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The intensification of aquaculture to help kerb global food security issues has led
to the quest for more economical new protein-rich ingredients for the feed-based
aquaculture since fishmeal (FM, the ingredient with the finest protein and lipid profile)
is losing its acceptability due to high cost and demand. Although very high in
protein, castor meal (CM), a by-product after oil-extraction, is disposed-off due to
the high presence of toxins. Concurrently, the agro-industrial wastes’ consistent
production and disposal are of utmost concern; however, having better nutritional
profiles of these wastes can lead to their adoption. This study was conducted
to identify potential biomarkers of CM-induced enteritis in juvenile hybrid-grouper
(Epinephelus fuscoguttatus♀ × Epinephelus lanceolatus♂) using ultra-performance
liquid chromatography-mass spectrometry (UPLC-MS) alongside their growth and distal
intestinal (DI) health evaluation. A total of 360 fish (initial weight = 9.13 ± 0.01g) were
randomly assigned into three groups, namely, fish-meal (FM) (control), 4% CM (CM4),
and 20% CM (CM20). After the 56-days feeding-trial, the DI tissues of FM, CM4,
and CM20 groups were collected for metabolomics analysis. Principal components
analysis and partial least-squares discriminant-analysis (PLS-DA, used to differentiate
the CM20 and CM4, from the FM group with satisfactory explanation and predictive
ability) were used to analyze the UPLC-MS data. The results revealed a significant
improvement in the growth, DI immune responses and digestive enzyme activities, and
DI histological examinations in the CM4 group than the others. Nonetheless, CM20
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GRAPHICAL ABSTRACT |

replacement caused DI physiological damage and enteritis in grouper as shown by
AB-PAS staining and scanning electron microscopy examinations, respectively. The
most influential metabolites in DI contents identified as the potential biomarkers in the
positive and negative modes using the metabolomics UPLC-MS profiles were 28 which
included five organoheterocyclic compounds, seven lipids, and lipid-like molecules,
seven organic oxygen compounds, two benzenoids, five organic acids and derivatives,
one phenylpropanoids and polyketides, and one from nucleosides, nucleotides, and
analogues superclass. The present study identified a broad array of DI tissue metabolites
that differed between FM and CM diets, which provides a valuable reference for further
managing fish intestinal health issues. A replacement level of 4% is recommended based
on the growth and immunity of fish.

Keywords: Epinephelus fuscoguttatus♀ × Epinephelus lanceolatus♂, fishmeal, metabolomics, ricinine, castor
meal, scanning electron microscopy, ultra-performance liquid chromatography-mass spectrometry (UPLC-MS),
partial least-squares discriminant-analysis (PLS-DA)

INTRODUCTION

With reference to the highlights of the global food security and
nutrition (1), there are about 11% (over 820 million people)
of the world’s population (majority from south Asia and sub-
Saharan Africa) that remain undernourished, a little up from
the 10.6% in 2015. The direct causes emanate from increasing
population, income inequalities, conflicts, instability, poverty,
and ineffective nutrition policies. Over the last two decades, the
aquaculture industry has expanded rapidly to produce highly
nutritious food at a relatively lower price (2). The FAO, in their
2020 report, revealed that, despite the decline in aquaculture

production, the sector played a major role in the 179 million
tonnes of the global fish produced, of which 156 million tonnes
were used for human consumption (3). However, the aquaculture
industry in increasing production to meet the global demands
has been faced with lots of challenges including the over-
exploitation of natural stocks, perishability, and food-borne
diseases. Market globalisation and recurring food-safety alerts
have resulted in increasing consumer awareness. In the last
decade, the seafood sector has incentivised the application of
relevant novel molecular techniques for the monitoring and
assessment of food safety, traceability, and quality due to the
perishable nature of seafood and the key role they play as a
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protein source for the global population (4, 5). Thus, regarding
the development of the global economy and the upgrading
of living standards, humans are calling for higher quality
seafood, and the problem of fish health deterioration and quality
instigated by feed has become one of the central problems
that cannot be disregarded in the aquaculture industry today.
The increasing demand for fish products further intensifies
the supply pressure of feed materials, especially fishmeal (FM)
which is mainly sourced from marine capture fisheries. FM is
the preferred source of protein in aquaculture because of its
high protein content, balanced essential amino acids (EAA),
high palatability, and digestibility (6). Among the other animal
food-producing sectors, the aquaculture industry is noted as
the largest consumer of FM because the industry consumes
about 68–78% (7, 8). The current shortfall of marine capture
fisheries has drastically increased the cost of FM as demand
exceeds the supply (3). Exploring alternative conventional feeds
such as plant-based protein (PBP) diets is a necessity as
they are less costly and readily accessible (9, 10). However,
the extensive research and documentation of most of the
PBP ingredients, including soybean meal (SBM), cottonseed
meal, peanut meal, corn gluten meal, wheat gluten meal,
and others used in substituting FM partially or fully are
gradually making them costly and not accessible enough as
farmers’ acceptance rates and demands keep on increasing (9–
13). There is therefore an urgent need for the assessment of
other PBPs that are readily available in larger quantities and
can substitute FM.

Castor meal (CM) is a by-product generated after the
extraction of oil from the castor plant (Ricinus communis
L.) seed (14). Hitherto, the consistent production and safe
discarding of agro-industrial wastes have been a matter of
concern since their natural oxidation directly fortifies the
quantum of greenhouse gases creating awful effects on human
and animal health. CM has the potential of being used as
a protein supplement due to its high protein (35–55.8% dry
matter depending on the seed characteristics) and energy
(32–49% dry matter) levels as compared to other PBP
ingredients (15, 16). A comparative study of the amino acid
compositions of CM revealed an almost similar pattern for
all EAAs in SBM (mostly substituted PBP for FM) except
lysine and sulphur amino acids (17). Castor meal-induced
enteritis (CMIE) like other PBP-induced enteritis (18, 19)
refers to the non-infectious subacute enteritis, and histological
characteristics such as shortened mucosal folds, lamina propria
and submucosa swelling, infiltration of various inflammatory
cells, and reduced absorption of intestinal epithelial cells after
dietary supplementation of CM. The intestine is an important
organ that suffers lots of pathogenic microorganism effects
and toxic damages (20, 21). Generally, the available evidence
postulates that the effects of CM on intestinal health of
animals are related to the imbalanced amino acids and the
anti-nutritional factors (ANFs) such as ricin, ricinine, allergen,
agglutinins, tannins, lectin, oxalate, and phytases contained
in CM (22–25). Thus, CM is being precluded from being
used as an animal feed supplement. Previously conducted
studies show that CM raw material can usually be added

to feed at a relatively low level since excessive addition to
diets may not only reduce feed intake and growth but also
affect the intestinal structure and cause enteritis in the gut of
animals (16, 26–30). Although there are very limited studies
on the supplementation effects of CM in fish, the studies
conducted on hybrid catfish (Hetero clarias) exceeding 12.5%
inclusion (31) and juvenile grass carp (Ctenopharyngodon idella)
exceeding 5% inclusion (32) all show a reduction in growth
performance, feed utilisation, and body composition, unless CM
raw material is reduced or detoxified. However, there are lack
of systematic studies on the effect of effects of CM on intestinal
enteritis in fish.

In understanding the effects of aquaculture feeds on the
physiology of fish, there must be a shift in the methods used
to discover diet and intestinal health relations from different
standpoints. The use of new omics technologies is noted to
show enormous potential to aid in the understanding of the
complex interplay between the nutrition and immunity of fish
(33). As one of the newest “omics” sciences, metabolomics
deals with the supplementation of data from transcriptomics,
genomics, and proteomics to promote the understanding of
biological systems (34). Metabolomic studies provide great
potential insight into biomarker identification, diagnosis of
diseases, and toxicological mechanism (35, 36) since they
can reveal the changes and laws of endogenous metabolites
in an organism after external interference (37). Currently,
metabolomics has been extensively used in drug discovery
and food safety fields, thus, becoming an effective tool to
investigate the biochemical effects of toxic substances (38), which
warrants more research.

The hybrid grouper (Epinephelus fuscoguttatus♀ × E.
lanceolatus♂), is one of the most sought after fish in China
and the world and is currently used for intensive and super-
intensive aquaculture as a result of their enormous attributes such
as faster growth, efficient food utilisation, higher resistive capacity
to disease infection, being able to withstand higher population
density (39, 40), higher nutritional and market value (41, 42),
aside from their ability to adapt to high salinity conditions (43).
As a typical carnivore marine new species, the hybrid grouper’s
dietary protein requirement ranges between 50 and 55% (44).
FM is the primary protein source for grouper, but this fish
is less adapted to PBP diets due to utilisation and enteritis
problems (45).

This study aimed at identifying differential metabolites linked
with dietary CM by conducting untargeted metabolomics
using ultra-performance liquid chromatography-mass
spectrometry (UPLC-MS). Notably, there is non-existence
of studies correlating dietary CM supplementation with
their metabolite profiling in fish. For the first time, this
study demonstrates the effects of replacing FM with CM on
growth, feed utilisation, immune response, digestive enzyme
activities, and histological examination in hybrid grouper.
Furthermore, our study’s main attraction and novelty are
premised on the fact that we have been able to identify
candidate biomarkers of the overall CM pattern, which is a
more comprehensive perspective given that nutrients do not
act in isolation.
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MATERIALS AND METHODS

Experimental Diets
All of the procedures were performed following the relevant
policies of Animal Welfare in China. The Animal Research
and the Ethics Review Board of Guangdong Ocean University
approved the animal protocol used in the present study. The
FM used in the current study was supplied by China National
Township Enterprise, whereas the CM was purchased from
the Shangdong Weifang Supply and Marketing Industrial Co.
Ltd. (Shangdong, China). Three iso-nitrogenous (approximately
50% crude protein), and iso-lipidic (approximately 10% of total
lipid) experimental diets were formulated to contain 0, 4.76,
and 23.79% of CM by replacing 0% (FM, control), 4% (CM4),
and 20% (CM20) of FM protein. The Supplementary Table 1
illustrates the amino acid profiles of the FM and CM ingredients
used in this study. The ingredient formulation composition and
the proximate chemical analysis of the experimental diets are
presented in Table 1. Crystalline amino acid (AA) methionine,
lysine, threonine, and leucine were added to the diets to achieve
the required amino acid for grouper feed. The balancing of AA
profiles during the formulation was done in strict accordance
with previously reported work (46).

The proximate chemical analysis of the experimental diets
followed standardised methods of AOAC (47). Briefly, the
moisture content was determined by drying feed in an oven at
105◦C until a constant weight was obtained. The crude lipid was
determined by the Soxhlet method using ether extraction. Also,
while the crude protein (N× 6.25) was determined by the method
of Kjeldahl, which involves the use of an Auto Kjeldahl System
(8400-Autoanalyzer, FOSS), the ash content was analysed by
muffle furnace combustion involving oven incineration at 550◦C
for 5 h. In preparing the diets, all the ingredients were ground and
sieved (60 mesh size sieve). Afterward, they were gradually mixed
with fish oil, corn oil, and soybean lecithin, and finally, purified
water was added to make dough. The dough was then pelleted
through a double helix extrusion machine (F-75 pelletizer, South
China University of Technology, China). The pellets made (2 and
2.5 mm diameter) were air-dried, and kept in sealed Ziploc bags,
which were subsequently stored at –20◦C till the commencement
of the feeding trial. The EAA and non-essential amino acid
(NEAA) contents in the various experimental diets are shown in
the Supplementary Table 2.

Experimental Fish and Culture Condition
Healthy hybrid grouper (Epinephelus fuscoguttatus♀ × E.
lanceolatus♂) were obtained from a commercial farm
(Zhanjiang, Guangdong Province, China). Upon arrival,
all fish were acclimatised in aerated cement pools (4.5 m
[L] × 3.45 m [W] × 1.8 m [H]) for 2 weeks. Fish were hand-fed
twice daily with a commercial diet during the acclimatisation
period. Afterward, 360 juvenile fish of uniform size were starved
for 24 h. They were then weighed and randomly distributed
into 12 cylindrical fibreglass tanks (0.5 m3) at 30 fish densities
per tank. They were hand-fed during the 8-weeks experiment
period to apparent satiation twice daily (08:00 and 16:30)

TABLE 1 | Formulation and proximate composition of experimental diets
(% dry matter).

Ingredients FM CM4 CM20

Red fish meala 50 46 30

Castor mealb 0 4.76 23.79

Wheat gluten mealc 9 9 9

Soy protein concentrated 7 7 7

Wheat Flourc 16 16 16

Caseine 2 2 2

Corn oilc 2 2 2

Fish oilc 2.5 2.8 4

Soy lecithinc 1.5 1.5 1.5

Vitamin premixf 0.5 0.5 0.5

Mineral premixg 0.5 0.5 0.5

Choline chlorideh 0.5 0.5 0.5

Vitamin Ca 0.05 0.05 0.05

Ca(H2PO4)2h 1 1 1

Attractanta 0.1 0.1 0.1

Ethoxyquina 0.05 0.05 0.05

Microcrystaline cellulosei 6.8 5.53 0.47

Carboxymethyl cellulosei 0.5 0.5 0.5

Methioninej 0 0.04 0.19

Lysinej 0 0.12 0.6

Threoninej 0 0.02 0.08

Leucinej 0 0.03 0.16

Total 100 100 100

Proximate composition

Crude protein 50.00 49.98 49.43

Crude lipid 10.10 10.57 10.03

Moisture 7.10 7.13 7.88

Ash 12.58 12.18 11.71

aRed fish meal: crude protein, 70.03%, and crude lipid 8.24% (supplied by China
National Township Enterprises Corporation).
bCastor meal: crude protein, 58.87% and crude lipid, 0.42% (purchased from
Shandong Weifang Supply and Marketing Industrial Co., Ltd., Shandong, China).
cWheat gluten meal: crude protein, 81.22%, and crude lipid, 0.11%; Wheat flour:
crude protein, 10.52%, and crude lipid, 0.36%; corn oil; fish oil; soy lecithin; vitamin
C; (purchased from Zhanjiang Haibao Feed Co. Ltd., Guangdong, China).
dSoy protein concentrate: crude protein, 67.87% and crude lipid, 0.46% (supplied
by Shandong Changrun Biology Co., Ltd).
eCasein: crude protein, 92.43% and crude lipid, 0.11 (purchased from Sigma
Chemical Co., Ltd., Shanghai, China).
f Vitamin premix (g kg−1 mixture): vitamin B1, 17.00 g; vitamin B2, 16.67 g; vitamin
B6, 33.33 g; vitamin B12, 0.07 g; vitamin E, 66.00 g; vitamin K, 3.33 g; vitamin D,
33.33 g, retinyl acetate, 6.67 g; D-calcium pantothenate, 40.67 g; nicotinic acid,
67.33 g; folic acid, 4.17 g; biotin, 16.67; inositol, cellulose, 592.72 g; and 102.04 g
(obtained from Zhanjiang Yuehua Feed Co. Ltd., Zhanjiang, China).
gMineral premix (g kg−1 premix): ZnSO4.H2O, 32.0991 g; FeSO4

·7H2O, 18.785 g;
MgSO4.H2O, 65.19927g, CoCl2.6H2O (10%), 5.5555g; CuSO5.5H2O, 11.0721 g;
KIO3, 0.0213 g; Na2SeO3 (10%), 0.5555 g, KCl, 22.7411 g; zeolite powder,
843.9777 g (Obtained from Zhanjiang Yuehua Feed Co. Ltd., Zhanjiang, China).
hPurchased from Shanghai Macklin Biochemical Co. Ltd., Shanghai, China.
iPurchased from Shantou Xilong Chemical Factory, Guangdong, China.
jThese amino acids were added to balance the amino acid content in the FM
(control) diet. Purchased from Shanghai Doublewin Bio-Tech. Co., Ltd.

with the three experimental diets (FM, CM4, and CM20). The
experiment was conducted at an indoor facility of the Marine
Biological Research Base of Guangdong Ocean University
(China) for 56 days. Single-airstones provided water aeration.
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During the feeding period, the water quality parameters were
maintained daily by renewing 30% of the filtered seawater
for the first 2 weeks, which shifted to 50% renewal to keep
the temperature, pH, dissolved oxygen, and salinity within
the ranges 28–30◦C, 7.7–8.2, ≥6.6 mg L−1, and 28–32h,
respectively (YSI 556 multiprobe system, YSI Inc., United States).
The photoperiod was 12 h L: 12 h D, with the light period from
7:30 am to 7:30 pm.

Sampling of Fish
The Performance of Growth
At the termination of the experiment, all fish after 24 h
starvation period were anaesthetised with eugenol (1:10,000)
before harvest. The total numbers of fish left per individual
tank were counted, and their mean body weights were taken.
Three fish were randomly sampled to record their body and
intestinal lengths, liver, and intestinal weights. Based on the
obtained records, the growth performance parameters, including
the survival rate (SR), weight gain rate (WGR), specific growth
rate (SGR), feed conversion ratio (FCR), hepatosomatic index
(his), viscerosomatic index (VSI), intestinal somatic index (ISI),
and intestinal length index (ILI) were calculated as described
below;

SR, % = 100 ×
Final fish number
Initial fish number

; (1)

WGR, % = 100 ×
Final fish body weight

(
g
)
− Initial fish body weight (g)

Initial fish body weight (g)
;

(2)

SGR, % = 100 ×

ln
[
Final fish body weight

(
g
)]
− ln [Initial fish body weight

(
g
)
]

Days of experiment
;

(3)

FCR =
Total dry feed intake (g)

Final fish body weight
(
g
)
− Initial fish body weight (g)

;

(4)

HSI, % = 100 ×
Fish liver weight (g)

Fish body weight (g)
; (5)

VSI, % = 100 ×
Fish viscera weight (g)

Fish body weight (g)
; (6)

ISI, % = 100 ×
Final fish intestine weight (g)

Final fish body weight (g)
; and (7)

ILI, % = 100 ×
Final fish intestine length (cm)

Final fish body length (cm)
. (8)

Distal Intestinal Sampling for Histological
Examination and Metabolomics Analysis
To aid in the analysis of intestinal enzyme activity, two fish from
each tank were randomly selected and their intestines removed.
The intestines were cleared of any mesenteric adipose tissue
and rinsed with deionised water. The cleaned distal intestines
(DI) were cut, placed in Eppendorf tubes, and immediately
frozen in liquid nitrogen. Samples were later stored at –80◦C for
subsequent enzyme activity analysis.

Eight fish from each treatment group (two fish per replicate
tank) were randomly selected and their intestines removed for
the scanning electron microscopy (SEM) analysis. The removal
of the DI of the fish was done within 1–3 min, and the tissue
mass was not more than 3 mm. The bloodstains and other
tissues on the sample surface were removed by gently washing
with PBS (pH 7.4) for the 30 s followed by fixing in a 2.5%
glutaraldehyde (purchased from Wuhan Servicebio Technology
Co. Ltd., Wuhan, China). The samples were kept for 24 h (at
4◦C) until further processing. For Alcian Blue-Periodic Acid-
Shiff (AB-PAS) staining analysis, a fish per replicate tank was
randomly selected to remove the DI tissue samples, which were
immediately placed in a 4% formaldehyde solution and stored for
subsequent analysis.

For metabolomics analysis, six fish were randomly sampled
from each treatment group to get the DI samples. The samples
were instantaneously frozen in liquid nitrogen and stored at –
80◦C for subsequent analysis.

Determination of Enzyme Activities
After removing the frozen intestinal samples, they were thawed,
weighed, and homogenised in 0.9% sterilised saline at 1:9
(tissue:volume) with the help of a bead homogeniser in ice
for 10 min. The homogenate was later centrifuged (3000 × g
for 15 min at 4◦C). The supernatant was collected in 1.5 mL
tubes and used the determination of enzyme activities. The
immune and antioxidant titres of the intestine, including
lysozyme (LYZ), Immunoglobulin M (IgM), complement 3
(C3) and 4 (C4), superoxide dismutase (SOD), and glutathione
peroxidase (GSH-Px) activities, were determined using the fish
LYZ Elisa detection kit, fish IgM Elisa detection kit, fish C3
and C4 Elisa detection kit, fish SOD Elisa detection kit, and
fish GSH-Px Elisa detection kit, respectively. The kits were all
procured from the Shanghai Jianglai Biotechnology Co. Ltd.
(Shanghai, China).

Following the manufacturer’s protocol, to a flat-bottomed
96-well plate pre-coated with fish LYZ antibody, 50 µl each
of the standard or intestinal sample (sample final dilution is
fivefolds) solution was added to the appropriate wells and mixed
gently without touching the good wall. Subsequently, 100 µl of
horseradish Peroxide (HRP)-conjugate LYZ reagent was added to
the sample and standard wells with the exception of blank wells.
Plates were covered with closure plates and incubated for 60 min
at 37◦C. Afterward, liquid in wells was discarded, dried by gently
swinging plates, and washed five times (solutions were kept still
in wells for 30 s before drying by pat) with wash buffer solution
(diluted 20-fold with double distilled water). After plate drying,
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the 50 µl each of Chromogen Solution A and Solution B were
added to all wells and incubated for 15 min at 37◦C, and the
reaction stopped with 50 µl of stop solution. The optical density
(OD) of the LYZ level in each well was read using a Rayto RT-6100
microplate reader (Shenzhen, China) set to 450 nm wavelength.
The IgM, C3, and C4 enzymes followed the same procedure
as the LYZ, however, fish IgM antibody, fish C3 antibody, and
fish C4 antibody were used instead of fish LYZ antibody. The
trypsin (TRP) activity was determined according to the methods
of Erlanger et al. (48). Lipase (LPS) and amylase (AMS) activities
were measured following the methods of Gjellesvik et al. (49)
and Yaghoubi et al. (50), respectively. The kits used for the TRP,
LPS, and AMS activities were as well purchased from Shanghai
Jianglai Biotechnology Co. Ltd. (Shanghai, China). The intestinal
enzyme activities were expressed per mg protein concentration
(bicinchoninic acid, BCA) (51).

Distal Intestinal Alcian Blue-Periodic
Acid Schiff Section and Scanning
Electron Microscopy Analysis
Samples were washed with PBS after removing from the fixation
solution and post-fixed by washing tissue blocks with 0.1 M
PBS (pH 7.4) three times (15 min per time). The tissue blocks
were transferred into 1% osmium tetroxide (OsO4) in 0.1 M
PBS (pH 7.4) for 1–2 h at room temperature and washed
again in 0.1 M PBS (pH 7.4) three times (15 min per each
time). Samples were dehydrated in graded ethanol doses (30,
50, 70, 80, 90, 95, and 100% with two baths in 100% ethanol).
Isoamyl acetate was used for the final dehydration stage, during
which the dehydration time lasted 15 min at each step. Samples
were then submitted to critical point drying (Quorum K850,
Quorum Tech. Ltd., United Kingdom) and attached to metallic
stubs using carbon stickers. Later, they were sputter-coated
with gold using MC1000 sputter coater (Hitachi Ltd., Tokyo,
Japan) for 30 s. The prepared SEM samples were examined
and photographed using an MSIP-REM-htn-SU8100 scanning
electron microscope (Hitachi High-Technologies Corporation
Corporate Manufacturing Strategy Group, Japan).

For the AB-PAS histological examinations, the tissues
removed from the 4% formalin buffer were paraffin-embedded
(JB-P5, Wuhan Junjie Electronics Co., Ltd., Wuhan, China),
cut into 4µm sections using a microtome (Leica Instruments,
Shanghai, China, RM2016). Samples were dewaxed by Xylene
I and Xylene II for 20 min each, followed by 100% ethanol I
and ethanol II (Servicebio, G1049, Sinaopharm Group Chemical
Reagent Co., Ltd., Shanghai, China) for 5 min each, then 75%
ethanol for 5 min. Samples were later rinsed with running tap
water. Subsequently, the sections were stained with Alcian blue
dyes for 15 min. They were rinsed with running tap water till
it was colourless and then stained with periodic acid dye for
15 min. Afterward, they were rinsed with running tap water and
rinsed twice again with distilled water. They were then placed in
Schiff ’s reagent and stained again at room temperature for 30 min
in the dark followed by rinsing for 5 min. The sections were
dehydrated by 100% ethanol I (5 min), 100% ethanol II (5 min),
100% ethanol III (5 min), Xylene I (5 min), Xylene II (5 min),

and later sealed with the neutral gum. The images were then
captured as previously described (52, 53) with Olympus model
BX51 (Serial number: 9K18395, Tokyo, Japan). The villi height
(VH), villi width (VW), crypt depth (CD), lamina propria (LP),
and intestinal epithelial muscle thickness (MT) were measured
using the software Image-Pro Plus 6.3 (Media Cybernetics, Inc.,
Rockville, MD, United States). The goblet cell (GC) counts were
measured using cellSens Standard 1.8 software.

Analysis of Metabolomics
Metabolites Extraction and Ultra-Performance Liquid
Chromatography-Mass Spectrometry Analysis
The individual DI samples (100 mg) were ground with
liquid nitrogen, and their homogenate was re-suspended using
prechilled 80 and 0.1% formic acid by the good vortex.
Subsequently, the samples were incubated on ice (5 min),
centrifuged (15,000 × g for 20 min at 4◦C), and aliquots
of supernatant samples were diluted to a final concentration
containing 53% methanol by LC-MS grade water. The samples
were consequently transferred into fresh Eppendorf tubes (with
0.22 µm), centrifuged (15,000× g for 20 min at 4◦C), and finally,
the filtrate was injected into the LC-MS/MS system analysis (54).
UPLC-MS/MS analyses were performed using a Vanquish UPLC
system (Thermo Fisher, Germany) coupled with an Orbitrap Q
ExactiveTM HF-X mass spectrometer (Thermo Fisher, Germany)
at Novogene Co., Ltd. (Beijing, China). Samples were injected
onto a Hypesil Gold column (100 × 2.1 mm, 1.9 µm) using a
17 min linear gradient at 0.2 ml/min flow rate. The eluents for
the positive polarity mode were eluent A (0.1% FA in Water)
and eluent B (Methanol). The eluents for the negative polarity
mode were eluent A (5 mM ammonium acetate, pH 9) and
eluent B (Methanol). The solvent gradient was set as follows:
2% B, 1.5 min; 2–100% B, 12 min; 100% B, 14.0 min; 100-2% B,
14.1 min; 2% B, 17 min. Q ExactiveTM HF-X mass spectrometer
was operated in positive/negative polarity mode with a spray
voltage of 3.2 kV, capillary temperature of 320◦C, sheath gas flow
rate of 40 arb, and aux gas flow rate of 10 arb.

Quality Control
As metabolomics is easily disturbed by external factors and
changes rapidly, data quality control (QC), which can detect
anomalies in time, is necessary to obtain stable and accurate
metabolome results. In controlling the quality of the experiment
conducted while sample processing, QC samples were prepared.
The QC samples are the equal mixing samples of treatment
samples used to balance the chromatographic-mass spectrometry
system, monitor the LC-MS system performance state, and
evaluate the system’s stability during the whole experiment
process. Based on the relative quantitative value of metabolites,
the Pearson correlation coefficient between QC samples was
calculated. The higher the correlation of QC samples (the closer
to 1), the better the stability of the whole method. Again, the
distribution of QC samples in the PCA analysis diagram can be
termed as having better stability of the whole method and that
there is a higher data quality when QC samples are reflected as
being smaller and are clustered together (55). At the same time,
blank samples are set up to aid in the removal of background ions.
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Processing of Data and Metabolite Identification
The UPLC-MS/MS raw data generated were processed using
Compound Discoverer 3.1 (CD 3.1, Thermo Fisher) to perform
a peak alignment, peak picking, and quantitation of each
metabolite. The main parameters were set as follows: retention
time tolerance, 0.2 min; actual mass tolerance, 5 ppm;
signal intensity tolerance, 30%; signal/noise ratio, 3; and
minimum intensity, 100,000. Subsequently, peak intensities were
normalised to the total spectral intensity. The normalised data
were used to predict the molecular formula based on additive
ions, molecular ion peaks, and fragment ions. The peaks were
then matched with the mzCloud1, mzVault, ChemSpider2, and
MassList databases to obtain accurate qualitative and relative
quantitative results. Statistical analyses were then performed
using the statistical software R (R version R-3.4.3), Python
(Python 2.7.6 version), and CentOS (CentOS release 6.6). When
data were not normally distributed, normal transformations
were attempted using the area normalisation method. The
metabolites were annotated using the Kyoto Encyclopedia of
Genes and Genomes (KEGG) database3, Human Metabolome
Database (HMDB)4 and LIPID MAPS R© database5. Later on, the
principal component analysis (PCA) and partial least squares
discriminant analysis (PLS-DA) was performed using a flexible
and comprehensive software for metabolomics processing known
as meta X software. An application of univariate analysis (t-
test) was made to calculate the statistical significance (P-value).
The Variable Importance in the Projection (VIP) value reflects
the contribution of each variable to the model. Larger VIP
values were considered as the major potential biomarkers for
differentiating the control and the experimental groups. The
metabolites with VIP > 1 and P < 0.05 and fold change ≥ 2 or
FC ≤ 0.5 were considered as differential metabolites (56).

Differential Metabolites’ Filtering
The Venn plot of differential metabolites between the DI tissues
was made to search for the co-contained differential metabolite,
that is, the overlapping part in the Venn plot. The Log2FC
values of the differential metabolites in the coinciding part
were calculated, and the co-contained differential metabolites
changed with contrary trends and were considered to be
significantly affected after ingestion by fish. The left of the
co-contained metabolites with the same trend and differential
times of Log2FC < 2 were considered no-significantly changed
and removed in the whole differential metabolites of the DI
contents. Volcano plots were used to filter metabolites of interest-
based on log2FC and –log10 (p-value) of metabolites. For
heatmap clustering, the data were normalised using z-Scores of
the intensity areas of differential metabolites and were plotted
by Pheatmap package in R language. The correlation between
differential metabolites was analysed by cor.mtest function in
the R-package (method = Pearson). The statistically significant

1https://www.mzcloud.org/
2http://www.chemspider.com
3https://www.genome.jp/kegg/pathway.html
4https://hmdb.ca/metabolites
5http://www.lipidmaps.org/

correlation between differential metabolites was calculated by
cor.mtest in the R-package where the threshold level of significant
correlation was P < 0.05. The functions of these metabolites and
metabolic pathways were studied using the KEGG database. The
metabolic pathways enrichment of differential metabolites was
performed. When the ratio was satisfied by x/n > y/N, metabolic
pathways were considered enriched, and when the P-value of
the metabolic pathway was < 0.05, metabolic pathways were
regarded as statistically significantly enriched.

Statistical Analysis
The statistical analyses were done using the Statistical Package
for Social Sciences (SPSS) for Windows software (IBM SPSS
version 20, Inc., 2010, Chicago, IL, United States). To
examine the differences between groups, a one-way analysis
of variance (ANOVA) was conducted when the data variance
was homogenous. Differences were considered statistically
significant at P < 0.05 between treatment groups using
Tukey’s Honest Significant Difference (HSD) tests. Receiver
operator characteristic (ROC) curve analysis was conducted for
metabolites to determine the Area Under Curve (AUC), which
compares the predictive ability of metabolites.

RESULTS

Growth Performance
As illustrated in Table 2, the CM4 group used in replacing the FM
group experienced significantly high (P < 0.05) final body weight
(FBW), WGR, SGR, HSI, VSI, ISI, and ILI. In contrast, the FCR
was significantly higher (P < 0.05) in the CM20 group than in
the CM4 and FM groups. No significant difference (P > 0.05) was
observed in the PER and SR between all groups.

Immune, Antioxidant, and Digestive
Enzyme Indices
The results of the DI immune and digestive enzyme indices are
shown in Table 2. The C3 activity was significantly higher in the
CM4 group than in the other groups. On the other hand, CM’s
replacement levels in fish diets significantly increased (P < 0.05)
the C4, IgM, LYZ, SOD, and GSH-Px immune and antioxidant
enzymes concentrations, with the CM20 groups witnessing the
highest value. No significant differences (P > 0.05) were observed
among all groups concerning the TRP and AMS digestive
enzymes. Nonetheless, a significantly elevated (P < 0.05) LPS
activity was observed in the CM4 and CM20 groups than in the
FM group, with the CM4 revealing the highest activity.

Distal Histological Examination
Castor-meal substitution in the diet caused a significant change in
the histological analysis of the DI. The results obtained regarding
the DI histology examined by AB-PAS staining are presented in
Figure 1 and Table 3. It was revealed after the 56-day feeding trial
that the 20% CM replacement level led to a significant reduction
(P < 0.05) in the villi height, villi width, crypt depth, and goblet
cells. On the other hand, a significant increase (P < 0.05) in
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TABLE 2 | Effects of different levels of castor meal substitute for fish meal protein
on the growth performance, immune and digestive enzyme activities of juvenile
hybrid grouper (Epinephelus fuscoguttatus♀ × E. lanceolatus♂).

Parameters FM CM4 CM20

Growth

IBW (g) 9.12 ± 0.01 9.13 ± 0.00 9.13 ± 0.00

FBW (g) 80.44 ± 1.31b 85.07 ± 0.87b 56.21 ± 3.10a

WGR (%) 781.99 ± 14.67b 832.02 ± 9.53b 515.59 ± 33.76a

SGR (% day−1) 3.89 ± 0.03b 3.92 ± 0.07b 3.24 ± 0.10a

FCR 0.78 ± 0.03a 0.74 ± 0.01a 0.93 ± 0.02b

PER 2.90 ± 0.10 2.86 ± 0.10 2.59 ± 0.14

SR (%) 98.33 ± 1.68 95.00 ± 2.16 95.57 ± 4.43

Morphological

HSI (%) 2.12 ± 0.16ab 2.42 ± 0.13b 1.71 ± 0.09a

VSI (%) 9.06 ± 0.15b 9.55 ± 0.16b 7.63 ± 0.49a

ISI (%) 0.63 ± 0.02a 0.78 ± 0.03b 0.59 ± 0.04a

ILI (%) 144.44 ± 2.45b 147.45 ± 2.62b 126.48 ± 3.06a

Immune

C3 (µg mgprot−1) 103.67 ± 2.83a 148.72 ± 14.81b 120.08 ± 8.27ab

C4 (µg mgprot−1) 222.22 ± 5.05a 265.04 ± 13.54ab 292.14 ± 12.16b

IgM (µg mgprot−1) 94.47 ± 1.11a 101.27 ± 1.14b 106.34 ± 1.29c

LYZ (U gprot−1) 6.18 ± 0.50a 13.71 ± 0.93b 17.90 ± 1.29c

SOD (ng mg.prot−1) 9.61 ± 0.34a 13.37 ± 1.25b 17.65 ± 0.94c

GSH-Px (ng mg.prot−1) 27.21 ± 1.78a 40.58 ± 1.98b 47.84 ± 2.38b

Digestive enzymes

TRP (U mgprot−1) 1868.71 ± 110.84 2317.29 ± 171.15 2156.58 ± 107.61

LPS (U mgprot−1 120.56 ± 10.75a 474.57 ± 38.91c 279.67 ± 25.23b

AMS (U mgprot−1) 299.25 ± 13.47 382.55 ± 35.30 380.11 ± 18.10

Data are mean values of four replicates ± SE. The means in the same line
with no superscript letters do not differ significantly among groups (P > 0:05)
based on Tukey’s HSD test. Where: IBW, initial body weight; FBW, final body
weight; WGR, weight gain rate; SGR, specific growth rate; FCR, feed conversion
ratio; PER, protein efficiency ratio; SR, survival rate; HSI, hepatosomatic index;
VSI, viscerosomatic index; ISI, intestinal somatic index; ILI, intestinal length index;
C3, complement 3; C4, complement 4; IgM, Immunoglobulin M; LYZ, lysozyme;
SOD, superoxide dismutase; GSH-Px, glutathione peroxidase; TRP, trypsin; LPS,
lipase; and AMS, amylase; FM, fish meal (control group); CM4, 4% CM protein
replacement to FM protein; CM20, 20% CM protein replacement to FM protein.

muscle thickness and lamina propria width was observed in the
CM20 group in comparison to the FM and CM4 groups (Figure 1
and Table 3).

As illustrated in Figure 2, the SEM results show significant
change among groups. Compared with the other groups, the
highest CM replacement group (CM20) was observed to have
few and weak mucosal villi density, alongside its irregular
villi orientation (Figures 2G–I). Again, there was villi atrophy
(flattening or blunting) which in a way led to some of the
villi disappearing in contrast to what was observed in the CM4
(Figures 2D–F) and the control group (FM; Figures 2A–C).

Metabolic Profiling by Ultra-Performance
Liquid Chromatography-Mass
Spectrometry Analysis
Figure 3 and Supplementary Figure 1 show DI content’s
representative spectra. It must be noted that the samples of the
DI tissue were analysed with UPLC-MS in positive and negative

modes. Figure 4A illustrates the score plots of the PCA in the
two modes. The QC samples were observed in the centre and
were clustered tightly, depicting the better stability of the whole
detection process and the higher quality of the data; thus, its
sample correlation is shown in Figure 4B.

In characterising the profiles of the metabolites, the Partial
Least Squares Discrimination Analysis (PLS-DA) was used, and
Figure 5 shows the results of the DI contents in the positive
(Figure 5A) and negative modes (Figure 5B). There were
clear separations between all groups, and all samples in the
respective groups were fundamentally observed to be in the 95%
confidence ellipses (Supplementary Figure 2). Consequently, in
preventing model over-fitting, permutation tests were conducted
in positive and negative modes (Figure 6). The permutation
test parameters R2Y and Q2Y in the DI samples’ positive
modes were 0.97 and 0.59 between groups of FM and CM4,
and 0.98 and 0.85 between groups of FM and CM20. In the
negative modes, the permutation test parameters R2Y and Q2Y
were 0.96 and 0.49 between groups of FM and CM4, and
0.98 and 0.82 between groups of FM and CM4 of which they
were ≥ 0.5. To judge the quality of the model, it is sorted
and verified to check whether the model is over-fitting. Model
over-fitting reflects the accuracy of the model construction.
If the model is not over-fitted, the model can describe the
sample well and be used as the premise of searching for the
model biomarker group. But if the model is over-fitted, then
the model is not suitable for describing the sample and cannot
be used for later data analysis. The modelling and prediction
are conducted after randomly shuffling the grouping markers
of each sample where each of the modellings corresponds to
a group of values R2 and Q2 and their regression lines are
obtained according to the values of Q2 and R2 after 200
shuffling and modelling. When the R2 data is larger than the
Q2 data and the intercept between the Q2 regression line and
Y-axis is less than ‘0,’ the model is described as not over-
fitted. Thus, the results of the red line (Q2) and the blue
line (R2) on the left indicate a low risk of over-fitting the
models (Figure 6).

Differential Metabolites’ Filtering
Venn diagram is used to display multiple comparative
combinations of differential metabolites, which can intuitively
compare common and unique differential metabolites between
different groups to display the relationship between multiple
groups of differential metabolites. From the analysis of the
Venn plots, there were 567 differential metabolites in the DI
tissue contents, of which 34 were co-contained in positive
modes between the various groups. Nonetheless, in the negative
modes, 368 differential metabolites were observed in the DI
tissue contents, of which 17 were co-contained metabolites
between the FM, CM4, and CM20 groups (Figure 7). The
Venn plots revealed that most of the differential metabolites
observed in the DI tissues for hybrid grouper occurred
due to the physiological response of the intestine to diet
metabolism. The Supplementary Table 3 illustrates the co-
contained differential metabolites in the DI intestine in positive
and negative modes.
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FIGURE 1 | Representative histological evaluation of the distal intestine in hybrid grouper fed the FM (A–C), CM4 (D–F), and CM20 (G–I) diets based on Alcian
Blue-Periodic Acid-Schiff (AB-PAS) staining. (A,D,E) Shows a decreasing villi height (red arrows) and increased mucosal folds (blue arrows) as replacement levels
increases. (B,C,E,F,H,I) Shows the changes in the villi width (yellow arrow), lamina propria (LP), crypt depth (CD), and goblet cells (green arrows). FM, fish meal
(control group); CM4, 4% castor meal (CM) protein replacement to FM protein; CM20, 20% CM protein replacement to FM protein.

TABLE 3 | The distal intestinal tissue morphology of hybrid grouper fed with experiment diets.

Treatment Villi height (µm) Villi width (µm) Muscle thickness (µm) Crypt depth (µm) Lamina propria width (µm) Goblet cells/µm villi height

FM 797.55 ± 9.59c 128.64 ± 3.76b 191.79 ± 1.33a 75.08 ± 1.81b 14.02 ± 0.69a 0.06 ± 0.00b

CM4 730.56 ± 7.94b 112.40 ± 4.20a 221.41 ± 4.26b 80.69 ± 2.64b 15.06 ± 0.97a 0.07 ± 0.00b

CM20 481.55 ± 6.91a 97.51 ± 3.52a 309.04 ± 5.70c 64.91 ± 1.66a 28.35 ± 1.14b 0.04 ± 0.00a

Data are mean values ± SE. The means in the same column with no superscript letters do not differ significantly among groups (P > 0:05) based on Tukey’s HSD test.
Where: FM, fish meal (control group); CM4, 4% castor meal (CM) protein replacement to FM protein; CM20, 20% CM protein replacement to FM protein.

Analysis of Differential Metabolite
As illustrated in Figures 7B1,B2, the volcano plot in the
positive mode showed significantly that 127 metabolites
were up-regulated and 126 metabolites were down-regulated
between the FM and CM4 groups (Supplementary Table 4).
On the other hand, 213 metabolites were up-regulated and
199 metabolites down-regulated between the FM and CM20
groups (Supplementary Table 5). Again in Figures 7B3,B4,
the volcano plot in the negative mode showed significantly that
83 metabolites were up-regulated and 106 metabolites down-
regulated between the FM and CM4 groups (Supplementary
Table 6). However, 128 metabolites were up-regulated, and

126 metabolites were down-regulated between the FM
and CM20 groups in the negative mode (Supplementary
Table 7). Hierarchical Clustering Analysis (HCA) was
conducted for all the differential metabolites obtained
between comparison pairs (57). In the end, the relative
quantitative values of differential metabolites were normalised
and clustered as presented in Figure 8A (positive mode)
and Figure 8B (negative mode) with its details provided in
Supplementary Figure 3.

The 567 differential metabolites in the positive modes
were enriched into 52 pathways (Supplementary Table 8)
between the FM and CM4 groups of which the top 10 pathways
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FIGURE 2 | A scanning electron microscopy (SEM) of the distal intestinal mucosal surface of juvenile hybrid grouper fed with FM (A–C), CM4 (D–F), and CM20
(G–I). Bar markers represent 50 µm (A,D,G), 10 µm (B,E,H), and 5 µm (C,F,I). (A–C) Shows more and pebbled mucosal surface or villi (MV) density which contains
orifices of several goblet cells that may be seen protruding mucus (M) or not (crossed arrow); (D–F) shows more and pebbled mucosal surface or villi (MV) density
which contains orifices of several goblet cells that may be seen protruding mucus (M) in addition to very few noticeable villi detachments of from the epithelial layer
(stars); (G–I) shows few and weak mucosal surface or villi (MV) density, irregular orientation of villi, villi atrophy or blunting (flattening) causing some villi to disappear
(arrows). Abbreviations are as defined in Figure 1.

were “Purine metabolism,” “cGMP-PKG signalling pathways,”
“Starch and sucrose metabolism,” “Antifolate resistance,”
“Vascular smooth muscle contraction,” “Olfactory transduction,”
“Phototransduction,” “Parkinson’s disease,” “Alcoholism,” and
“Metabolic pathways.” On the other hand, there were 64
pathways enriched in positive modes between the FM and
CM20 groups (Supplementary Table 9), with the top 10 being
“Galactose metabolism,” “beta-Alanine metabolism,” “Vitamin
digestion and absorption,” “Folate biosynthesis,” “Fc epsilon
RI signalling pathway,” “Dopaminergic synapse,” “Parkinson’s
disease,” “Alcoholism,” “Tryptophan metabolism,” and “Caffeine
metabolism.” The KEGG-enrichment scatterplot showed that
there was only one distinct pathway, “Purine metabolism,” which
was significantly enriched (P < 0.05) when the FM to CM4
were compared together. In contrast, two distinct pathways,
“Galactose metabolism” and “beta-Alanine metabolism,” were
significantly enriched (P < 0.05) when comparing the FM to
CM20 (Figure 8C) in the positive modes.

However, in the negative modes, the 368 differential
metabolites were enriched into 60 pathways (Supplementary

Table 10) between the FM and CM4 groups of which the
top 10 pathways were “Taste transduction,” “Pyrimidine
metabolism,” “Metabolic pathways,” “Pentose and glucuronate
interconversions,” “Inositol phosphate metabolism,” “FoxO
signalling pathway,” “AMPK signalling pathway,” “Thyroid
hormone synthesis,” “Renin secretion,” and “Cortisol synthesis
and secretion.” On the other hand, there were 64 pathways
enriched in negative modes between the FM and CM20 groups
(Supplementary Table 11), with the top 10 beings “Galactose
metabolism,” “Starch and sucrose metabolism,” “Fc epsilon
RI signalling pathway,” “Insulin resistance,” “Central carbon
metabolism in cancer,” “Fructose and mannose metabolism,”
“Valine, leucine, and isoleucine degradation,” “Neomycin,
kanamycin, and gentamicin biosynthesis,” “Inflammatory
mediator regulation of TRP channels,” and “Thyroid hormone
synthesis.” The KEGG-enrichment scatterplot disclosed
that there was only one distinguishing pathway, “Taste
transduction,” which was significantly enriched (P < 0.05)
when the FM to CM4 were compared together, whereas five
distinct pathways, “Starch and sucrose metabolism,” “Insulin
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FIGURE 3 | The representative UPLC-MC spectra of the distal intestine in positive (A) and negative (B) modes. (A1,B1) Respectively represent the individual sample
repeats of FM in positive and negative modes, (A2,B2) respectively represent the individual sample repeats of CM4 in positive and negative modes, and (A3,B3)
respectively represent the individual sample repeats of CM20 in positive and negative modes. Abbreviations are as defined in Figure 1.

resistance,” “Galactose metabolism,” “Fc epsilon RI signalling
pathway,” and “Central carbon metabolism in cancer,” were
significantly enriched (P < 0.05) comparing FM to CM20
(Figure 8C) in the negative modes.

Based on the VIP > 1 score, the absolute value of log2(fold
change) > 1, and P < 0.05, the 10 most influential metabolites
differentiating the CM4 from the FM group in the positive
mode (Supplementary Table 12) were: “Ricinine (C8H8N2O2),”
“10-Undecenoic acid (C11H20O2),” “Jasmone (C11H16O),”
“Apocynin (C9H10O3),” “α-Pinene-2-oxide (C10H16O),” “2-
(Formylamino)Benzoic Acid (C8H7NO3),” “4-Pyridoxic acid
(C8H9NO4),” “DL-α-Aminocaprylic acid (C8H17NO2),” “Linalool
(C10H18O),” and “Butyryl fentanyl-d5 (C23H25[2]H5N2O).”
Nevertheless, those differentiating the CM20 from the FM group
(Supplementary Table 13) were: “Ricinine (C8H8N2O2),”
“Jasmone (C11H16O),” “α-Pinene-2-oxide (C10H16O),”
“Levodopa (C9H11NO4),” “10-Undecenoic acid (C11H20O2),”
“Styrene (C8H8),” “Carvone (C10H14O),” “Butyryl fentanyl-d5
(C23H25[2]H5N2O),” “MAG (18:4) (C21H34O4),” and “DL-α-
Aminocaprylic acid (C8H17NO2)” in the positive mode. In the
negative mode, the 10 most influential metabolites differentiating
the CM4 from the FM group (Supplementary Table 14)
were: “12-Hydroxydodecanoic acid (C12H24O3),” “Dl-3-
Hydroxy-kynurenine (C10H12N2O4),” “Naringenin (C15H12O5),”
“3-[2-(β-D-Glucopyranosyloxy)-4-methoxyphenyl]propanoic
acid (C16H22O9),” “2′-Deoxyuridine-5-monophosphate
(C9H13N2O8P),” “Citrulline (C6H13N3O3),” “N6-Methyladenine

(C6H7N5),” “Sucrose (C12H22O11),” “2-Hydroxymyristic acid
(C14H28O3),” and “10-Hydroxydecanoic acid (C10H20O3).”
However, those differentiating the CM20 from the FM
group (Supplementary Table 15) were: “Naringenin
(C15H12O5),” “Dl-3-Hydroxy-kynurenine (C10H12N2O4),” “12-
Hydroxydodecanoic acid (C12H24O3),” “Sucrose (C12H22O11),”
“2-Hydroxymyristic acid (C14H28O3),” “Taurocholic acid sodium
salt hydrate (C26H45NNaO7S),” “Stachyose (C24H42O21),”
“10-Hydroxydecanoic acid (C10H20O3),” “α,α-Trehalose
(C12H22O11),” and “L-beta-Imidazolelactic acid (C6H8N2O3)”
in the negative mode. Given this, a total of 20 metabolites were
observed as the key metabolites in the FM and CM4 group
(lower replacement level), and 20 key metabolites were also
observed in the FM and CM20 group (higher replacement level).
However, in analysing the key metabolites, 12 of them were
observed in both replacement groups. As a result, a total of 28
metabolites were identified and selected as the key potential
biomarkers.

Subsequently, z-score plots of the metabolites were analysed
to define the potential biomarkers further (Figure 9). Figure 10
and Supplementary Tables 16, 17 illustrate the intensities
of the potential biomarkers identified in the positive and
negative modes. Compared with the FM group, increasing the
replacement levels of CM caused a significant increasing trend
(P < 0.05) in the intensities of Ricinine, 10-Undecenoic acid,
Jasmone, Apocynin, α-Pinene-2-oxide, 2-(Formylamino)Benzoic
Acid, 4-Pyridoxic acid, DL-α-Aminocaprylic acid, Linalool,
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FIGURE 4 | (A) The results of the total sample PCA score plots from UPLC-MS spectra of the distal intestinal tissue in the positive (A1) and negative (A2) modes.
Abscissa PC1 and ordinate PC2 represent the scores of the first and second principal components. Scattered dots in different colours represent samples from
different experimental groups as illustrated in Figure 3. QC represents the quality control group. (B) The QC samples of the distal intestinal contents’ correlation in
the positive (B1) and negative (B2) modes. The abscissa is log10 (Peak. Area + 1), the ordinate (Peak. Area + 1), and the R2 is the square of the Pearson correlation
coefficient. n = 6.

FIGURE 5 | The results of the total PLS-DA score plots from the UPLC-MS spectra of the distal intestinal contents in positive (A) and negative (B) modes. Blue dots
represent the FM group (fishmeal group-control); green dots represent the CM4 groups [4% CM (castor meal) protein replacement to FM protein]; red dots represent
CM20 groups (20% CM protein replacement to FM protein). n = 6.
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FIGURE 6 | The results of the permutation test of the PLS-DA models of the distal intestinal contents between FM, CM4, and CM20 groups in the positive (A1,A2)
and negative (B1,B2) modes. The R2Y value represents the model’s goodness of fit, whereas the Q2 value represents the predictability of the models. Abbreviations
are as defined in Figure 1. n = 6.

Butyryl fentanyl-d5, Levodopa, Styrene, MAG (18:4),
12-Hydroxydodecanoic acid, Dl-3-Hydroxy-kynurenine, 3-
[2-(β-D-Glucopyranosyloxy)-4-methoxyphenyl]propanoic
acid, 2′-Deoxyuridine-5-monophosphate, Citrulline,
N6-Methyladenine, 2-Hydroxymyristic acid, and 10-
Hydroxydecanoic acid, contrast to as observed in the
intensities of Sucrose, Taurocholic acid sodium salt hydrate,
Stachyose, and L-beta-Imidazolelactic acid. Nonetheless, no
significant differences (P > 0.05) were observed between
the FM and CM4 groups concerning the intensities of 2-
(Formylamino)Benzoic Acid, DL-α-Aminocaprylic acid,
Linalool, Levodopa, 12-Hydroxydodecanoic acid, 3-[2-(β-D-
Glucopyranosyloxy)-4-methoxyphenyl]propanoic acid, and
10-Hydroxydecanoic acid. Again, for the intensities of
Naringenin, no significant difference (P > 0.05) was observed
among all groups. Interestingly, there were zero intensities
of Carvone, Stachyose, and α,α-Trehalose biomarkers
observed in the CM4 group. Supplementary Table 18
shows the classification of the 28 differential metabolites
identified in the DI tissues of FM vs. CM4 and CM20 groups
(HMDB).

The area under the ROC curve is recognised as the area under
curve (AUC), which is used to assess the sensitivity and specificity
of biomarkers for predicting the occurrence of events (58). The
sensitivity and specificity of each metabolite are determined
by the optimal threshold of the ROC Curve. Thus, (i) when
AUC = 0.5, the biomarker has no predictive value for predicting
the occurrence of events, and (ii) when AUC value is > 0.5, the
closer it is to 1 depicts the higher the accuracy of prediction.
The prediction accuracy is generally low when the AUC value is
between 0.5 and 0.7. The prediction accuracy is certain when the
AUC value is between 0.7 and 0.9, and the prediction accuracy
becomes high when the AUC value is above 0.9. The results of the
ROC analysis, as shown in Figure 11, resulted in the AUC of the
metabolites exceeding 0.8 at a 95% CI, depicting that there were
good predictive abilities for the screened potential metabolite
biomarker. The correlation analysis conducted revealed Sucrose,
Taurocholic acid sodium salt hydrate, Stachyose, and L-beta-
Imidazolelactic acid to have a negative correlation with the other
potential metabolite biomarkers, whereas the other potential
metabolite biomarkers actively correlated positively with each
other (Figure 12).
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FIGURE 7 | (A) The Venn plot displays the differential metabolites of distal intestinal contents of hybrid grouper between experimental groups in positive (A1) and
negative (A2) modes. (B) Volcano plots of p-values between the FM, CM4, and CM20 groups in the positive (B1,B2) and negative (B3,B4) modes. The horizontal
coordinate represents the change of expression of multiple metabolites in different groups (log2FC), and the vertical coordinate represents the significance level of
difference [–log10(p-value)]. Each dot in the figure represents a metabolite, and the size of the dot represents the VIP value. The significantly up-regulated
metabolites are represented by red dots, the significantly down-regulated metabolites are represented by green dots, and gray dots represent no significantly
different metabolites. Abbreviations are as defined in Figure 1. n = 6.

DISCUSSION

The present study revealed that the growth performance,
intestinal histology, digestion, immune responses, and metabolic
profiles identified were significantly changed by dietary
replacement of CM. Generally, plant-based proteins (PBPs)
are reported to have imbalanced EAA profiles. The inclusion
of PBPs in fish diets exposes them to various phytochemicals,
including antinutritional factors (ANFs), which interfere with
nutrient digestibility, absorption, and utilisation and ultimately
affect the growth performance and health status (9, 10, 17). CM

also contains ANFs such as ricin, ricinine, allergen, agglutinins,
tannins, lectin, oxalate, and phytases, as well as low levels of EAA,
including lysine and methionine (22–25, 59). As a carnivorous
fish, the demand for protein and amino acids for grouper must
be of high quality in their right proportion (45). While it is
promising in making good use of alternative PBP sources such
as CM in a particular range via nutrient balancing, previously
conducted research has illustrated that the supplementation of
EAA like lysine, methionine, and tryptophan to balance the AA
profiles in CM enhances growth as well as improvement in the
whole body composition (17, 22, 26, 59). Correspondingly, the
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FIGURE 8 | Clustering heatmap of total differential metabolites in the positive (A) and negative (B) modes after fishmeal replacement with castor meal. Individual
groups are clustered in the vertical part, whereas those of the metabolites are clustered in the horizontal part. Colour intensity indicates the intensity of the
metabolite. The relationship of metabolite content clustering between groups can be seen horizontally. The shorter the cluster branch is, the higher the similarity is.
(C) Scatter plot of the top 20 KEGG pathway enrichment for differential metabolites in the FM, CM4, and CM20 groups in positive (pos) and negative (neg) modes.
Abbreviations are as defined in Figure 1. n = 6.

plethora of research available on FM replacement with partial or
full PBP supports the supplementation of EAA (mainly lysine,
methionine, and threonine) to aid in achieving favourable AA

profiles and improve palatability (59, 60). In the present study,
we supplemented lysine, methionine, threonine, and leucine
EAA to balance CM’s AA profiles.
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FIGURE 9 | The z-Score plot of the potential biomarkers for the comparison between FM, CM4, and CM20 groups in the positive (A1,A2) and negative (B1,B2)
modes. Abbreviations are as defined in Figure 1. n = 6.

At the end of the 56-day feeding trial, a significant
improvement in the growth performance (FW, WGR, SGR,
FCR HSI, VSI, ISI, and ILI) was witnessed in fish fed at the
4% replacement level in comparison with the other groups.
Nonetheless, the fish fed with the highest replacement level
(CM20 group) showed the worst growth performance. Similarly,
dietary supplementation of CM above 8% (27) or 10% (26) reveals
a reduction in feed intake, which causes a decrease in growth.
Increasing the inclusion of CM in diets resulted in an increase
in ricinine contents which led to a reduction in feed intake and
growth performance in rainbow trout (Oncorhynchus mykiss)
(61) and grass carp (Ctenopharyngodon idellus) as against lower
CM replacement [40 g/kg feed (4%)] which had lesser ricinine
content (< 20 mg/kg) (32). The supplementation of CM in broiler
diets led to lower feed intake, poor FCR, and PER (62, 63), and
even 83% mortality in growing chicks (64). The reduction in
growth could be attributed to the higher contents of ANFs such
as ricin, lectins, allergen, and ricinine in the diets. Although the
contents of ANFs such as ricinine in feed were not analysed in
the current study, the reduction in the growth performance could
be attributed to the higher levels of ricinine content. More to

this explanation is the metabolomics analysis which revealed the
intensity of ricinine metabolite as being significantly high in the
CM20 group than in the others.

Digestive enzyme activities, including amylase (AMS), trypsin
(TRP), and lipase (LPS), aid in the breaking down of food
for nutrient absorption (65, 66). The current study revealed a
significantly high LPS activity in the CM groups compared to
the other groups. No significant differences in the TRP and
AMS were observed after FM’s dietary replacement with CM.
A previous report shows a significant decrease in the activities
of intestinal TRP and chymotrypsin (C-TRP) and liver TRP,
C-TRP, AMS, and LPS after replacing FM with soybean meal
in red seabream (Pagrus major) which was not in agreement
with our findings (67). The digestive enzyme contents produced
are undoubtedly regulated by the fish type, age, and diet (68,
69). Thus, the inconsistency can be attributed to the dietary
CM supplement used in the current study since there is limited
information on the subject matter.

Fish rely mainly on their non-specific and innate immunity
in dealing with pathogenic invasion or the presence of toxins.
Immune and antioxidant enzymes including C3, C4, IgM, LYZ,
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FIGURE 10 | Intensities of the metabolites identified in the positive and negative modes. Data represented the mean ± SE (Turkey’s HSD, P < 0.05; n = 6). Vertical
bars marked with no letters do not differ significantly (P > 0.05) among groups. In the bar plots, FM, fishmeal; CM4, 4% replacement of fishmeal with castor meal;
and CM20, 20% replacement of fishmeal with castor meal.

SOD, and GSH-Px help in host defence functions for growth and
development as they can reflect the stress responses of fish due
to infectious agents or toxins (70, 71). Complement is mainly
responsible for the destruction and elimination of toxins. C3 and
C4 are primarily produced by hepatocytes which can be activated
to participate in immune response (72). IgM plays a vital role
in bacterial opsonisation, toxin, and virus neutralisation, making
them liable to phagocyte destruction in the host organism (73,
74). As part of the innate immune system, the LYZ functions
by attacking, hydrolysing, and breaking glycosidic bonds in the
peptidoglycan (75). In this study, FM replacement with CM
significantly increased the C3, C4, IgM, and LYZ in the DI
of juvenile hybrid groupers, indicating that CM substitution in
diet could improve immunity, consistent with other reported
studies (12, 76, 77). Contrarily, Zhang et al. (78), after substituting
FM with soybean meal, showed significantly lower (P < 0.05)
IgM, C3, and C4 levels in the intestine in comparison to the
control. However, no significant differences were found in the
LYZ enzyme activity among the treated groups (78). Optimum
threonine (79) and leucine (80) in grass carp (Ctenopharyngodon
idella) and black carp (Mylopharyngodon piceus), respectively,
has been shown to significantly increase LYZ, C3, C4, and
IgM immune parameters. Also, acute toxicity testing using

chlorpyrifos in common carp (Cyprinus carpio) showed an LYZ
increase in serum, hepatopancreas, and kidney, as well as an
increase in serum and kidney IgM (81). Although this is the first
report to reveal the effects of replacing FM with CM, the reason
for the discrepancy can be ascribed to the supplementation
of threonine and leucine AA in our study to achieve an
optimum AA profile. Again, the changes could be attributed to
the clearance and contributing effect of inflammatory reactions
such that phagocytic cells are attracted to injury sites which
can ultimately lyse pathogenic cells (75, 82, 83). We entreat
further studies to explain the effects of CM on the non-specific
immune systems of fish. For the antioxidant enzymes, while
SOD is reported to support catalysing reactive O−2 to H2O2
partitioning (84), GSH-Px primarily shows the detoxification of
hydrogen peroxides, as well as other peroxides such as lipid
hydroperoxides (85). An increase in antioxidant enzyme implies
that the antioxidant defence against reactive oxygen and free
radical reaction is high; hence, the SOD and GSH-Px increase
in the hybrid grouper’s intestine after replacing FM with CM
supplementation suggests an improvement in the antioxidant
status. The CM20 group exhibited the highest SOD and GSH-
Px which was significantly higher than the results obtained for
the control group. This phenomenon may be because of the high
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FIGURE 11 | The ROC curve analysis for differentiating among groups with respect to the potential biomarker metabolites in the positive (A1,A2) and negative
(B1,B2) modes. Abbreviations are as defined in Figure 1. n = 6.

presence of monoterpene metabolites identified in the current
study, such as the α-Pinene-2-oxide whose intensity was very
high in the CM groups (CM20 obtaining the highest) than in
the control. Pre-administration with α-Pinene-2-oxide sheltered
U373-MG cells from stimulated oxidative damage of H2O2 via
blocking the loss of cell viability (IC50: 79.70 mM to α-Pinene-
2-oxide), which in turn prevented the formation of ROS and
lipid peroxidation. As a result, there was a gross enhancement
of endogenous antioxidant status via enhancing glutathione,
SOD, CAT, GR, GSH-Px activities, HO-1 properties, and protein
expression as reported by Porres-Martinez et al. (86). Thus the
increase in the intensities of α-Pinene-2-oxide in the gut might
have triggered the increase in the levels of SOD and GSH-Px
observed in the present study.

The intestine is an important organ for digestion and
absorption of nutrients. It plays an ardent role in regulating
immunity, mucosa barrier, signal recognition, and the
production of endogenous active molecules (87). Inducing

enteritis has been one of the fascinating areas of studies that
are now commonly used as the benchmark for the study of
intestinal inflammation in fish, especially after FM is replaced
with PBPs, including CM (18, 88). Fish physiology has been
reported to improve along with the changes in the intestinal
structure. Due to the high presence of ANFs in most PBP
diets, the histopathological changes it comes with have been
extensively researched. There is usually a swelling of the lamina
propria (making their width bigger) and subepithelial mucosa,
reduction in epithelial villi height, villi width, loss of normal
enterocyte supranuclear absorptive vacuolisation, and infiltration
of inflammatory cells. This, in a way, decreases the DI capacity
to break down food into smaller particles, digest them and
absorb the nutrients (18, 45, 88–91). Research accentuates
that broader or taller epithelial villi and wider crypt depth are
indications of higher absorption of nutrients in the gut (92).
Although very little, other studies have also highlighted the
histopathological changes of animals after CM supplementation,
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FIGURE 12 | The correlation analysis of the potential biomarkers between FM and CM4 groups and FM and CM20 groups in the positive (A1,A2) and negative
(B1,B2) modes. Abbreviations are as defined in Figure 1. n = 6.

of which its severity is premised on the inclusion level. Diniz
et al. (26), after 10% dietary CM supplementation, revealed
an intense inflammation of the abomasums and intestines
with corrosion of mucous membranes in cattle. Aslani et al.
(27) observed hepatic necrosis, kidney acute tubular necrosis
gastroenteritis, cardiac haemorrhage, and necrosis in sheep.
Nagalakshm and Dhanalaksh (16) also revealed pathological
lesions in the kidney, liver, intestines, and lungs in lambs after
10% CM as a result of the ANFs. On the contrary, an 8%
supplementation level was purported to show no significant
differences in the histopathological changes (28). There are
some discrepancies looking at the results of previous studies.
In the present study, the higher substitution of CM (CM20) in
the diet caused CM-enteritis in the DI histological examination
conducted by the AB-PAS staining and the SEM analysis. There
was a significant decrease in the VH, VW, CD, and GC counts,
as well as an increase in the MT and LP width in the CM20
group as compared to the other groups similar to the observation
made previously in soybean enteritis (78). For the SEM results,
there were fewer and weaker mucosal villi density, as well as villi

atrophy (flattening or blunting), and this together might have
caused the reduction in growth performance as the intestines
were not tall and wider enough to absorb the needed nutrients
for growth development. To the best of our knowledge, this is the
first report to be conducted using a fish model (hybrid grouper)
to assess the histopathological changes in the DI tissue by the
AB-PAS staining and SEM after dietary CM supplementation,
thus, we entreat that further studies be conducted.

Metabolomics has been effectively used to identify key
potential metabolic biomarkers in the DI tissue of grouper
after replacing FM with soybean meal (78). The application
of LC-MS/MS analysis on four different types of castor bean
revealed 60 key metabolites of high commercial value, which
were all associated with primary and secondary metabolism,
including fatty acids, amino acids, flavones, flavonol, flavanones,
dopamine, and phenylpropanoids (93). Moreover, a recent report
(94) identified R. communis to contain eighty-three metabolites,
including alkaloids, flavonoids, terpenoids, derivatives of benzoic
acid, tocopherols, coumarins, and fatty acids. However, it is vital
to identify the key metabolites after their dietary supplement
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and know their intensities after digestion. It must be stated
that, for the first time, this study labels the DI tissue’s metabolic
profiling changes in juvenile grouper after being fed 4 and
20% CM protein replacement to FM using UPLC-MS, and the
literature regarding UPLC-MS-based metabolomics on fish is
rare. Compared with the current study, there were only 28
identified potential biomarkers.

Again, the present study discusses the biological relationships
between the key potential biomarkers and their roles in
intestinal health. Among the 28 potential biomarkers identified;
5 of them were organoheterocyclic compounds [Ricinine
(sub-class: pyridinecarbonitriles), 4-Pyridoxic acid (sub-class:
pyridinecarboxylic acids and derivatives), Butyryl fentanyl-d5
(sub-class: Fentanyl), L-beta-Imidazolelactic acid (sub-class:
Imidazoles), and N6-Methyladenine (sub-class: Purines and
purine derivatives)]; 7 belonged to Lipids and lipid-like
molecules [10-Undecenoic acid (sub-class: Fatty acids and
conjugates), α-Pinene-2-oxide (sub-class: Monoterpenoids),
Linalool (sub-class: Monoterpenoids), Carvone (sub-class:
Monoterpenoids), MAG (18:4) (sub-class: Lineolic acids and
derivatives), 2-Hydroxymyristic acid (sub-class: Fatty acids
and conjugates), and Taurocholic acid sodium salt hydrate
(sub-class: Bile acids, alcohols and derivatives)]; 7 were in
the super class of Organic Oxygen compounds (Jasmone
(sub-class: Carbonyl compounds), Apocynin (sub-class:
Carbonyl compounds), Dl-3-Hydroxy-kynurenine (sub-class:
Carbonyl compounds), 3-[2-(β-D-Glucopyranosyloxy)-4-
methoxyphenyl]propanoic acid (sub-class: Carbohydrates and
carbohydrate conjugates), Sucrose (sub-class: Carbohydrates and
carbohydrate conjugates), Stachyose (sub-class: Carbohydrates
and carbohydrate conjugates), and α,α-Trehalose (sub-class:
Carbohydrate and carbohydrate conjugates); 2 were in the super
class of Benzenoids [2-(Formylamino)Benzoic Acid (sub-class:
Benzoic acids and derivatives) and Styrene (sub-class: styrenes)];
5 were in the super class Organic acids and derivatives [DL-
α-Aminocaprylic acid (sub-class: Amino acids, peptides, and
analogues), Levodopa (sub-class: Amino acids, peptides, and
analogues), 12-Hydroxydodecanoic acid (sub-class: Medium-
chain hydroxyl acids and derivatives), Citrulline (sub-class:
Amino acids, peptides and analogues), and 10-Hydroxydecanoic
acid (sub-class: Medium-chain hydroxyl acids, and derivatives)];
1 was from super class Phenylpropanoids and polyketides
[Naringenin (sub-class: Flavans)]; and 1 was from the super class
Nucleosides, nucleotides, and analogues [2′-Deoxyuridine-5-
monophosphate (sub-class: Pyrimidine deoxyribonucleotides)]
which corresponds to previously identified metabolites in castor
(R. communis) (94–96).

Ricinine, a metabolite of the class pyridines, and derivatives
are considered a ricin toxin marker. Ricinine dosage varies but
is found to be 2.3–32.9 g/kg in leaves, 3 g/kg in roots, 2.4 g/kg
in stems, and 0.43–7.0 g.kg in its seeds (97, 98). Chickens are
reported to be poisoned to death after consuming diets of 0.1 g/kg
ricinine (99). 4-Pyridoxic acid (sub-class: pyridine carboxylic
acids and derivatives) is the primary product of vitamin B6 in
animals formed by the pyridoxal oxidation by a non-specific
flavin adenine dinucleotide (FAD)-dependent aldehyde oxidase.
Having a higher 4-Pyridoxic acid/pyridoxine ratio is linked with

a deficiency in vitamin B6 (100, 101) which can affect intestinal
morphology (decrease villi height and width) and absorption
and metabolism of protein in animals (102). Butyryl fentanyl-
d5 belongs to the class Piperidines (sub-class: Fentanyl), and
Butyrates as dose-dependent is reported to promote intestinal
barrier function at lower concentrations (≤2 mM) (103) but may
disrupt intestinal barrier function at high concentrations (5 or
8 mM) by inducing apoptosis (104). Although a previous study
reveals a higher concentration of L-beta-Imidazolelactic acid to
be associated with an increase in antioxidant enzyme activities
such as glutathione peroxidase (GPx), superoxide dismutase
(SOD), and catalase (105) which are noted to play a vital
role in the health of animals, the association of its relation
with intestinal health is still unknown. Thus further research
is warranted to explain such an association. This present study
revealed significantly high intensities of Ricinine, 4-Pyridoxic
acid, and Butyryl fentanyl-d5, and significantly low intensity
of L-beta-Imidazolelactic acid in the higher replacement level
as compared to the FM and the CM4 groups. Therefore the
plausible reason for the witnessed disruption in the distal
intestine can be attributed to the increase of Ricinine, 4-
Pyridoxic acid, and Butyryl fentanyl-d5 intensities and decrease
of L-beta-Imidazolelactic acid, which can also illustrate why
higher replacement of FM with CM led to poorer growth
performance.

The intensities of α-Pinene-2-oxide, Linalool, and Carvone
were significantly increased with increasing replacement
levels of CM. Monoterpenoids such as α-Pinene-2-oxide,
Linalool, and Carvone are components of volatile essential
oils from several plant products that are potent suppressors
of plant growth (could be the reason for poor growth in
the CM20 groups), but also cause a significant increase in
antioxidant enzymes (106). Pre-treatment with α-Pinene-
2-oxide inhibited ethanol-induced gastric lesions, reduced
gastric juice volume and acidity, and increased gastric wall
mucus in Swiss mice (107). α-Pinene-2-oxide is reported to
stimulate oxidative damage of H2O2 through blocking the
loss of cell viability, and prevents the formation of ROS and
lipid peroxidation. Thus, gross enhancement of endogenous
antioxidant status via enhancing glutathione, SOD, CAT, GR,
GSH-Px activities, HO-1 properties, and protein expression
exist (86). Various studies have described α-Pinene-2-oxide
to display antimicrobial, anticancer, antitumor, anticancer,
anti-inflammatory, and antiallergic properties. Nevertheless,
most of these studies lack information concerning their relation
to the intestinal health of animals (106); thus, more research is
warranted in such areas.

The intensities of carbonyl compounds, including Jasmone,
Apocynin, and Dl-3-Hydroxy-kynurenine, significantly
increased with increasing replacement levels of CM to FM.
In humans, intestinal ischemia usually occurs from impaired
blood perfusion to the bowel due to various causes such as sepsis,
cardiac insufficiency, vaso- and cardio-depressant drugs, and
lifelong surgery, which in the long run progressively damages
cell structures producing lesions that are further exacerbated
(108). However, the treatment with Apocynin prevented such
intestinal damage (109). Trehalose, a non-reducing disaccharide
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of glucose, is formed by stress conditions such as heat, oxidative
stress, and other toxins. Based on previous findings, cytoplasmic
trehalose accumulation protects the proteins and membranes
from denaturation due to stress (110).

The main differential benzenoid metabolites belonged to
Benzoic acids and derivatives and the Styrenes subclass. Benzoic
acid irritates the human mucous membrane (111). Styrene is
connected to several human diseases such as ulcerative colitis,
non-alcoholic fatty liver disease, and the hereditary metabolic
disorder celiac disease (112, 113). Reiko et al. (114), in an in utero
exposure with Styrene, revealed a reduction in pub body growth
and induced alteration in behaviour and neurotransmitter levels
in brains. The significant increase in the intensities of 2-
(Formylamino)Benzoic Acid and Styrene metabolites could be
linked to the poor growth attained for grouper fish fed 20%
CM replacement. Since studies relating to the association of 2-
(Formylamino)Benzoic Acid and Styrene metabolites with the
intestine health are limited, we recommend further studies to
ascertain such relations.

The organic acid and derivatives are very large super-class
with numerous pathways. Only the “Amino acids, peptides
and analogues” and “Hydroxy acids and derivatives” sub-classes
were discussed herein. Various amino acids, peptides, and
analogues sub-class compounds have been known to down-
regulate tyrosinase (TYR) gene expression or inhibit TYR
catalytic activity. An example is Levodopa which is made
via the biosynthesis from amino acid L-tyrosine by tyrosine
hydroxylase enzyme (115). Also, L-arginine is an essential amino
acid that is a precursor in synthesising Citrulline, proteins, urea,
ornithine, creatinine, and agmatine, supporting the glutamate,
proline, and polyamine metabolism at the whole organism
level or cellular level in mammals. L-arginine’s availability
and metabolisation can modulate inflammation, regulate the
immune response to infections, and recover the physiological
steady-state (116). Again, it has been long-established that
hydroxy acids in crude extracts from plants have been used
to treat diseases. The novel fatty acid, 12-Hydroxydodecanoic
acid, was recently recognised as a metabolite with antifungal
properties (117, 118). Citrulline has been involved in numerous
regulatory roles, such as gut modulation, anti-inflammatory and
antioxidative effects, protein synthesis, blood pressure regulation,
nitrogen homeostasis, renal function, skeletal muscle function,
cardiac function, and vascular health as well. The available
information regarding the use of citrulline in animals is very
limited; nevertheless, it is slightly gaining research interest as
a result of its unique metabolism. Citrulline not only serve
as functional marker for gut barrier dysfunction, but it has
been associated also with several intestinal diseases, including
short bowel syndrome, necrotizing enterocolitis and gastric
ulcers (119). The observed increase in Citrulline metabolite
intensity might have been due to the increased arginine content
analysed (Supplementary Table 1) in the CM ingredient,
which was higher than observed in the FM. Thus, there
was modulation of inflammation and regulation of immune
response, which sort of affirms why the immune enzyme
activities analysed were higher than as obtained in the control
group.

CONCLUSION

In summary, the results in this study for the first time
demonstrated the effects of replacing FM with CM on the
growth, feed utilisation, immune response, digestive enzyme
activities, and intestinal health of hybrid grouper (Epinephelus
fuscoguttatus♀ × Epinephelus lanceolatus♂). A significant
enhancement in terms of the parameters mentioned was achieved
after replacing FM with 4% of CM. With the application of
metabolomics, there were 28 identified metabolites as biomarkers
of adherence to the CM diet. We propose further research to be
conducted to validate the identified metabolites. In this study, the
universal metabolomics platform (untargeted metabolomics) was
used which only obtained relative estimates of the metabolites.
Thus we recommend further studies which will deal with the
use of targetted assays to obtain quantitative results for the
identified potential biomarkers. Furthermore, it is necessary
to conduct metabolomics profiling to determine how stable
these potential biomarkers are when dealing with multiple time
points or over an extended period and with a wider range
of adherence to dietary CM patterns. The current study is
limited to the dietary patterns of the CM trial, and it will be
prudent to investigate the specificity of the potential biomarkers
for the CM diets in comparison to other dietary patterns that
vary in terms of macronutrients, such as lipids, proteins, and
carbohydrates. The methods of using the integrated analysis
of multi-omic technologies concerning different organs will be
considered in our future work to further reveal the CM induced-
enteritis mechanism.
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Supplementary Figure 1 | The individual sample repeats representative
UPLC-MC spectra of the distal intestine in the (A) positive, and (B) negative
modes. FM-1 to FM-6 represent the individual sample repeats of FM; CM4-1 to
CM4-6 represent the individual sample repeats of CM4; CM20-1 to CM20-6
represent the individual sample repeats of CM20 FM, fish meal (control group);
CM4, 4% Castor meal (CM) protein replacement to FM protein; CM20, 20% CM
protein replacement to FM protein.

Supplementary Figure 2 | The results of the total PLS-DA score plots from the
UPLC-MS spectra of the distal intestinal contents in positive (A) and negative (B)
modes. A1 and A2 are, respectively the positive modes between FM and CM4,
and FM and CM20 groups; B1 and B2 are respectively the negative modes
between FM and CM4, and FM and CM20 groups. N = 6.

Supplementary Figure 3 | The detailed clustering heatmap of total differential
metabolites in the positive (A) and negative (B) modes after fishmeal replacement
with castor meal. Individual groups are clustered in the vertical part, whereas
those of the metabolites are clustered in the horizontal part. Colour intensity
indicates the intensity of the metabolite. The relationship of metabolite content
clustering between groups can be seen horizontally. The shorter the cluster
branch is, the higher the similarity is. FM, fish meal (control group); CM4, 4%
castor meal (CM) protein replacement to FM protein; CM20, 20% CM protein
replacement to FM protein.
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