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Intrauterine growth restriction (IUGR) refers to the slow growth and development of a
mammalian embryo/fetus or fetal organs during pregnancy, which is popular in swine
production and causes considerable economic losses. Nutritional strategies have been
reported to improve the health status and growth performance of IUGR piglets, among
which dietary curcumin supplementation is an efficient alternative. Curcumin is a natural
lipophilic polyphenol derived from the rhizome of Curcuma longa with many biological
activities. It has been demonstrated that curcumin promotes intestinal development and
alleviates intestinal oxidative damage. However, due to its low bioavailability caused by
poor solubility, chemical instability, and rapid degradation, the application of curcumin
in animal production is rare. In this manuscript, the structural-activity relationship
to enhance the bioavailability, and the nutritional effects of curcumin on intestinal
health from the aspect of protecting piglets from IUGR associated intestinal oxidative
damage were summarized to provide new insight into the application of curcumin in
animal production.
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INTRODUCTION

Intrauterine growth restriction (IUGR), is defined as the slow growth and development of a
mammalian embryo/fetus or fetal organs during pregnancy, which has become a difficult problem
in human medicine and animal husbandry (1, 2). Pig is a kind of mammal animal with multiple
pregnancies, it has a high incidence of IUGR, which would not only reduce the survival rate of
the newborn piglets but also affect the growth and development and health status of piglets in a
longer period after birth (3–5). Therefore, it is of great significance for the economic benefits of pig
production to improve the health status of IUGR piglets, improve their survival rate and growth
performance through nutritional strategies. Meanwhile, due to the high similarities between pigs
and humans in anatomy, physiology, and nutrient metabolism, the IUGR pigs can be used as an
ideal animal model to study human diseases (6, 7).

The intestinal tract is the direct place for the communication between the internal environment
and the external environment and is an important defense line for animals to maintain the
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homeostasis of the internal environment (8–10). Optimum
intestinal health is of prime importance to animal growth
as well as animal health. Previous studies have revealed that
IUGR caused a significant negative effect on the growth and
development of the gastrointestinal tract of piglets, manifested
by the decreased intestinal length and weight, decreased villus
height (VH) and increased crypt depth (CD), increased apoptosis
of intestinal epithelial cells, and increased oxidative damage (11–
14). The impaired development of the gastrointestinal tract is
likely to be the main reason for retard growth and the poor health
status of IUGR piglets (6, 15–17). The growing body of evidence
has shown that the health status and growth performance of
IUGR piglets can be improved through nutritional strategies (7,
15–17). For example, the addition of functional additives, such
as functional amino acids (18), nucleotides (19), probiotics (7) as
well as curcumin (15–17, 20) in the diet can promote intestinal
improve the intestinal antioxidant capacity and immunity, and
improve gut health of IUGR piglets.

Curcumin [1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-
heptadiene-3,5-dione], as a natural lipophilic polyphenol derived
from the rhizome of Curcuma longa, has been used for centuries
in traditional Asian medicine and food additives (21–23).
Nowadays, curcumin has received considerable attention in
animal husbandry because of its diverse pharmacological
activities including antioxidant (16), anti-microbial (24),
and anti-inflammatory properties (25). Research evidence
showed that curcumin supplementation can effectively improve
the antioxidant capacity, improve digestion and absorption
and promote the development and repair of the damaged
intestinal tract, and enhance the growth performance of IUGR
piglets (15–17, 20). However, the application of curcumin
in animal production is limited due to its low bioavailability
caused by poor solubility, chemical instability, and rapid
degradation. A good understanding of the characteristics of
curcumin is the precondition to improve its application. The
purpose of this paper is to review the physical and chemical
properties of curcumin and its metabolites and its nutritional
effects on intestinal health from the aspect of protecting
IUGR piglets from oxidative damage. This review provides a
theoretical basis for the application of curcumin in animals and
humans with IUGR.

OVERVIEW OF CURCUMIN

Curcumin is mainly derived from the rhizome of Curcuma
longa (turmeric), a kind of plant belongs to Zingiberaceae which
contains more than 12 active components (26). Commercially,
curcumin is one of the main active components in turmeric,
which accounted for 77% of active components besides
two other related compounds, demethoxycurcumin and bis-
demethoxycurcumin (Figure 1) (27). Curcumin is a kind of
natural polyphenol that possess a wide spectrum of biological
and pharmacological activities, including anti-inflammatory (28–
30), antioxidant (31–33), anti-tumor (34, 35), anti-cancer (36,
37), antiangiogenic (38), anti-aging (39), anti-microbial (24), and
wound healing (40) activities, which confirmed by in vitro and

FIGURE 1 | Chemical structures of curcuminoids and their main biological
function.

in vivo studies. Chemically, curcumin is a bis-α,β-unsaturated β-
diketone with two benzene rings that have phenolic hydroxyl and
the methoxy, respectively (Figure 1). The molecular formula of
curcumin is C21H20O6 with a molecular weight of 368.37 g/mol,
and a melting point of 183◦C (41).

Curcumin is insoluble in water while it is easily soluble in
organic solvents, alkali and extremely acidic solvents (27, 42).
It has been reported that under acidic and neutral conditions,
curcumin is stable, while under alkaline conditions, curcumin
is unstable and easily degrades into other organic substances,
including ferulic acid, feruloyl methane, vanillin, vanillic acid,
ferulic aldehyde, 4-vinyl guaiacol, p-hydroxybenzaldehyde, and
p-hydroxybenzoic acid, suggesting that pH-dependent stability
(27, 43).

The absorption, distribution, metabolism, and excretion
of curcumin are critical for its bioavailability. The poor
solubility, chemical instability, and rapid degradation have been
reported as a cause for the low bioavailability of curcumin
(44, 45), which limits its application in animal production.
Previous studies have demonstrated that curcumin is poorly
absorbed by intestinal cells, rapidly metabolized by the liver,
and rapidly eliminated from organism (39, 46, 47), Thus,
structural characteristics should be considered to improve its
bioavailability and enhance its biological activities. Hence,
different strategies were tested to improve its bioavailability, e.g.,
curcumin nanoparticles, curcumin nanospheres, and emulsion or
microsphere preparations of curcumin (48–52). Encapsulation of
curcumin into water-soluble proteins or water-insoluble proteins
seems to be an effective manner to enhance its antioxidant
capacity. Tapal and Tiku et al. (53) reported that the binding
of curcumin to soy protein isolate improved its water solubility,
stability, and antioxidant activity of curcumin. Moghadam et al.
(54) showed that the encapsulation of curcumin by pH-driven
method into walnut proteins improved its water solubility, free
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radical [1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2′-azino-
bis (3-ethylbenzothiazoline-6-sulfonic) acid (ABTS)] scavenging
activity as well as reducing power. Similarly, Mohammadian
et al. (55) also reported that complexed curcumin with whey
protein nanofibrils could drastically improve DPPH radical
scavenging activity and reduce power. Structural modification is
another way to improve the antioxidant capacity of curcumin.
With the great potential of nanotechnology, modification of
curcumin with colloidal nanoparticles has been shown to
improve biological activities (56). In this regard, Chen et al.
(57) demonstrated that the supplementation of nanobubble
curcumin could help mice to overcome physical fatigue
by altering the gut microbiota composition. Research by
Shaikh et al. (58) reported that structural modification of
curcumin to its isoxazole (CI) and pyrazole (CP) showed
high reactivity toward a variety of free radicals. However, in
recent years, researchers found that the potential biological
function of curcumin may not depend on its bioavailability,
but may come from its positive impact on gastrointestinal
health and function (59). For example, dietary supplementation
with curcumin would regulate the intestinal permeability,
influence of intestinal flora structure, reduce gastrointestinal
inflammation and oxidative stress, and reduce the intestinal
pathogens infection (23, 45, 59–61). What else, curcumin’s main
metabolites may have stronger pharmacological activity and
higher bioavailability than curcumin, which are involved in the
biological activities of curcumin (59). However, the biological
activities of curcumin’s main metabolites differed among different
studies. For example, Luo et al. (62) indicated that compared
with curcumin, tetrahydrocurcumin and octahydrocurcumin
(two important metabolites of curcumin) can bind to the
active site of cytochrome enzyme CYP2E1 to inhibit its
activity and simultaneously activate the antioxidant signaling
pathway. Zhang et al. (63) showed that tetrahydrocurcumin
and octahydroturmeric exerted more effect than curcumin in
selectively inhibiting the expression of cyclooxygenase 2 (COX-
2) and suppressing nuclear factor-κB (NF-κB) pathways; while,
Zhao et al. (29) indicated that curcumin exerted a more potent
effect on lipopolysaccharide (LPS)-challenged RAW 264.7 cells
compared to that of its three metabolites, tetrahydrocurcumin,
hexahydrocurcumin, and octahydroturmeric. Thus, whether the
metabolites of curcumin can explain the biological activities is yet
to be validated.

CURCUMIN PROMOTES GROWTH AND
INTESTINAL DEVELOPMENT OF
INTRAUTERINE GROWTH RESTRICTION
PIGS

In addition to its anti-inflammatory, antioxidant,
immunomodulatory, and other biological functions, curcumin
has been reported to promote growth performance and intestinal
development of animals. Nowadays, curcumin was widely
applied in poultry (64–69), ruminant (70, 71), aquatic animals
(72–75), and swine production (76–79).

Curcumin Promotes Growth
Performance of Pigs With Intrauterine
Growth Restriction
Intrauterine growth restriction, defined as fetal weight less than
the 10th percentile for gestational age, has adverse effects on
animal’s growth and development (17, 80). In actual production,
IUGR occurs in 15–20% of newborn piglets, which causes
considerable economic losses in swine production (81). IUGR
has a significant negative effect on the growth and health status
of piglets, and IUGR pig neonates manifest retard growth, weak
immunity, and poor feed efficiency (1, 82). Xiong et al. (81)
showed that compared to normal-birth-weight (NBW) pigs,
IUGR pigs had lower initial (1.86 kg vs. 0.96 kg), weaned (6.57 kg
vs. 3.66 kg), and final body weight (105.40 kg vs. 81.71 kg); Niu
et al. (17) showed that the body weight of IUGR piglets were lower
than those of the NBW piglets at 0, 7, 14, and 26 days of age.
In brief, IUGR have an adverse effect on growth performance
of pigs. Previous studies reported that these conditions can be
attenuated by the supplementation of curcumin in the diets of
IUGR piglets because of its affordability and safety, with no
known toxic side effects (16, 17, 20, 78). Wang et al. (83) showed
that the total weight gain and total feed intake of piglets with
IUGR were significantly lower than that of NBW piglets in a
24-day experiment, while IUGR piglets fed a diet containing
400 mg/kg curcumin significantly increased the total weight gain
and total feed intake. Similarly, Niu et al. (16, 17) reported that
dietary curcumin supplementation (400 mg/kg diet) significantly
improved the body weight gain and feed intake of IUGR piglets
compared with IUGR piglets fed only basal diet. These studies
demonstrated that curcumin can promote the growth of piglets
with IUGR. In contrast, the results from Zhang et al. showed that
dietary supplementation with 200 mg/kg curcumin did not affect
the body weight of IUGR piglets on day 0, 26, 56, and 115 of the
experimental period when compared with IUGR piglets without
curcumin supplementation; and it also recorded a lower ADFI of
IUGR piglets fed a diet containing curcumin from day 56 to day
115, while observed improvement in the redox status and meat
quality of leg muscles (78). The difference among these studies
may be related to the different doses of curcumin used. Since the
bioavailability of curcumin is very low due to its poor solubility
(44, 45), high doses are required to achieve detectable levels in
serum, which can exert its biological function.

Curcumin Promotes Intestinal
Development of Pigs With Intrauterine
Growth Restriction
The intestinal tract is not only the direct place for nutrient
digestion and absorption but also provided an important barrier
to protect the body from antigens, toxins, and pathogens
and maintain the stability of the internal environment (8, 9).
Therefore, well-developed and healthy intestines are linked with
the overall health status of animals. IUGR is a common problem
in the pig industry, and a change in intestinal morphology
between IUGR piglets and NBW piglets was observed (84).
Several studies have reported that IUGR piglets had a lower

Frontiers in Nutrition | www.frontiersin.org 3 April 2022 | Volume 9 | Article 847673

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/
https://www.frontiersin.org/journals/nutrition#articles


fnut-09-847673 April 28, 2022 Time: 10:38 # 4

Tang et al. Curcumin and Intestinal Oxidative Stress

digestive and absorptive function and an impaired intestinal
barrier function (5, 6, 84). It showed that IUGR piglets had
a decreased intestinal length and weight, shorty VH, increased
apoptosis of intestinal crypt cells as well as reduced activity
of brush border enzymes, which leads to an increase in the
occurrence of diarrhea and high morbidity and mortality after
birth (5, 14).

As a natural polyphenol with a variety of biological activities,
curcumin can promote intestinal development and health (67,
76). For example, adding 300 mg/kg or 400 mg/kg curcumin to
diet can significantly increase villus height to crypt depth ratio
(VCR), improve the morphology of ileum epithelial mucosa, and
repair the intestinal injury in Escherichia coli (E. coli) induced
intestinal injury piglets model (76). Curcumin can also promote
the intestinal development of animals with IUGR including
piglets. The intestinal VH, CD, and VCR are commonly used to
reflect intestinal development and function (85). Wang et al. (83)
showed that IUGR piglets have a poor intestinal morphology,
which manifested by a decreased VH and VCR, and increased
CD in duodenum, jejunum, and ileum; while, dietary curcumin
supplementation (400 mg/kg diet) significantly increased the VH
and VCR, which indicated that curcumin has a positive protective
effect on improving intestinal morphological damage caused by
IUGR in piglets. Similarly, Yan et al. (15) indicated that curcumin
can alleviate the jejunum injury in IUGR piglets by increasing the
antioxidant capacity.

Disaccharidase (lactase, maltase, and sucrase) activities are
important indicators of intestinal functional development (86,
87). In a rabbit model, the authors found that both lactase and
maltase activities were depressed in IUGR fetuses compared with
NBW ones (86). Likewise, the maltase and lactase in the jejunum
and the maltase and sucrase in the ileum were significantly
decreased when piglets suffered from IUGR (83). It means that
IUGR affects the secretion and activity of intestinal digestive
enzymes and hinders the digestion and utilization of nutrients in
weaned piglets. Curcumin can reverse this adverse effect caused
by IUGR which was indicated by Wang et al. (83) who reported
that diet supplemented with 400 mg/kg curcumin significantly
improved the ileum lactase activity of IUGR weaned piglets.

CURCUMIN AND INTESTINAL
ANTIOXIDANT FUNCTION OF
INTRAUTERINE GROWTH RESTRICTION
PIGS

Curcumin is a polyphenol, characterized by the inclusion of
two aromatic rings, and its phenolic hydrogens are responsible
for its ability to react with reactive species and are believed to
impart antioxidant activity to the molecule (88). So far, data
from in vivo and in vitro studies have shown the antioxidant
activity of curcumin in different pathological conditions through
different pathways (89, 90). The antioxidant activity of curcumin
mainly from two aspects: one is curcumin as a free radical
scavenger (91, 92); and the other is curcumin as inducers of
antioxidant signaling pathways in cells, by enhancing the activity

of antioxidant enzymes, such as superoxide dismutase (SOD),
catalase (CAT), glutathione peroxidase (GSH-Px), and phase II
metabolizing enzymes, heme oxygenase (HO-1) and quinone
oxidoreductase (NQO1) (33, 67, 93, 94). Hence, curcumin may
be a beneficial antioxidant to prevent oxidative damage.

The Ability of Curcumin to Scavenge
Free Radicals
High reactive oxygen species (ROS) and reactive nitrogen species
(RNS) are devastating for cells, and therefore free radical
scavenging is important for preventing some diseases (9, 89).
The antioxidant activity of a substance is evaluated by the
ability to scavenge nitric oxide (NO), DPPH, ABTS, superoxide
radical (O2−), hydrogen peroxide (H2O2) (9, 95–97). Previous
studies have demonstrated that curcumin has a strong free radical
scavenging activity, thereby protecting against oxidative damage
(94, 98). For example, Borra et al. (98) showed that curcumin
could efficiently scavenge DPPH, H2O2, NO, superoxide anion
in a dose-dependent manner. Ferric-reducing antioxidant power
(FRAP) and reducing power assay represent their ability to
reduce the ferric (Fe3+) form to the ferrous (Fe2+) form (9,
99). Curcumin also could efficiently scavenge the peroxy radicals,
which can induce hemolysis in erythrocytes and inhibit the
erythrocyte membrane lipid peroxidation (94). Barzegar et al.
(100) showed that curcumin exhibited scavenging intracellular
smaller oxidative molecules including H2O2, HO−, ROO−, and
can readily transfer electrons or easily donate H-atom from two
phenolic sites to scavenge free radicals. These studies indicated
that curcumin can be used as an effective antioxidant for
ROS protection within the polar cytoplasm due to its superb
intracellular ROS scavenging activity.

In vivo and in vitro Antioxidant Activity of
Curcumin
Curcumin is a natural phenolic compound with impressive
antioxidant properties which has gained increasing attention
owing to its beneficial health properties (31, 101). Previous
studies showed that curcumin can relieve oxidative stress caused
by many unfavorable factors (102–104). In vitro and in vivo
studies showed that curcumin is an important inducer of nuclear
factor erythroid 2-related factor 2 (Nrf2)-mediated antioxidant
signaling pathways (15, 105). Nrf2 is the main regulator of
mammalian cell redox response and plays a vital role in
maintaining cellular homeostasis (106, 107). Under normal
physiological conditions, kelch-like ECH-associated protein-1
(Keap1) binds to Nrf2 in the cytoplasm and facilitates Nrf2
ubiquitination which can prevent Nrf2 translocation into the
nucleus (107). But under oxidative stress conditions, Nrf2
was isolated from Keap1 and transferred to the nucleus, and
bound with antioxidant response elements (ARE) to activate
the expression of its downstream antioxidant enzymes (SOD,
CAT, and GSH-Px), and phase II metabolic enzymes (HO-1 and
NQO1) to protect cells from oxidative damage (106–109). For
example, Wu et al. (110) reported that the chicken fibroblast cells
suffered from heat stress stimulate ROS and malondialdehyde
(MDA) production, and it decreased the antioxidant enzymes
including CAT, SOD, and GSH-Px; curcumin administration
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TABLE 1 | Summary of the in vitro studies investigating the antioxidant effect of curcumin.

Cell lines Injure model Doses Outcomes References

RAW264.7 cells Hydrogen peroxide- induced oxidative injure 5, 10, 20 µM Low- and middle-dose of curcumin decreased MDA and ROS levels; increased
activity of CAT, SOD and GSH-Px; upregulated Nrf2 and HO-1 expression

(33)

Bovine fetal hepatocyte-derived cell line
(BFH12)

Aflatoxin B1-induced hepatic toxicity 2.5, 5, 10 µM Reduced the MDA content, increased the NQO1 enzymatic activity (70)

Porcine intestinal epithelial cells (IPEC-J2) Hydrogen peroxide- induced oxidative stress 10 µM Reduced MDA and ROS production, increased the expression of Cu/Zn-SOD,
Mn-SOD, GPX-1 and GPX-4

(93)

Bovine Mammary Epithelial Cells Lipopolysaccharide – induced oxidative stress 10 µM Decreased production of ROS and MDA; increased the activities of T-SOD,
T-AOC and GSH; increased the levels of Nrf2 and HO-1 and NQO1

(105)

Primary spinal cord astrocytes Hydrogen peroxide- induced oxidative injure 10 µM Decreased the level of intracellular ROS, and inhibited oxidative stress via the
Nrf2/ARE pathway

(108)

Chicken embryonic fibroblasts cells Heat-induced oxidative stress 5 µM – 40 µM, Decreased ROS and MDA content; increased antioxidant enzymes and Nrf2
expression

(110)

Human trophoblast HTR8/SVneo cells H2O2-induced oxidative stress 2.5 or 5 µM Reduced ROS accumulation, upregulated the activities of the antioxidant
enzymes CAT and GSH-Px, increased antioxidant transcription factor Nrf2

(112)

SH-SY5Y cells Copper-induced neurotoxicity 5 µM Decreased the production of ROS and MDA; increased the activities of SOD
and CAT; up-regulated pro-caspase 3, pro-caspase 9, and downregulated the
Bax/Bcl-2 ratio

(113)

Leydig cells Zearalenone-induced oxidative stress 20 µM Reduced MDA content; increased the GSH content and the activities of
GSH-Px; increased nuclear Nrf2 and HO-1 protein expression

(114)

Human retinal pigment epithelium cell lines
(ARPE-19)

Hydrogen peroxide- induced oxidative stress 15 µM Reduced ROS production and increased HO-1 expression (115)

Bone marrow mesenchymal stem cells
(BMSCs)

Hydrogen peroxide- induced oxidative stress 1, 5, 10 or 20 µM Curcumin pretreatment can inhibit reactive oxygen species accumulation in
BMSCs

(116)

Bone marrow mesenchymal stem cells
(BMSCs)

Hypoxia and reoxygenation triggered injury 1, 5, 10 or 20 µM Curcumin pretreatment prevented hypoxia and reoxygenation-induced
mitochondrial dysfunction through suppressing reactive oxygen species
accumulation

(117)

Porcine granulosa cells Zearalenone -induced oxidative stress 20 µM Pre-treated with curcumin decreased the ROS production, and increased the
expression of SOD1 and CAT

(118)

Tilapia hepatocytes Hydrogen peroxide- induced oxidative injure 5, 10, 20, 40 µM Reduced MDA levels, and increased SOD activity; upregulate the Nrf2-Keap1
signaling pathway at the transcriptional level

(119)

Min-6 mouse pancreatic beta cells High glucose – induced oxidative stress 10 µM Decreased MDA and ROS levels; increased SOD activity (120)

Porcine TM cells Hydrogen peroxide- induced oxidative injure 1–20 µM Curcumin treatment at concentrations between 1 and 20 µM reduced the
production of intracellular ROS

(121)

INS-1 cells High glucose/palmitate- induced cell damage 20 µM Reduced the production of ROS Increased SOD and CAT activity (122)

Human hepatocyte L02 cells Quinocetone-induced hepatic toxicity 2.5, 5 µM Attenuated ROS formation; increased SOD activity and GSH level (123)

Human intestinal epithelial cells (Caco2) Hydrogen peroxide- induced oxidative injure 5, 20, 80 µM Decreased MDA release; increased SOD activity; increased HO-1 expression (124)

SH-SY5Y cells Paraquat-induced cell death 5 µM Curcumin reduced ROS levels and increased expression of the antioxidant
genes, SOD and GSH-Px

(125)

ARE, antioxidant response elements; CAT, catalase; GSH, glutathione; GSH-Px, glutathion peroxidase; HO-1, heme oxygenase; Keap1, kelch-like ECH-associated protein 1; MDA, malonaldehyde; NQO1, quinone
oxidoreductase; Nrf2, nuclear factor erythroid 2-related factor 2; ROS, reactive oxygen species; SOD, superoxide dismutase; T-AOC, total antioxidant capacity.
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TABLE 2 | Summary of the in vivo studies investigating the antioxidant effect of curcumin.

Animals Damaged model Doses Outcomes References

Pigs Intrauterine growth retardation 200 mg/kg Increased the gene expression of Nrf2, GCLC, SOD1, GCLM and NQO1, and the protein expression of
Nrf2 and NQO1

(15)

Pigs Intrauterine growth retardation 400 mg/kg Reduced the levels of MDA and H2O2; improved serum and liver antioxidant enzymes as well as
up-regulated Nrf2 and HO-1 expression

(17)

Pigs Intrauterine growth retardation 400 mg/kg Reduced PC, 8-OHdG, increased T-AOC, CAT, SOD, Nrf2, NQO1 expression (20)

Pigs Intrauterine growth retardation 200 mg/kg Increased mRNA expressions of GSH-ST, HO-1 and CAT, increased NQO1 protein expression of leg
muscles

(78)

Pigs Diquat -induced oxidative stress 200 mg/kg Reduced the MDA level, and increased the SOD, CAT activity in the intestinal mucosa (93)

Rats Intestinal ischemia reperfusion 100 mg/kg Decreased the MDA levels, and increased of SOD and GSH-Px enzyme activities (60)

Rats Dimethylnitrosamine-induced liver injury 200 mg/kg Enhanced antioxidant transcription and ARE-binding of Nrf2; increased HO-1 protein expression as well
as activity in rat liver

(102)

Rats Lipopolysaccharide/diclofenac-induced liver injury 200 mg/kg/d Decreased the MDA levels; increased GSH content and SOD enzyme activities; increased expression of
HO-1

(103)

Rats Intestinal ischemia reperfusion 200 mg/kg Decreased the MDA levels, and increased SOD enzyme activities (126)

Rats Renal ischemia reperfusion 15 mg/kg,
30 mg/kg,
60 mg/kg

Decreased MDA; increased the level of SOD, CAT, GSH-Px, GSH (127)

Rats Ochratoxin A-induced Hepatotoxicity 100 mg/kg antioxidant enzymes SOD, CAT and GSH-Px increased; MDA level decreased (128)

Rats Streptozoticin -induced diabetic 100 mg/kg/d The activity of SOD increased and the amount of MDA reduced; the expression of NQO1 and Nrf2 was
increased

(129)

Rats Intrauterine growth retardation 400 mg/kg Decreased the MDA, PC and 8-OHDG contents, improved the hepatic glutathione redox cycle (130)

Rats Aluminum chloride-induced oxidative stress 10 mg/kg BW Decreased the MDA levels, and increased SOD and CAT activities in liver tissue (131)

Mice arsenic-induced hepatotoxicity and oxidative injuries 200 mg/kg Decreased hepatic MDA level, increased hepatic GSH level, and up-regulated Nrf2 protein, NQO1 and
HO-1 expression

(31)

Mice Cadmium-induced histopathological damages 100 mg/kg Increased serum CAT, SOD, and GSH-Px activities; decreased the serum MDA and H2O2 level (132)

Mice Cadmium induced lung oxidative stress 100 mg/kg Decreased MDA levels; increased CAT, GSH-Px,SOD activities (133)

Mice Ethanol-induced oxidative stress 50 mg/kg Reduced ROS and lipid peroxidation (LPO) generation, and increased Nrf2/HO-1 expression in the
experimental mice brains

(134)

Ducks Ochratoxin A induced liver oxidative injury 400 mg/kg Increased liver CAT activity (24)

Ducks Aflatoxin B1-induced intestinal injure 500 mg/kg Enhanced the activities of SOD, GSH-Px, GSH-ST; decreased the concentrations of MDA in the ileum (67)

Ducks Ochratoxin A–induced intestinal injure 400 mg/kg Decreased the concentrations of MDA; increased the activity of GSH-Px in the jejunal mucosa (135)

Broilers Aflatoxin B1-induced liver injury 300 mg/kg Inhibited the generation of ROS, MDA and 8-OHdG; increased the activities of GSH, SOD and CAT;
increased the expression of Nrf2 and HO-1

(111)

Broilers Aflatoxin B1-induced liver injury 300 mg/kg Decreased the content of MDA and the level of ROS; increased the contents of GSH and activities of
SOD and CAT

(136)

Broilers Aflatoxin B1-induced liver injury 450 mg/kg Decreased the MDA levels, and increased GSH-Px and SOD activity; up-regulated Nrf2 protein
expression

(137)

Broilers Aflatoxin B1-induced liver injury 300 mg/kg Improved Nrf2 expression, and Enhanced phase-II metabolizing enzymes expressions and activity (138)

Laying hens Heat-induced oxidative stress 100 to 300 mg/kg Decreased the MDA levels; increased T-AOC, CAT, SOD and GSH-Px activities (139)

8-OHdG, 8-hydroxy-2′-deoxyguanosine; ARE, antioxidant response elements; CAT, catalase; GCLC, glutamate-cysteine ligase catalytic subunit; GCLM, glutamate-cysteine ligase modifier subunit; GSH, glutathione;
GSH-Px, glutathion peroxidase; GSH-ST, glutathione S-transferase; HO-1, heme oxygenase; H2O2, hydrogen peroxide; Keap1, kelch-like ECH-associated protein 1; MDA, malonaldehyde; NQO1, quinone
oxidoreductase; Nrf2, nuclear factor erythroid 2-related factor 2; PC, protein carbonyl; ROS, reactive oxygen species; SOD, superoxide dismutase; T-AOC, total antioxidant capacity.
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FIGURE 2 | Curcumin improved the growth performance of pigs with IUGR by improving intestinal development and alleviating intestinal oxidative stress. CAT,
catalase; CD, crypt depth; GSH-Px, glutathion peroxidase; HO-1, heme oxygenase; NQO1, quinone oxidoreductase; Nrf2, nuclear factor erythroid 2-related factor
2; SOD, superoxide dismutase. VCR, the ratio of villus height to crypt depth; VH, villus height.

reversed these heat stress-induced oxidative damage by activating
Nrf2 signaling pathway. Similarly, Li et al. (111) reported that
dietary 300 mg/kg diet curcumin supplementation to broilers
alleviates aflatoxin B1 induced liver oxidative stress by activating
the Nrf2 pathway. The in vitro and in vivo antioxidant effects
of curcumin are summarized in Tables 1, 2, respectively. All
these studies revealed that curcumin plays an important role in
relieving oxidative stress by improving antioxidant activities.

Curcumin Alleviates Intestinal Oxidative
Stress in Intrauterine Growth Restriction
Pigs
Oxidative stress, recognized as a state of imbalance between
the production of free radicals and antioxidant defenses, plays
a crucial role in the development of numerous human and
animal diseases (107, 140, 141). In cells, free radicals are unstable
compounds that readily bind to oxygen to become reactive
species such as ROS and RNS, causing cytotoxic effects (85,
142). Free radicals are a double-edged sword, on the one hand,
physiological levels of ROS and RNS are required for some
enzymatic, cell signaling, and cellular adaptive responses; while
on the other hand the excessive production of free radicals,
which in turn, induce oxidative damage to cellular biomolecules,
including proteins, lipids, and nucleic acids (128, 143). Oxidative

stress is associated with IUGR (86, 144, 145). Previous studies
have revealed that IUGR offsprings tend to have increased
ROS, 8-OHdG, protein carbonyl (PC), MDA, and H2O2, and
decreased levels of antioxidant enzymes (SOD, CAT, GSH-Px),
and phase II metabolizing enzymes (HO-1 and NQO1) (15, 17–
20, 130, 146). IUGR is associated with intestinal oxidative stress
in weaned piglets (15, 20). Substantial evidence has indicated
that oxidative stress triggered the onset and development of
intestinal diseases as well as implicated in the pathophysiology
of IUGR-associated intestinal injury (15, 147, 148). It is believed
that oxidative stress is involved in intestinal barrier dysfunction
and various digestive tract diseases (107, 149). At present many
natural oxidation products have been used to alleviate oxidative
stress in IUGR pigs (146, 148), in which curcumin has been
mentioned as a remedy. Wang et al. (20) showed that IUGR
stimulated jejunum PC and 8-OHdG, and ileum PC, MDA,
and H2O2 production, and it decreased the total antioxidant
capacity (T-AOC), CAT activity, and glutathione (GSH) content
in the jejunum, and CAT activity in the ileum, which suggested
that IUGR caused oxidative stress in the intestinal tract. The
authors further reported that administration of curcumin at
a dose of 400 mg/kg reversed IUGR associated intestinal
damage by activating the Nrf2 signaling pathway and stimulating
antioxidant enzymes secretion (SOD and CAT), and phase II
metabolic enzyme, NQO1 expression. Similarly, Yan et al. (15)
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showed that the IUGR growing pigs fed a diet containing
200 mg/kg curcumin had significantly lower MDA content
and higher total SOD activity in the jejunum, and upregulated
Nrf2, NQO1, and SOD expression. These studies suggested that
curcumin can alleviate intestinal oxidative stress caused by IUGR
and improve intestinal antioxidant status through activating
Nrf2/ARE signaling pathway.

CONCLUSION

In conclusion, curcumin has a good antioxidant capacity
with a strong free radical scavenging activity and can
effectively improve intestinal development and alleviate intestinal
oxidative stress caused by IUGR, thereby improving the
growth performance and health status of pigs with IUGR
(Figure 2), however, the mechanism of curcumin in relieving
intestinal oxidative stress and intestinal dysplasia in IUGR
piglets is yet to be investigated. Curcumin exhibited low
bioavailability due to poor solubility, chemical instability and
rapid degradation, and those will limited its application in
animal production. Therefore, further studies should focus on

how to improve the bioavailability of curcumin to enhance
biological activities.
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