout the population,
associations with environmental confounding variables are
negated. Similarly, since genetic alleles are present before
the development of COVID-19, they cannot be affected by
reverse causation.

Genetic variants associated with circulating vitamin D
concentrations have been linked to COVID-19, implicating low
levels of vitamin D in severe disease (14). Conversely, genetic
determinants of serum 25-hydroxyvitaminD3 (calcifediol) levels,
gleaned from a genome-wide association study (GWAS), and
meta-analysis of 443,734 participants were used to determine
the link between elevated calcifediol levels and COVID-
19 susceptibility and severity. The authors concluded that
there was insufficient evidence to support an association
between calcifediol levels and COVID-19 susceptibility, severity,
or hospitalization. They recommended against vitamin D
supplementation use to improve COVID-19 outcomes (15).
Similar findings were reported from multiple MR studies
which found no associations between genetically predicted

circulating vitamin D levels and COVID-19 infection and
severity (16–19).

Calcium signaling is indispensable in immunity, and
hypocalcemia is frequently observed in critically ill patients
(20, 21). In cases of COVID-19, lower serum calcium has been
associated with increased clinical severity and less favourable
prognosis (22, 23).

Copper has been identified as essential for proper immune
functioning by the European Food Safety Authority (24). It is
a free radical scavenger and is also required for the appropriate
functioning of T helper cells, B cells, neutrophils, natural killer
(NK) cells, and macrophages with deficiencies linked to impaired
immunity (25, 26). Further, copper levels are seen to be locally
elevated following infection of the lungs (27).

Folate deficiency is commonly observed in individuals
susceptible to infection (28). The number of circulating T cells,
B cells, and NK cells found in folate deficient rats is significantly
lower than in controls (29). In vitro, folate deficiency inhibits
the proliferation of human primary CD8+ T cells (30). In vivo,
low folate status has also been associated with lower levels of
proteins involved in the activation and regulation of immune
function (31).

Iron is an indispensable component of multiple enzymes
involved in immune cell activity. Deficiencies are therefore
associated with reduced efficacy of lymphocytes, NK cells and
cytokine signalling (24, 32). The trace element selenium and
proteins containing the modified amino acid selenocysteine (in
which selenium is incorporated into selenoproteins) have roles in
the proper functioning of both the innate and adaptive immune
systems (33). Selenium also acts to alleviate oxidative stress, an
emerging characteristic of COVID-19 (34).

Zinc deficiency has been linked to immune dysfunction and
the resultant vulnerability to infection. Loss of zinc homeostasis
results in the abnormal formation of lymphocytes, impaired NK
cell activity, altered cytokine signaling, and reduced phagocytosis
(35). Zinc deficiency is also linked to impaired T-cell mediated
antibody response and abnormal complement activity (36).
Furthermore, zinc has been identified as a critical factor in anti-
viral immunity and is currently being extensively investigated in
randomized clinical trials as a component of treatment regimens
aimed at improving COVID-19 outcomes (37, 38).

Levels of phosphorus have been observed to be inversely
correlated with COVID-19 clinical severity, while COVID-19
patients with low phosphorus are more likely to have altered
lung function and require admission to the intensive care unit
(ICU) (39).

Following potassium, magnesium is the second most
abundant intracellular cation and is essential in over 600
enzymatic reactions including those contributing to the
exaggerated immune and inflammatory responses characteristic
of COVID-19 pathogenesis (40). A growing body of evidence
suggests that magnesium protects against respiratory
system diseases and may have a role in the prevention of
COVID-19 (41).

Vitamin B-6 has long been recognized as having pivotal
roles in the maintenance of lymphocyte development, NK
cell activity, and immunoglobin production (42, 43). Similarly,
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vitamin B-12 is also essential for lymphocyte expansion and
NK cell activity. Lower B-12 levels are linked to lower
concentrations of circulating lymphocytes and accompanying
immunity (44).

Finally, a meta-analysis of prospective studies has
identified dietary and circulating β-carotene as inversely
associated with the risk of all-cause mortality (45). This
may be due to its multifunctional roles in health including
its free radical scavenging and pro-vitamin A activity
which may bolster both adaptive and innate immune
function (46, 47).

Several of these micronutrients have been suggested for
supplement use to mitigate COVID-19 disease, such as selenium
and zinc (48), but the evidence underpinning this is mainly
theoretical or based on small COVID-19 patient-cohort studies.
Here, we have utilized alleles as proxies for the genetically
predicted circulating status of β-carotene, calcium, copper, folate,
iron, magnesium, phosphorus, selenium, zinc, and vitamins
B-6 and B-12 to assess the association by MR with the
development and severity of COVID-19 in a large and multi-
cohort dataset.

METHODS

Data for the Genetic Epidemiology of
COVID-19
We used the European-specific summary genetic association
estimates from the COVID-19 host genetics initiative1 to test
the association of genetically predicted micronutrient levels
for four COVID-19 outcomes listed below. We used the
GWAS Release 5 for comparisons (i) + (ii) and Release 6 for
(iii)+ (iv):

(i) Severe COVID-19, defined as hospitalization with laboratory
confirmed SARS-CoV-2 infection as the primary reason for
the admission followed by death or respiratory support vs.
population controls (cases= 4,606, controls= 702,801),

(ii) Case-only COVID-19 hospitalization, defined as
hospitalization with laboratory confirmed SARSCoV-
2 infection due to COVID-19-related symptoms vs.
non-hospitalization SARS-CoV-2 infection due to
COVID-19-related symptoms (cases = 4,829, controls =

11,816),
(iii) COVID-19 hospitalization, defined as hospitalization with

laboratory confirmed SARS-CoV-2 infection due to COVID-
19-related symptoms vs. population controls (cases = 17,992,
controls= 1,810,493), and

(iv) COVID-19 infection, defined as laboratory confirmed
SARS-CoV-2 infection (RNA and/or serology based),
physician diagnosis of COVID-19, or self-report as COVID-
19 positive vs. population controls (cases = 87,870, controls
= 2,210,804).

Details on data collection and assessment are provided in
Supplementary Table 1.

1https://www.covid19hg.org/results/

Data for the Genetic Epidemiology of
Circulating Micronutrient Concentrations
Details on the identification of genetic instruments for the
12 micronutrients are described elsewhere (49). In brief, we
performed a search of published GWASs conducted among
individuals of European descent on circulating concentrations
of minerals and vitamins in the GWAS catalog and PubMed
(last search performed in October 2019). After excluding
micronutrients for which no genome-wide significant results
have been reported, or summary genetic association estimates
were adjusted for BMI, we identified 12 micronutrients
(namely β-carotene, calcium, copper, folate, iron, magnesium,
phosphorus, selenium, vitamins B6, B12, and D, and zinc)
that may be associated with COVID-19 outcomes (50–60). The
selected GWASs included data from 12 European countries
and the United States. The participants were predominantly
female, making up from 55 to 69% of the total sample size.
Two individual GWASs were used to instrument calcium
concentrations (59, 60). Single nucleotide polymorphisms
(SNPs) with minor allele frequency (MAF) of <5% in the
GWASs were omitted as their association estimates with the
micronutrients may be inaccurate. SNPs that were associated
with the circulating concentrations of the micronutrients
at a genome-wide significance level (p < 5 × 10−8) and
were not in linkage disequilibrium (linkage disequilibrium
r2 ≤ 0.01) were included. This yielded summary genetic
association data for 333 common (MAF ≥ 0.05) SNPs that were
robustly associated with the 12 micronutrient concentrations
(Supplementary Table 2).

Statistical Power
Power calculations were performed using an online tool available
at http://cnsgenomics.com/shiny/mRnd/ (61). The statistical
power to capture an odds ratio (OR) of 1.10 or 0.9 per
standard deviation (SD) change in the genetically predicted
circulating concentrations ranged from 0.08 (folate) to 0.31
(copper) for risk of severe COVID-19, from 0.07 (folate) to
0.23 (copper) for risk of COVID-19 hospitalization among
COVID-19 cases, from 0.16 (folate) to 0.92 (zinc) for risk
of COVID-19 hospitalization, and from 0.07 (folate) to 1.00
(zinc) for risk of COVID-19 infection. The statistical power
was >0.80 for copper, calcium, and zinc regarding the risk
of COVID-19 hospitalization and for all the instruments
tested except phosphorus and folate concerning the risk of
COVID-19 infection (Supplementary Table 3). To ensure the
robustness of all findings, all associations with <50% power
were excluded from the analysis. This excluded all instruments
for assessing the risk of severe COVID-19 vs. the population
and the risk of COVID-19 hospitalization among COVID-
19 cases (outcomes I and II). All nutrients were above this
threshold for COVID-19 infection vs the population while β-
carotene, selenium, iron, copper, calcium, zinc and vitamins B6,
B12 and D remained for hospitalization due to COVID-19 vs
the population (outcomes iii and iv) (Supplementary Table 3).
Thus, only outcomes iii and iv were further analyzed and
presented here.
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Mendelian Randomization Analysis
A two sample MR using summary association data from
GWASs of circulating micronutrients and COVID-19 outcome
was performed. The genetically predicted micronutrient
concentrations associations with COVID-19 vs the population
and hospitalized COVID-19 vs the population were assessed.
This analysis used genomic data yielded from the COVID-19
Host Genetics Initiative which combined genetic data from
87,870 cases and two million controls across 46 distinct studies
(62). A single SNPwas available for β-carotene, the effect estimate
of which was calculated as the ratio of the SNP-outcome divided
by the SNP–nutrient association (63). For instruments composed
of multiple SNPs, the random-effects inverse variance-weighted
(IVW) method was employed. The IVW analysis is comparable
to a meta-analysis of single SNP effects (64). The β estimates
and standard errors (SEs) from the regressions for circulating
concentrations of β-carotene, copper, selenium, vitamin B-6,
and zinc were transformed from the logarithmic scale provided
in the published GWAS to the natural scale using an available
formula (65). All reported associations correspond to an OR for
COVID-19 outcome per SD change in the genetically predicted
circulating concentrations of the nutrients. P values of <0.05
were deemed significant and high-confidence was assigned
to findings that survived multiple-testing adjustment with a
False Discovery Rate of 5%. All analyses were prespecified
and performed using R Core Team (2020) version 3.4.3, R
Foundation for Statistical Computing, Vienna, Austria, using the
MendelianRandomization package.

Methods to Assess the Robustness of MR
Findings
Mendelian Randomisation analysis is dependent on assumptions
as illustrated in Figure 1. It is a requisite of the IVW method
that all genetic instruments are associated with the concentration
of their relevant micronutrient (relevance assumption), but
do not directly impact the assessed outcomes (exclusion
restriction), or any confounders of micronutrient concentrations
and the assessed outcomes (independence assumption) (66). The
strength of the genetic instruments was assessed using the F
statistic formula: F = R2 (n – 2)/(1 – R2), where R2 is the
proportion of the variance of the micronutrient concentration
explained by each genetic instrument and n is the sample size
of the GWAS (67). The F statistics in the current study ranged
from 36 to 420 for all genetic instruments, indicating an absence
of weak instruments as all values were >10 (63).

Horizontal pleiotropy can potentially cause violations of
the exclusion restriction assumption (genetic instruments being
independent of the outcome, conditional on the risk factor,
and confounders) and was investigated using descriptive
and statistical analyses. The Cochran’s Q statistical test for
heterogeneity was utilized to determine the extent to which
any differences in the individual effect sizes among each of
the selected genetic instruments may be different (e.g., due to
pleiotropy) (68). Low heterogeneity across the SNP instruments
would be expected for valid instruments resulting in high Q
p-values for the statistical tests and metrics of heterogeneity.

We further evaluated whether the selected genetic instruments
were associated with secondary phenotypes in the PhenoScanner
database.2

Where the number of genetic instruments was ≥3, MR-
Egger regression, weighted median, and contamination mixture
methods were performed. MR-Egger can detect horizontal
pleiotropy and provide an effect estimate which is not subject to
this violation of the standard instrumental variable assumption.
The intercept from MR-Egger regression indicates potential
pleiotropy, a low p-value suggests either pleiotropy or failure
of the InSIDE (INstrument Strength Independent of Direct
Effect) assumption, whereas the slope can be interpreted as the
circulating nutrient effect on COVID-19 outcome adjusted for
horizontal pleiotropy (70). The weighted median estimator is
used to combine data on multiple genetic variants into a single
causal estimate. This estimate remains valid even when up to 50%
of the instrumental variables are invalid (71). The contamination
mixture employs a likelihood-based approach using the variant-
specific causal estimates, and under the assumption that there
is a single causal effect of the risk factor on the outcome, it
can estimate this effect robustly and efficiently, even in the
presence of some invalid genetic variants (72). When the number
of genetic instruments ≥4, MR-PRESSO was also employed to
identify SNP outliers, and analyses were rerun after omitting
these variants (73).

RESULTS

Genetically predicted magnesium concentrations were lower
while predicted vitamin B6 concentrations were higher in the
COVID-19 cases relative to the population. No significant
associations were found between the assessed COVID-19
outcomes and genetically predicted levels of folate, calcium,
copper, iron, phosphorus, selenium, zinc, β-carotene, or
vitamins D and B12. All associations using the IVW models
and MR sensitivity analysis methods are shown in Figure 2.
Supplementary Table 4 shows associations using the MR
sensitivity analyses methods for each of the COVID-19
outcomes studied.

A nominally significant association was observed for each one
SD (0.08 mmol/L) decrease in genetically predicted magnesium
concentration and risk of COVID-19 infection relative to the
population (ORSD: 0.33, 95%CI: 0.11, 0.96; p= 0.04, n= 5 SNPs).
There was some evidence for heterogeneity in the association
(I2 = 68%, Cochran’s Q test p = 0.015). This association did
not survive correction for multiple testing (FDR q-value= 0.29).
There was little evidence of horizontal pleiotropy based on the
MR-Egger intercept test (P = 0.208). The weighted median
method yielded results similar to the IVW (OR: 0.27; 95% CI:
0.10, 0.73; p= 0.009), while the contaminationmixture produced
consistent results but with very wide CIs (OR: 0.13; 95% CI:
0.06, 3.73; p = 0.34). The MR PRESSO analysis did not reveal
any outlying SNPs at α = 0.05. However, several of the genetic
instruments for magnesium have been associated in GWASs
with phenotypes (e.g., BMI, kidney function, and blood pressure)

2http://www.phenoscanner.medschl.cam.ac.uk/ (69).
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FIGURE 1 | Schematic representation of the Mendelian randomization assumptions and study design. Genetic instruments are selected based on their association

with the concentration of a specific micronutrient (assumption 1), but do not directly impact the assessed outcomes (assumption 2), or any confounders of

micronutrient concentrations and the assessed outcomes (assumption 3). IVW, inverse variance weighted; SNP, single nucleotide polymorphism; GWAS,

genome-wide association study; MR, Mendelian randomization; MR-PRESSO, Mendelian randomization pleiotropy residual sum and outlier.

that may indicate horizontal pleiotropy in relation to COVID-
19 (Supplementary Table 5). When rs4072037, which has been
previously associated with BMI, was removed from the analysis,
the resulting IVW estimate was attenuated (ORSD: 0.84, 95% CI:
0.37, 1.94; I2 = 0%) (74). Little evidence was found supporting
the hypothesis that magnesium concentrations differ between
hospitalized COVID-19 cases and the general population.

Genetically predicted concentrations of vitamin B-6 were
found to be higher in COVID-19 cases relative to the population
(ORSD: 1.06; 95% CI: 1.00, 1.13; p = 0.036). This association
did not retain significance following correction for multiple
testing (q = 0.29). As only two instruments were used,
MR-Egger regression, weighted median, and contamination
mixture methods were not carried out. These instruments
(rs4654748 and rs1256335) were not associated in GWASs with
phenotypes that may indicate horizontal pleiotropy in relation
to COVID-19. There was no association between predicted
vitamin B-6 concentrations and hospitalized COVID-19
vs. population.

DISCUSSION

In this multi-cohort MR analysis of 12 circulating micronutrient
concentrations and COVID-19 infection and outcome, we

observed that genetically predicted levels of circulating
magnesium in COVID-19 cases were lower relative to the
population. Surprisingly, we found evidence that genetically
predicted levels of vitamin B6 were higher in COVID-19
patients relative to the population. These associations did not
survive correction for multiple testing and sensitivity MR
analyses were either not fully consistent (for magnesium) or
not performed (for vitamin B6). We observed little evidence
that genetically predicted circulating concentrations of any of
the other examined micronutrients (i.e., folate, calcium, zinc,
selenium, copper, iron, phosphorus, β-carotene and vitamins
B12 and D concentrations) were associated with either assessed
COVID-19 outcome.

Magnesium and COVID-19 Outcome
The present study observed lower levels of genetically predicted
circulating magnesium in COVID-19 cases relative to the
population. This trend of lower magnesium was also observed
for both assessed COVID-19 outcomes, although only COVID-
19 infection vs. population was nominally significant.Magnesium
(Mg2+) has previously been associated with anti-viral immunity
as mutations of the magnesium transporter 1 (MAGT1) gene
causes an immunodeficiency called X-linked immunodeficiency
with Mg2+ defect, EBV infection, and neoplasia (XMEN)
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FIGURE 2 | Summary of the Mendelian randomization results for the associations between genetically predicted micronutrient concentrations and COVID-19

outcomes. IVW, inverse variance weighted; conMIX, contamination mixture.

which is characterized by CD4 lymphopenia, chronic viral
infections, and impaired T lymphocyte activation (75). Lower
plasma Mg2+ has also been associated with higher EBV viral
load in non-XMEN women (76). Mechanistically, reduced
intracellular free Mg2+ causes diminished expression of NKG2D,
the NK activating receptor in NK and CD8+ T cells, thereby
reducing their cytolytic activity. Interestingly, magnesium
supplementation restores intracellular free Mg2+ and NKG2D
expression in patients with XMEN and reduced EBV-infected
cells in vivo (77). Low levels of intracellular free Mg2+

also lead to increased expression of the immune checkpoint
programmed cell death 1 (PD-1) along with lower expression
of NKG2D in hepatitis B-infected NK and CD8+ T cells (78).
This phenomenon has recently been observed in the NK cells
of COVID-19 patients as they were seen to have increased
expression of PD-1 and reduced expression of NKG2D relative
to non-infected controls (79). It’s possible that lower circulating
magnesium contributes to a diminished immune response to

COVID-19 by reducing the expression of NKG2D and increasing
that of PD-1. There was some evidence of heterogeneity which

may imply violation of one of the MR assumptions. Although
the results of the weighted median approach were consistent
with the IVW analysis, there was indication of horizontal
pleiotropy violating the MR assumptions as several of the
genetic instruments for magnesium have been associated with
phenotypes (e.g., BMI, kidney function, blood pressure) that
are also associated with COVID-19 outcomes. Together, these
results cast doubt in the role of magnesium in COVID-19
disease trajectories.

Vitamin B6 and COVID-19 Outcome
A potential protective role of vitamin B6 in ameliorating the
impact of COVID-19 has been postulated based on its role
in proper immune functioning and in suppression of major
disease-associated processes such as inflammation, oxidative
stress, and regulation of Ca2+ influx (80). However, we found
a nominally significant association between higher levels of
genetically predicted circulating vitamin B6 in those infected with
COVID-19 relative to the population. Only two instrumental
variables were available for our analysis therefore sensitivity MR
analyses could not be run. Furthermore, we are not aware of
any plausible biological mechanism whereby higher vitamin B6
would predispose individuals to COVID-19.

Other Micronutrients and COVID-19
Outcomes
No associations were found between genetically predicted
circulating calcium, folate, zinc, selenium, copper, iron,
phosphorus, β-Carotene, or vitamin D and B12 concentrations,
and COVID-19 outcome, contrasting with preliminary
observational studies for some of these micronutrients
(11, 32, 48, 81). Genetic instruments obtained from two
separate GWASs were used to assess the associations of COVID-
19 infection and hospitalization with predicted circulating
calcium concentrations [up to 212 variants from the UK biobank
analysis and 6 from a separate GWAS meta-analysis of European
studies (59, 60)]. For each of these GWAS datasets, no association
was observed for either outcome. These findings conflict with
the existing literature as lower calcium has been found to be
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prevalent in hospitalized COVID-19 patients and concentrations
have been inversely correlated with severity (82–84). It is possible
that we did not find an association between genetically predicted
low calcium and the assessed COVID-19 outcomes because the
genetic instruments are not associated with the hypocalcemic
levels (<2.20 mmol/L) observed in some patients with severe
COVID-19 (82, 83).

Folate is an essential water-soluble micronutrient. Recently,
a study proposed that pregnant women are 10-fold less likely
to be hospitalized for a SARS-CoV-2 infection than for the
2009 H1N1 influenza pandemic, leading to speculation this may
be due to folic acid supplements regularly taken by pregnant
women (85). Here, in concordance with another recent study,
genetically predicted folate concentrations were not associated
with COVID-19 infection compared to the population (86).

Previously, serum copper levels in combination with
age and selenoprotein P (SELENOP; the major plasma
seleniumcontaining selenoprotein) concentration was applied to
receiver operating characteristic (ROC) curve analysis to predict
survival from COVID-19, yielding an area under the curve
(AUC) of 95.0% (81). A similar analysis identified SELENOP and
zinc in tandem with age as a composite biomarker and accurate
predictor of COVID-19 survival by ROC analysis, yielding an
AUC of 94.42% (48). Additionally, nutritive adjuvant therapy
with selenium, zinc, and vitamin D has been recommended
for high-risk groups (such as the elderly and those with low
nutrient status) soon after the time of suspected infection with
SARS-CoV-2 (87). These associations between zinc, selenium,
and copper, and COVID-19 outcomes were not observed in
the present study, instead, our findings replicate those of a
more modestly sized MR study which assessed associations
between genetically predicted concentrations of circulating zinc,
selenium, copper (and vitamin K1) with the risk of infection,
hospitalization, and critical illness due to COVID-19 (88). Our
results also align with those of a study assessing associations
between SNPs linked to selenium and zinc concentrations and
COVID-19 severity (14).

Iron concentration has been reported to be inversely
correlated with the severity of COVID-19 symptoms; however,
excess serum iron has also been linked with increased
inflammation and tissue fibrosis (89, 90). We found no
evidence for an association between genetically predicted
iron concentration and the assessed COVID-19 outcomes.
Circulating levels of phosphorus are not typically associated
with immunity; however, abnormal phosphorus serum levels
have been associated with increased mortality levels due
to community-acquired pneumonia (91). Additionally, low
phosphorus levels were seen to be more prevalent in serum
of severe COVID-19 patients than those with moderate
disease (39). We found no association between genetically
predicted circulating concentrations of phosphorus and COVID-
19 infection. It is generally held that in addition to its
pro-vitamin A activity, β-carotene, found in orange fruits
and vegetables and some leafy green vegetables, may prevent
oxidative damage (92, 93). Although initial studies suggested β-
carotene supplementationmay bolster health, later investigations
found no beneficial effect in well-nourished people (94–97).

Our study found no association between genetically predicted
concentrations of β-carotene and risk of infection with COVID-
19 or severity. Vitamin B12 can affect host immune responses to
viral infections as well as inflammatory activity and circulating
levels have been linked to clinical outcomes in COVID-19
patients (98, 99). These associations were not replicated in the
present study. Finally, in agreement with multiple smaller MR
studies, with COVID-19 case numbers ranging from 1,746 to
38,984, we found no associations between genetically predicted
levels of circulating vitamin D and the assessed COVID-19
outcomes (16–19).

The discordance of our results with some previous studiesmay
be due to several reasons, including the vastly larger sample size
in the current study, and/or other dietary factors significantly
affecting micronutrient levels in these COVID-19 patients, or
reverse causality issues from low micronutrient levels in patients
severely affected by COVID-19. Conversely, it may be that the
micronutrient concentrations are not accurately predicted by
the genetic instruments. This is perhaps especially relevant for
markedly low or highmicronutrient concentrations that may also
be most important in patients vulnerable to COVID-19 fatality,
as has been observed for measurements of selenium and zinc,
although in a small patient cohort study (48).

Strengths and Limitations
Biases present in traditional observational studies can be avoided
by MR studies, but they are not without limitations. Here,
we used summary level data which allowed us to incorporate
large data sets, however, summarized data do not allow
for stratification by factors such as sex, age, adiposity, diet,
vitamin, and micronutrient supplement use, and co-morbidities.
Furthermore, several micronutrients had few genetic instruments
limiting statistical power for COVID-19 severity outcomes and
the ability to perform sensitivity MR analyses. Finally, the SNPs
used in our analysis predict circulating concentrations of the
assessed micronutrients which may differ from those found
in more clinically pertinent tissues, or those subjects most
susceptible to fatality from COVID-19.

In conclusion, using a comprehensive MR study, we found
scant evidence for possible associations of genetically predicted
circulating concentrations of micronutrients with COVID-19
outcomes. The observed associations for magnesium (inverse)
and vitamin B6 (positive) with the risk of COVID-19 infection
should be interpreted with caution given the possibility for
horizontal pleiotropy. Although the present study implemented
data from 87,870 COVID-19 cases, it is possible our analysis
did not capture the extremely low micronutrient concentrations
that have previously been directly measured in critically ill
COVID-19 patients. Furthermore, MR cannot account for the
potential existence of non-linear associations. Therefore, it is our
opinion that it would be prudent to avoid deficiency in these
micronutrients tomitigate severe to fatal COVID-19 and that this
hypothesis warrants more detailed study. Thus, more extensive
epidemiological studies are required to investigate the possible
role of micronutrients in COVID-19 severity, as the MR results
presented here cannot be considered definitive.
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