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Background: Determining whether microecological preparations, including probiotics,

prebiotics, and synbiotics, are beneficial for patients with chronic kidney disease (CKD)

has been debated. Moreover, determining which preparation has the best effect remains

unclear. In this study, we performed a network meta-analysis of randomized clinical trials

(RCTs) to address these questions.

Methods: MEDLINE, EMBASE, PubMed, Web of Science, and the Cochrane Central

Register of Controlled Trials were searched. Eligible RCTs with patients with CKD who

received intervention measures involving probiotics, prebiotics, and/or synbiotics were

included. The outcome indicators included changes in renal function, lipid profiles,

inflammatory factors, and oxidative stress factors.

Results: Twenty-eight RCTs with 1,373 patients were ultimately included. Probiotics

showed greater effect in lowering serum creatinine [mean difference (MD) −0.21, 95%

confidence interval (CI) −0.34, −0.09] and triglycerides (MD −9.98, 95% CI −19.47,

−0.49) than the placebo, with the largest surface area under the cumulative ranking

curve, while prebiotics and synbiotics showed no advantages. Probiotics were also able

to reduce malondialdehyde (MDA) (MD −0.54, 95% CI −0.96, −0.13) and increase

glutathione (MD 72.86, 95% CI 25.44, 120.29). Prebiotics showed greater efficacy

in decreasing high-sensitivity C-reactive protein (MD −2.06, 95% CI −3.79, −0.32)

and tumor necrosis factor-α (MD −2.65, 95% CI −3.91, −1.39). Synbiotics showed

a partially synergistic function in reducing MDA (MD −0.66, 95% CI −1.23, −0.09) and

high-sensitivity C-reactive protein (MD−2.01, 95%CI−3.87,−0.16) and increasing total

antioxidant capacity (MD 145.20, 95% CI 9.32, 281.08).

Conclusion: The results indicated that microbial supplements improved renal function

and lipid profiles and favorably affected measures of oxidative stress and inflammation

in patients with CKD. After thorough consideration, probiotics provide the most
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comprehensive and beneficial effects for patients with CKD and might be used as the

best choice for microecological preparations.

Systematic Review Registration: https://www.crd.york.ac.uk/prospero/display_

record.php?ID=CRD42022295497, PROSPERO 2022, identifier: CRD42022295497.

Keywords: probiotics, prebiotics, synbiotics, chronic kidney disease, renal function, metabolic profiles

INTRODUCTION

Chronic kidney disease (CKD) is characterized by renal damage
with either structural or functional abnormalities for longer than
3 months (1). As a major global health problem, CKD has
recently attractedmore attention since it could contribute to end-
stage renal disease (ESRD) and cardiovascular disease (CVD),
with an estimated prevalence of 13.4% (2). Dysbiosis of the gut
microbiota causes pathogenic bacteria to increase while beneficial
bacterial species decrease, thus proving its role in the progression
of ESRD and CVD in patients with CKD (3). Although the exact
pathogenesis of the renal-gut axis is not fully understood, gut
dysbiosis can lead to an increase in uremic toxins, activation
of systemic inflammation and immune system, and metabolic
profile disorders, which may participate in its pathogenesis and
cause further deterioration of renal function and increased risk
of CVD (4).

In this context, microecological preparations, comprising
probiotics, prebiotics, and synbiotics, have been proposed as a
complementary therapy to restore gut microbial communities
(5). Probiotics are live microorganisms that can provide health
benefits for individuals. Prebiotics refer to non-living substrates
that provide nutrients for beneficial gut microorganisms
and promote their growth. Synbiotics are a combination of
probiotics and prebiotics (6). Several studies have reported
that probiotics, prebiotics, and/or synbiotics are good for
the treatment of CKD by modulating the immune response,
improving glomerular function, and lowering serum uremic
toxins and inflammatory factors. However, some other articles
reached contradictory conclusions (7–9). Although a small
number of studies have systematically evaluated the efficacy
of probiotics, prebiotics, and synbiotics in the treatment of
CKD, their conclusions are inconsistent and very different
(10–13). Moreover, evidence that directly compares probiotics,
prebiotics, and synbiotics and determines which microbial
supplement is the best for patients with CKD remains unknown,
therefore, preventing clinicians from providing patients with
personalized medical care. Consequently, we performed a
network meta-analysis to obtain direct and indirect comparative
evidence on the effects of probiotics, prebiotics, and synbiotics
on renal function and metabolic indicators covering lipid
profiles, inflammatory factors, and oxidative stress indices in
patients with CKD.

METHODS

This systematic review and network meta-analysis were
performed according to the Preferred Reporting Items

for Systematic Reviews and Meta-Analyses (PRISMA)
extension statement guidelines for network meta-analysis
(14). The protocol of the review was submitted to the
International Prospective Register of Systematic Reviews
(www.crd.york.ac.uk/PROSPERO), and the registration number
was CRD42022295497.

Data Sources and Search Strategy
MEDLINE, EMBASE, PubMed, Web of Science, and the
Cochrane Central Register of Controlled Trials (CENTRAL)
were searched on August 15, 2021, using a combination
of medical subject headings (MeSH) and free text searches,
such as “probiotic,” “prebiotic,” “synbiotic,” “chronic kidney
disease,” “CKD,” “randomized controlled trial,” or “RCT”.
The details of the electronic search strategies are shown in
Supplementary Table S1. In addition, some articles in the
references of the relevant review and meta-analysis were
manually identified. All the references that we searched were well
managed using Endnote X9.3.3 (BId 13966) software.

Study Selection and Inclusion Criteria
Two investigators (ZH and TJX) independently screened the title
and abstract; if disagreements occurred, a decision was made
through discussion or by a third investigator (QW). A review of
the full-text articles was also completed by the two investigators,
and the reasons why the articles were included or excluded are
recorded explicitly in Supplementary Table S2.

The eligible articles must meet the following criteria: (a)
participants: patients with CKD; (b) intervention measures:
probiotic, prebiotic, or synbiotic; (c) control measures: placebo;
(d) outcomes: changes in renal function ormetabolic profiles; and
(e) study design: RCT. If more than one study that focused on the
same population had different meaningful outcome indicators,
all of them were allowed for final analysis.

The studies were excluded if they had the following
characteristics: (a) participants with infection, liver disease, heart
failure, a history of inflammatory bowel disease (IBD), cancer,
autoimmune disease, and acquired immune deficiency syndrome
(AIDS), and patients who took antibiotics, immunosuppressants,
anti-inflammatory drugs, catabolic drugs, antioxidant vitamin
supplements, prebiotics, probiotics, and synbiotics in the 3
months before the start of the studies; (b) the outcomes were
unrelated; (c) the study was not an RCT; and (d) the data
were unavailable.

Data Extraction and Quality Assessment
Two researchers (ZH and TJX) separately extracted data
from the original literature with an Excel spreadsheet, and a
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FIGURE 1 | PRISMA flow diagram of the study selection procedure.

third researcher (QW) was in charge of settling discrepancies.
The content of the extraction contained the studies’ features
(including title, first author, publication year, country, study
design, type of participants, intervention, control measurements,
and follow-up duration) and the patients’ basic demographic
characteristics [including sample size, number of males, mean
age, and body mass index (BMI)].

The outcomes used in this study mainly included changes
in renal function, lipid profiles, oxidative stress indicators, and
inflammatory indicators. More precisely, changes in creatinine,
estimated glomerular filtration rate (eGFR), total cholesterol

(TC), triglycerides (TG), glutathione (GSH), malondialdehyde
(MDA), total antioxidant capacity (TAC), high sensitivity C-
reactive protein (hs-CRP), interleukin-6 (IL-6), and tumor
necrosis factor-α (TNF-α) were analyzed to investigate the
efficacy of probiotics, prebiotics, and synbiotics in the treatment
of CKD.

The Cochrane Collaboration’s tool was used to assess
the quality of all the RCTs (15). Two authors (DJX and
SJT) independently evaluated the bias (including selection,
performance, detection, attrition, and reporting bias), according
to the Cochrane Handbook for Systematic Reviews, rating as low
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risk, high risk, or unclear for each study (16). If disagreements
were presented, the third author (ZH) reevaluated the bias.
Review Manager (RevMan) (version 5.3.5) was used to draw the
figures of bias assessment.

Data Synthesis and Analysis
To compare the therapeutic effects of different interventions, the
mean ± standard deviation (SD) of the change value from the
baseline of each indicator was needed. For the RCTs that only
had baseline data and last time-point data, a formula was used
to approximately calculate the mean ± SD of each change value
from baseline. The formula was as follows: SD2 change = SD2
baseline+ SD2 final – (2× correlation coefficient× SD baseline
× SD final), and the correlation coefficient (R) was recommended
to be 0.5 (17).

After data preparation, Stata software (version 13.1, USA)
was used to perform the network meta-analysis. The functional
program package used to process raw data was the “network”
package, which is involved in the “mvmeta” package. Statistical
assumptions of similarity, transitivity, and consistency of the
data were examined with relevant commands to verify the
reliability of the analysis results. Various graphs were drawn
via the following commands: “networkplot” command was used
for drawing network geometry or network plot, “netfunnel”
for network funnel plot with random effect model to check
publication bias, “intervalplot” for interval plot or forest plot,
and “sucra” for treatment rankings and surface area under
the cumulative ranking curve (SUCRA) (18). Analysis of
heterogeneity mainly relied on subgroup analysis and sensitivity
analysis. The treatment effects of probiotics, prebiotics, and
synbiotics compared with placebo were expressed as the mean
difference (MD) with a 95% confidence interval (CI). The 95%
CIs excluding 0 were considered statistically significant.

RESULTS

Study Selection and Characteristics
A total of 1,403 articles were searched through databases,
and an additional 21 records were manually identified. After
removing 355 duplicates, 1,069 records were screened by titles
and abstracts. The remaining 47 full-text articles were assessed
for eligibility, 19 of which were excluded for different reasons.
Finally, a total of 28 studies that included 1,373 participants were
analyzed in the network meta-analysis (Figure 1). Details of each
article are shown in Supplementary Table S3.

The basic characteristics of the 28 RCTs are summarized in
Table 1 (7–9, 15, 19–42). Among them, almost all the studies
were double-blinded, except for five (2 were single-blinded, 2
were open-label, and the other was triple-blinded). Notably, the
participants were not exactly the same in the included studies.
The majority of them enrolled patients that were undergoing
hemodialysis (15, 53.6%). Four studies included patients with
diabetic nephropathy, and 2 RCTs focused on diabetic patients
undergoing hemodialysis. Another 4 studies were conducted on
patients with CKD from stages 3 to 5. The remaining 3 RCTs

included patients with automated peritoneal dialysis (APD), non-
diabetic, non-dialysis-dependent CKD (NDD-CKD), and kidney
transplant (KTR).

Risk of Bias Assessment and Network
Structures
The risk of bias is summarized in Supplementary Figure S1.
Among the 28 trials, 82.1% (23/28) of the RCTs were shown
to have a low risk of random sequence generation, while the
remaining 5 trials were unclear. The same proportion (82.1%)
of low risk was found in the allocation concealment. The risk of
performance bias was low in 89.3% (25/28) of trials, except for
one with high risk and another two with unclear risk of bias.
There were 71.4% (20/28) of RCTs at low risk of blinding for
outcome assessment, with 2 at high risk and 6 at unclear risk.
Most trials were at low risk of bias for incomplete outcome data,
other than the 2 RCTs with high risk. There was no selective
reporting in any of the trials. Moreover, 4 trials were identified
as having a high risk of bias due to a high rate of loss to follow-up
over 20%.

Notably, consistency and inconsistency tests could not be
performed because all the outcomes were open-loop network
plots. However, the consistency, transitivity, and heterogeneity
of all the studies were acceptable for a similar methodology in
all the RCTs.

Treatment Effect on Renal Function
A total of 13 articles with 573 patients provided data on the
change in creatinine from baseline. The direct comparison of
probiotics, prebiotics, and synbiotics with placebo and indirect
treatment comparison among the three microbial supplements
are presented in Figure 2A. Probiotics were better than placebo
in reducing creatinine (MD −0.21, 95% CI −0.34, −0.09), while
prebiotics and synbiotics showed no effects on the reduction
of creatinine (MD −0.05, 95% CI −0.30, 0.20; MD 0.07, 95%
CI −0.18, 0.31, respectively), suggesting that probiotics were
the only microbial supplements that might be renoprotective.
In the SUCRA, the probability of probiotics being the best
treatment was ∼86.0%, where the surface area under the curve
of probiotics was larger than the other three, suggesting that it
might be the best intervention for the improvement of creatinine.
Subgroup analysis was performed according to the intervention
period and dialysis status (including hemodialysis and peritoneal
dialysis). As shown inTable 2, the effect of probiotics on lowering
creatinine was only observed in non-dialysis patients (n = 6,
MD −0.15, 95% CI −0.20, −0.09) and sufficient intervention
duration (≥3 months, n = 6, MD −0.29, 95% CI −0.41, −0.17),
while no significant difference was found in dialysis patients
or the short intervention period (<3 months). A sensitivity
analysis that removed an independent article did not affect the
overall results, indicating that the conclusion was convincing
and reliable. Publication bias was demonstrated to be low by a
network funnel plot with perfect symmetry.

Another indicator of renal function (eGFR) was analyzed in
10 studies of 470 subjects. Compared with placebo, probiotics
might have potential advantages in increasing eGFR in patients
with CKD with an intervention period of fewer than 3 months

Frontiers in Nutrition | www.frontiersin.org 4 September 2022 | Volume 9 | Article 850014

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.frontiersin.org/journals/nutrition#articles


Tan et al. Microecological Preparations and CKD

TABLE 1 | Basic characteristics of the included studies.

References Country Type of study Participant Intervention/

control

Diet restrictions Sample

size

(I/C)

Period

(weeks)

Male

(I/C) (n)

Age (years) BMI (kg/m2)

Abbasi et al.

(19)

Iran RCT

(double-blind,

placebo-

controlled)

DN Probiotic (lactobacillus

plantarum A7)/placebo

0.8 g/kg protein,

2,000mg sodium,

2,000mg potassium

and 1,500mg

phosphorus

20/20 8 NA 55.25 ±

7.74

26.63 ±

3.29

Borges et al. (7) Brazil RCT

(double-blind,

placebo-

controlled)

HD Probiotic (Streptococcus

thermophilus,

Lactobacillus acidophilus,

and Bifidobacteria

longum)/placebo

NA 16/17 12 11/10 51.90 ±

9.78

25.25 ±

5.12

Borges et al. (8) Brazil RCT

(double-blind,

placebo-

controlled)

HD Probiotic (Streptococcus

thermophilus,

Lactobacillus acidophilus,

and Bifidobacteria

longum)/placebo

NA 11/10 12 3/4 54.00 ±

8.16

25.70 ±

4.43

Cosola et al.

(20)

Italy RCT

(single-blind,

placebo-

controlled)

CKD stage

3b-4

Synbiotic (Lactobacillus

Casei, Bifidobacterium

Animalis,

fructoligosaccharides, and

inulin)/placebo

NA 13/10 8 7/7 51.22 ±

3.65

26.59 ±

1.17

de Andrade

et al. (9)

Brazil RCT

(double-blind,

placebo-

controlled,

crossover)

APD Prebiotic (unripe banana

flour-48% resistant

starch)/placebo

To maintain a stable

dietary pattern and not

to take additional

microbiological agents

during intervention

15/11 12 NA 55.00 ±

12.00

26.7 ± 4.1

Esgalhado et al.

(21)

Brazil RCT

(double-blind,

placebo-

controlled)

HD Prebiotic (cookies and

powder-resistant

starch)/placebo

Patients were asked

about the amount and

type of food eaten at

each meal held during

the day

15/16 4 7/11 54.71 ±

9.69

26.41 ±

5.07

Eidi et al. (22) Iran RCT

(triple-blind,

placebo-

controlled)

HD Prebiotic (Lactobacillus

Rhamnosus)/placebo

Not to change their

usual dietary intakes

21/21 4 15/17 58.36 ±

14.39

24.46 ±

4.60

Haghighat et al.

(23)

Iran RCT

(double-blind,

placebo-

controlled)

HD Probiotic (Lactobacillus

acidophilus,

Bifidobacterium bifidum,

Bifidobacterium lactis,

Bifidobacterium

longum)/placebo

To maintain stable

dietary intakes, and

not to consume any

supplements other

than the one provided

to them by the trial

23/19 12 12/10 45.88 ±

11.04

22.69 ±

4.04

Synbiotic (Lactobacillus

acidophilus,

Bifidobacterium bifidum,

Bifidobacterium lactis,

Bifidobacterium longum,

fructo-oligosaccharides,

galactooligosaccharides,

inulin)/placebo

23/19 12 12/10 46.88 ±

10.36

23.64 ±

4.91

Jiang et al. (24) China RCT

(double-blind,

placebo-

controlled)

DN Probiotic (Bifidobacterium

bifidum, Lactobacillus

acidophilus,

Streptococcus

thermophilus)/placebo

NA 42/34 12 15/12 56.03 ± 8.3 27.03 ±

3.06

Kooshki et al.

(25)

Iran RCT

(double-blind,

placebo-

controlled)

HD Synbiotic (Lactobacillus

coagulans and fructo-

oligosaccharides)/placebo

Not to change their

dietary habits

23/23 8 10/11 62.88 ±

16.52

23.53 ±

4.08

(Continued)
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TABLE 1 | Continued

References Country Type of study Participant Intervention/

control

Diet restrictions Sample

size

(I/C)

Period

(weeks)

Male

(I/C) (n)

Age (years) BMI (kg/m2)

Mafi et al. (26) Iran RCT

(double-blind,

placebo-

controlled)

HD Probiotic (Lactobacillus

acidophilus strain,

Bifidobacterium bifidum

strain, Lactobacillus

reuteri strain, and

Lactobacillus fermentum

strain)/placebo

NA 30/30 12 NA 59.9 ± 6.97 25.80 ±

2.81

Miraghajani

et al. (27)

Iran RCT

(double-blind,

placebo-

controlled)

DN Probiotic (soy

milk-Lactobacillus

plantarum A7)/placebo

Participants received

individualized dietary

counseling aimed at

achieving a daily

energy and restricting

dietary protein,

sodium, and

potassium intake.

20/20 8 12/10 55.25 ±

2.37

25.80 ±

2.81

Ramos et al.

(28)

Brazil RCT

(double-blind,

placebo-

controlled)

NDD-CKD Prebiotic (fructo-

oligosaccharides)/placebo

Keep a diet composed

by 0.6–0.8 g/kg/day of

protein, 30–35

kcal/kg/day of energy,

restricted in sodium

and controlled in

potassium if necessary

23/23 12 13/14 57.50 ±

14.55

26.63 ±

0.71

Simeoni et al.

(29)

Italy RCT (open-label,

placebo-

controlled)

CKD stage

3a

Probiotic (Lactobacillales

and

Bifidobacteria)/placebo

Protein dietary intake

ranging 0.7–1 g/

kg/day, daily

consumption of two

pieces of fruit (apple or

pear) and 200g of

double-boiled leafy

green vegetables

14/14 12 9/6 59.75 ±

5.83

27.60 ±

4.96

Soleimani et al.

(30)

Iran RCT

(double-blind,

placebo-

controlled)

DN + HD Probiotic (Lactobacillus

acidophilus, Lactobacillus

casei and Bifidobacterium

bifidum)/placebo

Not to change usual

diets and not take any

anti-inflammatory and

antioxidant

medications or

supplements during

the intervention.

30/30 12 20/20 56.70 ±

16.10

25.85 ±

5.44

Soleimani et al.

(31)

Iran RCT

(double-blind,

placebo-

controlled)

DN + HD Synbiotic (Lactobacillus

acidophilus, Lactobacillus

casei, and Bifidobacterium

bifidum, and

inulin)/placebo

Not to change usual

diets and not take any

anti-inflammatory and

antioxidant

medications or

supplements during

the intervention

30/30 12 21/21 62.8 ±

13.67

25.70 ±

2.90

Guida et al. (32) Italy RCT

(double-blind,

placebo-

controlled)

KTRs Synbiotic (Lactobacillales,

Bifidobacteria,

Streptococcus

thermophilus), prebiotic

inulin, and

tapioca-resistant

starch)/placebo

Mediterranean pattern

diet; energy intake

higher than

25/kcal/kg/ideal body

weight/day, 55% of

carbohydrates, total

fat not exceeding 30%

of calories (fatty acids

< 10% of calories and

dietary cholesterol

limited to 300

mg/day); protein

intake is restricted to

0.8 g/kg of ideal body

weight/day; insoluble

and soluble fibers in a

ratio of about 3 to 1;

water intake ranges

between 1.5 and 2.0

L/day

22/12 4 16/12 51.64 ±

9.22

26.65 ±

5.03

(Continued)
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TABLE 1 | Continued

References Country Type of study Participant Intervention/

control

Diet restrictions Sample

size

(I/C)

Period

(weeks)

Male

(I/C) (n)

Age (years) BMI (kg/m2)

Shariaty et al.

(33)

Iran RCT

(double-blind,

placebo-

controlled)

HD Probiotic (Lactobacillus

acidophilus,

Bifidobacterium and

Streptococcus

thermophilus)/placebo

Both groups received

daily folic acid

supplements and

monthly vitamin B12

supplements

17/17 4 10/10 57.84 ±

11.83

NA

Sirich et al. (34) The United

States

RCT

(single-blind,

placebo-

controlled)

HD Prebiotic (resistant

starch)/placebo

NA 20/20 6 11/13 56.00 ±

13.49

25.34 ±

2.85

Viramontes-

Hörner et al.

(35)

Mexico RCT

(double-blind,

placebo-

controlled)

HD Synbiotic (Lactobacillus

acidophilus,

Bifidobacterium lactis,

Inulin)/placebo

Individualized dietary

prescription: energy

(30–35 kcal/kg/day),

protein intake (1.1–1.2

g/kg/day), as well as

potassium,

phosphorus, and

sodium restriction

22/20 8 16/16 39.84 ±

16.4

29.00 ±

6.44

Mazruei et al.

(36)

Iran RCT

(double-blind,

placebo-

controlled)

DN Probiotic (Bacillus

coagulans)/placebo

NA 30/30 12 NA 61.5 ± 8.81 23.42 ±

5.10

Xie et al. (37) China RCT (parallel

group, placebo-

controlled)

HD Prebiotic (water soluble

fiber, 10 g/day)/placebo

Caloric intake 35

kcal/kg bw, protein

intake 1–1.2 g/kg bw,

fats < 35%, and with

sodium and

potassium restriction.

41/44 6 24/26 53.39 ±

13.56

30.70 ±

5.10

Prebiotic (water soluble

fiber, 20 g/day)/placebo

39/44 16 18/26 52.44 ±

14.36

22.66 ±

2.10

Rossi et al. (15) Australia RCT

(double-blind,

placebo-

controlled,

crossover)

CKD stage

4–5

Synbiotic (Lactobacillus,

Bifidobacteria,

Streptococcus genera,

and inulin,

fructo-oligosaccharides,

and galacto-

oligosaccharides)/placebo

NA 17/20 16 7/14 68.54 ±

9.87

22.47 ±

1.97

Khosroshahi

et al. (38)

Iran RCT

(double-blind,

placebo-

controlled)

HD Prebiotic

(HAM-RS2)/placebo

NA 22/22 8 12/16 56.00 ±

13.08

26.25 ±

6.01

Khosroshahi

et al. (39)

Iran RCT

(double-blind,

placebo-

controlled)

HD Prebiotic

(HAM-RS2)/placebo

Not to change usual

diets

23/21 8 14/15 55.43 ±

11.88

23.52 ±

2.01

Laffin et al. (40) Canada RCT

(double-blind,

placebo-

controlled)

HD Prebiotic

(HAM-RS2)/placebo

NA 9/11 8 6/7 55.89 ±

10.25

24.14 ±

1.93

Mirzaeian et al.

(41)

Iran RCT

(double-blind

placebo-

controlled)

HD Synbiotic (Lactobacillus,

Bifidobacteria,

Streptococcus

thermophiles, and fructo-

oligosaccharides)/placebo

Not to consume foods

such as yogurt,

cheese, and kefir,

which probably

contain probiotic

strains.

21/21 8 14/16 64.02 ±

31.5

24.72 ±

4.59

Dehghani et al.

(42)

Iran RCT

(double-blind

placebo-

controlled)

CKD stage

3–4

Synbiotic (Lactobacillus,

Bifidobacteria,

Streptococcus

thermophiles, and fructo-

oligosaccharides)/placebo

NA 31/35 6 23/27 61.41 ±

7.63

28.53 ±

4.06

I, intervention; C, control; n, number; BMI, bodymass index; RCT, randomized controlled trial; DN, diabetic nephropathy; HD, hemodialysis; CKD, chronic kidney disease; APD, automated

peritoneal dialysis; NDD-CKD, non-diabetic, non-dialysis-dependent CKD; KTRs, kidney transplant patients; NA, not available.

Frontiers in Nutrition | www.frontiersin.org 7 September 2022 | Volume 9 | Article 850014

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.frontiersin.org/journals/nutrition#articles


Tan et al. Microecological Preparations and CKD

FIGURE 2 | Network meta-analysis results for the effects of probiotic, prebiotic, and synbiotic supplementation on creatinine (A) and triglyceride (B) levels.
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TABLE 2 | Subgroup analysis of renal function.

Subgroup by No. of trials No. of patients Probiotics Prebiotics Synbiotics

Changes of creatinine

Follow-up period

<3 months 7 288 −0.14 (−1.68, 1.40) −0.77 (−2.30, 0.75) 0.29 (−0.72, 1.31)

≥3 months 6 285 −0.29 (−0.41, −0.17)* 0.00 (−0.19, 0.20) –

Target population

Dialysis patients 7 278 −0.31 (−2.98, 2.28) −0.47 (−2.38, 1.44) 1.02 (−1.15, 3.19)

Non-dialysis patients 6 295 −0.15 (−0.20, −0.09)* 0.00 (−0.19, 0.19) 0.04 (−0.17, 0.26)

Changes of eGFR

Follow-up period

<3 months 4 163 12.70 (6.70, 18.70)*
†

– 1.13 (−1.24, 3.51)

≥3 months 6 307 2.19 (−2.63, 7.02) 0.00 (−8.64, 8.64) 1.00 (−8.95, 10.95)

Target population

Dialysis patients 2 120 0.49 (−0.27, 1.25) – –

Non-dialysis patients 8 350 3.65 (−1.84, 9.13) 0.00 (−8.34, 8.34) 1.82 (−3.52, 7.16)

*P < 0.05 compared with placebo, †P < 0.05 compared with synbiotics.

eGFR, estimated glomerular filtration rate.

TABLE 3 | Subgroup analysis of lipid profile.

Subgroup by No. of trials No. of patients Probiotics Prebiotics Synbiotics

Changes of TG

Follow-up period

<3 months 8 418 −10.70 (−17.53, −3.87)* 9.22 (−15.32, 33.76) 6.39 (−25.43, 38.20)

≥3 months 6 314 −11.79 (−30.15, 6.57) 15.00 (−36.53, 66.53) −12.30 (−55.04, 30.44)

Target population

Dialysis patients 9 524 0.00 (0.00, 1237.4) 1376.79 (0.00, 1.88e+15) 0.00 (0.00, 2.31e+07)

Non-dialysis patients 5 208 −9.00 (−14.45, −3.55)* 15.00 (−25.17, 55.17) 44.00 (−11.69, 99.69)

Changes of TC

Follow-up period

<3 months 8 418 −7.53 (−47.42, 32.36) −1.01 (−23.44, 21.42) −11.04 (−37.23, 15.15)

≥3 months 6 314 −5.56 (−11.17, 0.06) −0.60 (−18.30, 17.10) −6.60 (−27.53, 14.33)

Target population

Dialysis patients 9 524 −6.01 (−31.33, 19.31) −1.18 (−21.09, 18.74) −13.78 (−37.23, 9.67)

Non-dialysis patients 5 208 −6.65 (−11.59, −1.71)* −0.60 (−18.30, 17.10) 1.90 (−17.42, 21.22)

*P < 0.05 compared with placebo.

TG, triglyceride; TC, total cholesterol.

(n = 4, MD 12.70, 95% CI 6.70, 18.70, Table 2). However, there
seemed to be no significant difference in eGFR enhancement
among probiotic, prebiotic, and synbiotic supplements in general
(Supplementary Figure S2A).

Treatment Effect on Lipid Profiles
The TG and TC in the lipid profiles were included in the analysis.
A total of 14 studies with 732 participants were involved in
the assessment of TG change (Figure 2B). Network analysis
indicated that probiotics were superior to placebo in terms
of lowering TG levels (MD −9.98, 95% CI −19.47, −0.49),
while synbiotics and prebiotics were not statistically associated
with changes in TG. The probability of probiotics being the
best microbial intervention was approximately 67.3%, with the

largest surface area. Moderate publication bias was found in the
network funnel plot with basic symmetry. Subgroup analysis
demonstrated that probiotics might significantly reduce the TG
levels of patients with CKD who took probiotics for <3 months
or nondialysis patients with CKD (n = 8, MD −9.00, 95% CI
−14.45, −3.55; n = 5, MD −10.70, 95% CI −17.53, −3.87,
respectively). However, a significant difference was not found in
the patients on dialysis and the trials with a follow-up time over
3 months (Table 3).

The analysis of the change in TC was performed in 14 studies
with 732 subjects. There was a tendency for probiotics, prebiotics,
and synbiotics to decrease the level of TC, but the statistical
significance was not reached (Supplementary Figure S2B).
SUCRA showed that probiotics had the best ability to reduce
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the TC concentration. In the subgroup analysis, the effect
of probiotics on lowering TC in non-dialysis patients was
statistically superior to placebo (n = 5, MD −6.65, 95%
CI −11.59, −1.71), while the remaining analysis remained
consistent with those described above (Table 3), which indicated
whether the individuals had dialysis might be the confounding
factor for the efficiency of probiotic on TC decrease.

Treatment Effect on Inflammatory
Biomarkers
Inflammatory biomarkers, including hs-CRP, IL-6, and TNF-α,
were used for statistical analysis. There were 14 studies with
727 patients that evaluated the effects of microbial supplements
on hs-CRP. Prebiotics and synbiotics tended to have a better
advantage in reducing the levels of hs-CRP (MD −2.06, 95% CI
−3.79, −0.32; MD −2.01, 95% CI −3.87, −0.16, respectively),
while probiotics showed a tendency to decrease the level of
hs-CRP, with no statistically significant difference (MD −1.64,
95% CI −3.50, 0.22) (Figure 3A). SUCRA demonstrated that
prebiotics and synbiotics might be the preferred interventions for
lowering the concentration of hs-CRP (Figure 3A). A network
funnel plot was displayed with moderate publication bias.
Subgroup analysis remained consistent in patients who were
undergoing dialysis. A marked difference was not observed in
predialysis patients, but probiotics showed superiority to placebo
in non-dialysis patients (n= 2,MD−0.67, 95%CI−1.19,−0.15).
When subgrouped by follow-up time, synbiotics and probiotics
were associated with the superior effect (n = 8, MD −2.74, 95%
CI −3.49, −1.98; MD −1.49, 95% CI −1.99, −0.98, respectively)
in the long intervention duration (≥3 months), while prebiotics
showed no superiority (Table 4). Regarding the follow-up of
less than 3 months, no obvious difference was seen among the
three groups.

In the assessment of TNF-α change from baseline in 4 trials
with 236 subjects, prebiotics were associated with a significant
reduction in TNF-α (MD −2.65, 95% CI −3.91, −1.39) when
compared with placebo (Figure 3B). Data on probiotics were
absent. The probability of prebiotics being the best was ∼80.4%,
with the largest surface area. No evidence of publication bias
was found by the network funnel plot. In the subgroup analysis,
the results remained consistent in terms of prebiotics lowering
TNF-α in the short intervention duration (<3 months) (n =

3, MD −2.65, 95% CI −3.93, −1.38). There was only one
RCT conducted over 3 months, where statistical analysis could
not be performed. There were no data on non-dialysis patients
(Table 4).

Ten RCTs with 450 participants were available for the
evaluation of the change in IL-6 from baseline. Prebiotic
treatment showed a tendency to lower the IL-6 level, with no
statistically significant difference (MD −10.24, 95% CI −20.71,
0.24) (Supplementary Figure S3). In the subgroup analysis,
prebiotics were shown to have superiority to placebo in patients
on dialysis or with a short intervention period (<3 months) (n
= 5, MD −12.87, 95% CI −25.20, −0.55; MD −17.24, 95% CI
−20.28, −14.20, respectively). In the follow-up over 3 months,
synbiotics were associated with a significant decrease in IL-6

compared with placebo (n = 5, MD −29.93, 95% CI −45.72,
−14.14) (Table 4).

Treatment Effect on Oxidative Stress
Indicators
The indicators of oxidative stress analyzed in this study
included MDA, GSH, and TAC (Figure 4A). Regarding the
change in MDA from baseline, 8 RCTs with 494 participants
were available for network meta-analysis. The treatment
effects of probiotics and synbiotics were superior to those
of placebo (MD −0.54, 95% CI −0.96, −0.13; MD −0.66,
95% CI −1.23, −0.09, respectively), while prebiotics showed
no significant difference from placebo (MD −0.01, 95%
CI −0.50, 0.48) (Figure 4B). SUCRA curves suggested that
the probability of synbiotic being the best treatment was
approximately 62.3%, followed by probiotics, confirming that
synbiotics and probiotics were greater interventions on the
decline of MDA than prebiotics (Supplementary Figure S4A).
The network funnel plot showed moderate publication bias
(Supplementary Figure S4B). Sensitivity analysis did not change
the results. The outcomes of the subgroup analysis were similar
to those above, especially in patients with CKD on dialysis
(probiotics, MD −0.68, 95% CI −0.97, −0.38; synbiotics, MD
−0.74, 95% CI −0.96, −0.52, respectively). However, during the
follow-up of<3months, only synbiotics were demonstrated to be
superior to placebo in terms of reducing MDA (MD −0.9, 95%
CI −1.30, −0.50), whereas only probiotics showed a significant
reduction in MDA over 3 months of follow-up (MD −0.73, 95%
CI−0.93,−0.53) (Table 5).

A total of 5 articles involving 280 patients investigated
the change in GSH. Probiotics were shown to exert a
superior effect on improving the level of GSH (MD 72.86,
95% CI 25.44, 120.29), while synbiotics only showed the
potential to increase GSH, with no significant difference
(Figure 4C). SUCRA revealed a better ability of synbiotics
and probiotics to increase GSH (Supplementary Figure S4C).
A low publication bias was observed in the network funnel
plot (Supplementary Figure S4D). When subgroup analysis was
performed based on follow-up time and target population, it was
demonstrated that probiotics still had an advantage in elevating
GSH level, regardless of short or long follow-up duration
(Table 5).

Data on the change in TAC from baseline were available
for analysis in four studies with 220 patients. It was found
that synbiotics might improve the level of TAC (MD 145.20,
95% CI 9.32, 281.08), while probiotics might not be as
effective (MD 42.17, 95% CI −9.28, 94.15, Figure 4D). SUCRA
indicated that the probability of synbiotics being the best
option was approximately 85.6%, suggesting that the intervention
of synbiotics was the most appropriate one concerning
improving antioxidant capacity (Supplementary Figure S4E). In
the subgroup analysis, an obvious increase in TAC was observed
in the probiotic group with patients on dialysis and more than
3 months of follow-up, which signified that the dialysis status
and intervention duration might be important confounding
factors for the treatment effect of probiotics. The outcomes
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FIGURE 3 | Network meta-analysis results for the effects of probiotic, prebiotic, and synbiotic supplementation on hs-CRP (A) and TNF-α (B). hs-CRP, high sensitivity

C-reactive protein; TNF-α, tumor necrosis factor-α.
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TABLE 4 | Subgroup analysis of inflammatory biomarkers.

Subgroup by No. of trials No. of participants Probiotics Prebiotics Synbiotics

Changes of hs-CRP

Follow-up period

<3 months 6 331 – −2.71 (−6.28, 0.86) −1.19 (−5.70, 3.32)

≥3 months 8 396 −1.49 (−1.99, −0.98)* −0.14 (−0.92, 0.65) −2.74 (−3.49, −1.98)*

Target population

Dialysis patients 12 621 −1.62 (−3.75, 0.52) −2.68 (−4.69, −0.67)* −2.01 (−3.86, −0.17)*

Non-dialysis patients 2 106 −0.67 (−1.19, −0.15)* 0.00 (−0.58, 0.58) –

Changes of TNF-α

Follow-up period

<3 months 3 210 – −2.65 (−3.93, −1.38)* −1.20 (−4.23, 1.83)

≥3 months 1 16 – −0.07 (−0.85, 0.71) –

Target population

Dialysis patients 4 236 – −2.65 (−3.91, −1.39)* −1.20 (−4.22, 1.82)

Non-dialysis patients 0 0 0 0 0

Changes of IL-6

Follow-up period

<3 months 5 261 – −17.24 (−20.28, −14.20)* 0.90 (−0.46, 2.26)

≥3 months 5 189 −7.83 (−21.19, 5.52) −0.65 (−1.45, 0.15) −29.93 (−45.72, −14.14)*

Target population

Dialysis patients 9 404 −4.67 (−30.96, 21.62) −12.87 (−25.20, −0.55)* −11.75 (−30.37, 6.87)

Non-dialysis patients 1 46 – −0.48 (−1.07, 0.10) –

*P < 0.05 compared with placebo.

hs-CRP, high sensitivity C-reactive protein; TNF-α, tumor necrosis factor-α; IL-6, interleukin-6.

from a subgroup analysis of synbiotics were stable (Table 5).
As shown in Supplementary Figure S4F, the publication bias
was moderate, which might be caused by the RCT comparing
the treatment effect of probiotics and placebo (31). Sensitivity
analysis excluding data from the article by Soleimani showed that
probiotics might improve TAC (MD 24.80, 95% CI 4.29, 45.31).

DISCUSSION

Considering the importance of intestinal microbiota on the
progression of CKD and the lack of high-quality evidence
that directly compares probiotics, prebiotics, and synbiotics,
we performed a network meta-analysis that included 28 RCTs
to quantitatively assess the effect of probiotics, prebiotics,
and synbiotics on renal function and metabolic profiles in
patients with CKD. Overall, probiotics, prebiotics, and synbiotics
were determined to be associated with improvements in renal
function, lipid profiles, inflammatory biomarkers, and oxidative
stress indicators in patients with CKD. More specifically,
probiotics were shown to have greater effects in improving
renal function (creatinine), lipid profile (TG), and oxidative
stress status (MDA, GSH), whereas prebiotics were more
advantageous in lowering inflammatory factors (hs-CRP, TNF-
α), and synbiotics were represented as a partially synergistic
function of probiotics and prebiotics, capable of improving
oxidative stress status (MDA and TAC) and inflammatory
factors (hs-CRP).

Our study indicated that probiotics could lower serum
creatinine and TG levels better than prebiotics and synbiotics,
which might delay the progression of CKD. Notably, probiotics
were more suitable for non-dialysis patients who would consume
them for at least 3 months or more. Previous studies have
disputed whether microbial supplements are beneficial to kidney
function in patients with CKD. A meta-analysis synthesized 7
RCTs with 456 patients and showed that probiotic intake might
significantly decrease serum creatinine, which was consistent
with our conclusion (43). However, other published studies
found no significant association between probiotic consumption
and renal function improvement (11, 44, 45). The reasons for
the heterogeneity of the conclusions might be that different
meta-analyses included different documents, the design methods
were not exactly the same, and the rigorous subgroup analysis
was not performed. The articles included in our study were
relatively complete. At the same time, we directly and indirectly
compared the efficacy of various microbial supplements and
conducted subgroup analysis according to the follow-up time
and patient characteristics. Therefore, our conclusions might
be more reliable. Regarding eGFR, although probiotics showed
a tendency to increase its level, there was no statistical
significance, which might be attributable to the limited sample
size. Subgroup analysis suggested that intervention duration may
be a strong confounding factor, and more studies on long-term
administration and large sample sizes are needed in the future.

Dyslipidemia was proven to be a pivotal contributing factor
for CVD development, which is the main leading cause of
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FIGURE 4 | Network meta-analysis results for the effects of probiotic, prebiotic, and synbiotic supplementation on oxidative stress indicators. (A) The network

structures. (B) MDA. (C) GSH. (D) TAC. MDA, malondialdehyde; GSH, glutathione; TAC, total antioxidant capacity.

morbidity and mortality in patients with CKD (46). Mafi
et al. demonstrated that microbial supplements could result in
a significant reduction in blood lipids, which was consistent
with our findings (26). However, our study also reported that
probiotics would be the preferred choice for lowering both
cholesterol and TG compared with synbiotics and prebiotics,
which might help clinicians to choose microbial supplements. It
should be noted that a previous meta-analysis showed contrary
results (13). This was mainly because they compared the
collective use of probiotics, prebiotics, and synbiotics with a
placebo and did not investigate the effects of each microbial
supplement. Meanwhile, we included more original studies, and
the conclusions might be relatively more stable. Therefore, it was
reasonable to conclude that probiotics, among all the microbial
supplements, would be the best alternative for improving blood
lipid levels in patients with CKD.

Our pooled analysis indicated that the anti-inflammatory
effect of prebiotics and synbiotics was marginally better than
that of probiotics, especially in reducing hs-CRP and TNF-α.
This was mainly caused by the relatively small number of studies
on probiotics in this area. One of the critical causative factors
thatmicrobial supplements exert anti-inflammatory effectsmight
be attributed to the production of short-chain fatty acids
(SCFAs), the major end products of microbial fermentation of
prebiotics in the large intestines (47). SCFAs are the major
energy source for epithelial cells and can help to stimulate
the proliferation and growth of normal epithelial cells, thus
stabilizing gut epithelial barrier integrity and reducing the
translocation of urotoxins (48). Moreover, SCFAs can reduce
inflammatory cytokines such as IL-6 and TNF-α by activating
transmembrane G protein-coupled receptors, interfering with
the activation of NF-κB induced by lipopolysaccharide (LPS),
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TABLE 5 | Subgroup analysis of oxidative stress.

Subgroup by No. of trials No. of patients Probiotics Prebiotics Synbiotics

Changes of MDA

Follow-up period

<3 months 4 254 0.01 (−0.06, 0.08) −0.01 (−0.01, −0.01) −0.9 (−1.30, −0.50)*

≥3 months 4 240 −0.73 (−0.93, −0.53)* – −0.40 (−0.84, 0.04)

Target population

Dialysis patients 6 394 −0.74 (−0.96, −0.52)* −0.01(−0.01, −0.01) −0.68 (−0.97, −0.38)*

Non-dialysis patients 2 100 −0.4 (−1.31, 0.52) – –

Changes of GSH

Follow-up period

<3 months 1 40 1.95 (1.20, 2.71)* – –

≥3 months 4 240 56.52 (1.62, 111.41)* – 98.60 (−7.45, 204.65)

Target population

Dialysis patients 3 180 73.23 (−9.08, 155.54) – 98.60 (−22.22, 219.42)

Non-dialysis patients 2 100 1.12 (−0.45, 2.70) – –

Changes of TAC

Follow-up period

<3 months 1 40 0.62 (−0.01, 1.26) – –

≥3 months 3 180 0.49 (0.13, 0.86)* – 0.58 (0.06, 1.10)*

Target population

Dialysis patients 3 180 0.49 (0.13, 0.86)* – 0.58 (0.06, 1.10)*

Non-dialysis patients 1 40 0.62 (−0.01, 1.26) – –

*P < 0.05 compared with placebo.

MDA, malondialdehyde; GSH, glutathione; TAC, total antioxidant capacity.

and/or inhibiting histone acetylation. All these inflammatory
markers are reported to be associated with the progression of
CVD and ESRD in patients with CKD (49). Therefore, the
administration of microbial supplements has greater benefits for
patients with CKD.

Although several studies have reported that microbial
consumption was able to improve oxidative stress in patients
with CKD, our study emphasized the differences in therapeutic
effects among these three supplementations, in which probiotics
were found to be superior in decreasing serum MDA and
increasing GSH, and synbiotics were able to increase TAC levels,
while prebiotics did not exert such effects. This discrepancy
may provide useful individual guidance for clinical practice.
MDA, GSH, and TAC are all well-known biomarkers for
oxidative stress in the body. MDA is one of the main products
of lipid peroxidation, which could reflect the severity of
oxidation stress to a certain extent. GSH, as a major cellular
antioxidant metabolite, can eliminate multiple harmful radicals,
such as hydrogen peroxides and hydroxyl radicals, and maintain
homeostasis of the internal environment from oxidative damage.
TAC reflects “the sum of antioxidant activities of the non-specific
pool of antioxidants” in the body (50). Oxidative stress was
strongly associated with gut microbiota dysbiosis in patients with
CKD. Increased intestinal barrier permeability due to high serum
urea levels permits the translocation of pathogenic bacteria
and their metabolites such as uremic toxins, LPS, and some

cytokines, into the circulatory system, eliciting an oxidative
stress response as well as systemic inflammation, producing
reactive oxygen species (ROS) and releasing proinflammatory
cytokines (51). Overproduction of ROS can imposemodifications
on other oxygen species, DNA, proteins, or lipids due to
their highly reactive nature, contributing to a variety of
chronic diseases, such as dyslipidemia, CVD, and CKD (52,
53). Meanwhile, it has been reported that oxidative stress
and inflammation play an imperative role in the development
of renal fibrosis, which can accelerate the loss of kidney
function (54, 55). Accordingly, patients with CKD might benefit
from probiotics.

Compared with previous meta-analyses, this study has several
strengths. To the best of our knowledge, this was the first
network meta-analysis to systematically evaluate the effects of
probiotic, prebiotic, and synbiotic supplementation on renal
function and metabolic profiles in patients with CKD. Based
on a comprehensive search of electronic databases, the report
included a total of 28 RCTs, which provided a large sample
size, making the pooled results convincing. Additionally, we not
only concluded that microbial supplements might be beneficial
to patients with CKD but also determined which one had the
best effect. Moreover, we performed a subgroup analysis of the
intervention period and the type of patients, which could indicate
the use of different biotic supplements in personalized clinical
applications for patients with CKD. It is worth noting that there
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were some limitations in our study. First, owing to the open-
loop of the network plots, consistency and inconsistency tests
could not be performed, which made heterogeneity difficult to
understand. However, similar methodology in all the RCTs and
results of the subgroup analysis indicated that heterogeneity
among trials could be accepted. Second, all reviewed probiotic
renal outcome studies used creatinine-based measures of renal
function. Since probiotics could cause a reduction in creatinine
via their creatininase activity without a true improvement in
intrinsic renal function, probiotic studies are necessary where
renal function is more accurately measured using an exogenous
maker such as iothalamate or iohexol (56). Third, although our
pooled results showed that patients with CKDmight benefit from
microbial supplementation, the specific mechanism was not clear
enough. Consequently, more advanced studies are required in
the future.

CONCLUSION

The consumption of probiotics, prebiotics, and synbiotics
could improve renal function, lipid profiles, inflammatory
biomarkers, and oxidative stress indicators in patients
with CKD. After thorough consideration, probiotics
provide the most comprehensive and beneficial effects for
patients with CKD and might be used as the best choice of
microecological preparations.
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