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An excessive amount of fat deposition in the body leads to obesity which

is a complex disease and poses a generic threat to human health. It

increases the risk of various other diseases like diabetes, cardiovascular

disease, and multiple types of cancer. Genomic studies have shown that

the expression of the fat mass obesity (FTO) gene was highly altered

and identified as one of the key biomarkers for obesity. This study has

been undertaken to investigate the mutational profile of the FTO gene

and elucidates its effect on the protein structure and function. Harmful

effects of various missense mutations were predicted using different

independent tools and it was observed that all mutations were highly

pathogenic. Molecular dynamics (MD) simulations were performed to study

the structure and function of FTO protein upon different mutations and

it was found that mutations decreased the structure stability and affected

protein conformation. Furthermore, a protein residue network analysis

suggested that the mutations affected the overall residues bonding and

topology. Finally, molecular docking coupled with MD simulation suggested

that mutations affected FTO substrate binding by changing the protein-

ligand affinity. Hence, the results of this finding would help in an in-depth

understanding of the molecular biology of the FTO gene and its variants and

lead to the development of effective therapeutics against associated diseases

and disorders.
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Introduction

The prevalence of obesity has been increasing worldwide,
which poses a serious threat to human health (1). Obesity
promotes various diseases such as diabetes, cardiovascular
disease, and multiple types of cancer including breast,
endometrial, blood, and ovarian cancer (2, 3). Several
environmental factors such as lack of physical activity and
higher consumption of energy-rich diets are primary obesogenic
factors in the pathogenesis of obesity (4). Obesity is a complex
phenotype, which is not a typical mendelian transmission and is
a consequence of several susceptible genes with low or medium
effects (5). It is a well-known fact that genes regulating energy
homeostasis and thermogenesis, adipogenesis, leptin-insulin
signaling transduction, and hormonal signaling peptides play
an important role in the progression of obesity (6). There are
different candidate genes which are reported to be associated
with obesity. Among them, a fat mass and obesity-associated
(FTO) gene was reported to be highly dysregulated and largely
contributed to obesity (7, 8).

The Genome-wide association studies (GWAS) have shown
that various single nucleotide polymorphisms (SNPs) of the
FTO gene were strongly associated with increased body mass
index (BMI) (9, 10). In addition to that, SNPs of the FTO
gene were also found to be associated with various types
of human cancer, such as breast, colon, gastric, pancreatic,
and prostate cancer (11–15). The FTO gene is located in
chromosome 16q12.2, with a total length of 410.50 kb including
9 exons and 8 introns (16). The dysregulation of FTO was
involved in the impairment of different biological processes,
such as proliferation, migration, invasion, cell cycle, and
stem cell self-renewal through modulating various signaling
pathways (17–19). FTO was identified as the first RNA
demethylase that catalyzes oxidative demethylation of two
different RNA nucleosides such as N6-methyladenosine (6mA)
and 3-methyl uracil (m3U) in vitro and in vivo, respectively
(20, 21).

Single nucleotide polymorphisms are the most common
type of genetic alterations that occur both in coding and
non-coding regions of DNA sequences, out of which, the
mutations that occur in the coding part of genes directly
affect the encoded protein (22). However, it also depends upon
the nature of mutations like synonymous or non-synonymous
where the former results in no alteration or later changed in
the structure and hence the function of the protein (23). In
this study, we have attempted to investigate the mutational
profile of the FTO gene and to monitor the effect of non-
synonymous (missense) mutations on the structure, dynamics,
conformation, and substrate binding of the FTO protein.
Different mutations were obtained through online databases
and their pathogenicity was predicted through multiple online
tools. Hence after, the impact of highly deleterious mutations
on protein structure and functions was elucidated through

molecular dynamics simulation, protein residues network, and
molecular docking approaches.

Materials and methods

Dataset

The reported FTO SNPs and clinically important mutations
were collected from dbSNP and ClinVar databases, respectively
(24). The information about the functionally important
mutations at the protein level was obtained from the UniProt
database (25). Different mutations obtained from all databases
were further verified by literature resources (8, 9, 26, 27).
Tertiary structures of FTO protein are available at the protein
data bank (PDB) with PDB codes: 3LFM and 5ZMD (21, 28).
Since available structures at PDB are incomplete and have
missing amino acids up to 35, therefore, we adopted homology
and de novo modeling approaches to construct the full-length
model using I-TASSER server (29).

Pathogenicity and stability predictions
of nsSNPs

Sequence-based pathogenicity prediction of various
mutations was performed by the PredictSNP server which
facilitates eight prediction tools: MAPP, PhD-SNP, PolyPhen-1,
PolyPhen-2, SIFT, SNAP, PANTHER, and PredictSNP (30). It
predicts the consequences of mutations on protein function
based on different parameters inferred from evolutionary,
physicochemical, or structural characteristics as previously
described (22). Stabilities of different missense mutations were
predicted through the Mutpred2, I-Mutant2.0, MUpro, mCSM,
and iStable tools. MutPred2 predicts the pathogenicity of amino
acid substitution and describes the molecular alterations likely
altering the phenotype. It assesses the structural, functional,
and phenotypic consequences of sequence variants. MutPred2
score > 0.5 indicated harmful mutation (31). I-Mutant2.0
is based on the support vector machine (SVM) that predicts
protein stability upon substituting specific amino acid.
I-Mutant2.0 predicts the direction of the free energy change
(11G) values (kcal/mol). 11G < 0 indicates the variant
decreased the protein stability while a 11G > 0 indicates
the variant elevated protein stability (32). MUpro is also
based on both the SVM and neural networks that predicts the
effects of single-site mutation on protein stability. Free energy
changes (11G) < 0 and 11G > 0 indicate the variant with
decreased and increased the protein stabilities, respectively
(33). mCSM is a mutation cutoff scanning matrix tool which
uses graph-based signatures to predict the impact of mutations
on protein stability (34). Further, iStable server was also used
to assess the stability of different mutants, and functionally
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important residues were predicted through an algorithm based
on sequence conservation (35, 36).

Preparation of mutant models and
molecular dynamics simulation
protocol

The tertiary model of FTO obtained from I-TASSER was
considered a wildtype (WT) and different mutant (MT) models
were constructed through the PyMOL graphical software (The
PyMOL Molecular Graphics System, Version 1.3 Schrodinger,
LLC). Both WT and MT models were initially energy minimized
by GROMACS (Groningen Machine for Chemical Simulation)
suite (37) and later the structure quality of all models was
examined through the PROCHECK, ProSA, ERRAT, and
QMEAN servers (38–41).

Molecular dynamics (MD) simulations were performed
using the GROMACS program (37). The Amber03 force field
was applied to generate the topologies of WT and all MTs
(42). All the protein systems (WT and MTs) were solvated in a
triclinic cubic box using the TIP3P (transferable intermolecular
potential 3P) water model, under the defined buffer system
of 0.12 nm distance between the edge of the protein to the
surface of the box. Each system maintained electroneutrality
with the addition of sodium (Na+) and chloride (Cl−) ions.
Once the systems were neutralized, the energy minimizations
were followed through the steepest descent (SD) method. Two
common ensembles, NVT and NPT were employed using
positional restraints for 100 and 500ps under a constant
temperature of 300K and pressure of 1bar, respectively. The
linear constraint solver (LINCS) algorithm was used to constrain
all the bonds. The temperature and isotropic pressure of the
system were maintained using modified Berendsen thermostat
(v-scale) and Parrinello-Rahman methods, respectively. Further,
the well-equilibrated complex molecules were subjected to a
production run of 100ns time for each complex system in
duplicate, by applying 2fs time steps. The analyses of trajectories
were done through various utilities of GROMACS such as gmx
energy, gmx rms, gmx rmsf, and gmx gyrate.

Essential dynamics

To obtain a precise view of the prominent motions
in a trajectory generated during MD simulation, we
employed essential dynamics (ED) also known as principal
component analysis (PCA). ED is a computational approach
to understanding the correlated motions of a given protein
that relate to its biological functions (43). The covariance
matrix was constructed after eliminating the rotational as
well as translational motions and diagonalized to generate a
set of eigenvectors with respective eigenvalues. ED analysis

was performed by gmx covar and gmx anaeig utilities of the
GROMACS suite which were used to calculate and analyze the
eigenvectors and their corresponding eigenvalues. Eigenvectors
also known as principal components (PCs) help us to gain
insight into the direction of concerted motions of an atom
while its corresponding eigenvalues represent the magnitude of
displacement. ED analyses were confined to backbone atoms
to avoid statistical noise and motions owing to biological
events were measured by assessing the cosine content of
respective PCs (44).

Protein network analysis

The functions of protein rely on its residues and interactions
among them or with their surrounding environment. Each
tertiary structure of protein exhibits its territory of network.
To elucidate how non-synonymous mutations influenced the
interatomic synergy, we studied residue interaction network
(RIN) using the RINalyzer tool (45). Initially, MD optimized
models were used as inputs to establish networks based on
their physicochemical properties and their centralities. Network
centrality was measured through weighted graph theory in
which nodes represent residues and weight stand for the number
of hydrogen bonds among the nodes. The obtained networks
were analyzed and visualized in Cytoscape3.4 (46). We evaluated
betweenness centrality (CB) for both WT and MTs which helped
us to identify the essential residues imparted during signaling.

Protein-ligand docking

Molecular docking is a key approach to studying the
interaction between protein and small molecules such as ligand
and the dynamics of that molecule within the binding pocket
of the protein. Here, we used ensemble docking with 5 docking
tools such as AutoDock Vina (47), QuickVina2 (48), SMINA
(49), LeDock (50), and GNINA (51) and ligand binding affinity
was measured in kilocalorie per mole. For all docking tools,
except LeDock, the receptor and ligands were prepared in
AutoDock tools as described previously (52, 53). Briefly, the
receptor (WT and all MTs) and ligand were prepared by
adding the polar hydrogen and Gasteiger charge, respectively.
Dimension and coordinates for the ligand binding site were
taken from the experimentally known binding site available at
the PDB (5ZMD) structure (21). To cover the binding pocket,
we created the grid box with the dimensions of 28 × 28 × 28
and centered at 80.533, 76.699, and 74.23 of x, y, and z
coordinates, respectively. Receptor for LeDock was prepared in
LePro module of LeDock tool and dimensions of grid box were
set with the same size as mentioned above. Average docking
scores and complexes with best binding poses for WT and
all MTs were further analyzed. 3D and 2D plots of protein
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and protein-ligand systems were rendered in PyMOL (The
PyMOL Molecular Graphics System, Version 1.3 Schrodinger,
LLC), Schrodinger Maestro 12.8 (Maestro, Schrodinger, LLC,
New York, NY, United States, 2021), and LigPlot + tools,
respectively (54).

Results

Characterization of missense
mutations of FTO gene

The variants or mutations of FTO gene investigated in this
study were retrieved from the dbSNP database. The database
exhibited approximately 94,000 SNPs out of which about 91,312,
2,133, 383, 169, 2, and 1 SNPs were intronic, non-coding
transcript variants, non-synonymous (missense), synonymous,
inframe deletion, and initiator codon variants, respectively
(Figure 1A). For further analysis, we have carried missense
mutations as these mutations led to changes in amino acid
residues that directly affect the structure and function of a
protein. Further, the percentages of transition and transversion
within the missense mutations of the FTO gene were inspected
and it was found that the G > A (20.6%) transition showed the
highest prevalence followed by A > G (17.41%), C > T (15.83%),
and T > C (8.17%) (Figure 1B) while transversion such as A > C
(6.59%) and C > G (6.59%) contributed the highest percentage
followed by C > A (5.8%), G > C (5.01%), T > A (4.22%), T > G
(3.69%), G > T (3.43%), and A > T (2.63%) (Figure 1B).

After removing the redundancy, about 245 missense
variants were further used for the PredictSNP server to
examine the deleterious nature of mutations (Figure 1C and
Supplementary Table 1). Out of 245 variants, 7 variants (R96M,
Y108A, F114D, E234P, R316Q, R322Q, and C392D) were finally
selected based on higher frequencies of deleterious predicted
by all 8 SNP tools (PredictSNP, MAPP, PhD-SNP, PolyPhen-
1, PolyPhen-2, SIFT, SNAP, and PANTHER) (Supplementary
Table 2). Additionally, the pathogenic strength and stability of
7 variants were further inspected through multiple independent
tools such as I-Mutant, MuPro, mCSM, and iStable. Mutpred2
showed out of 7 variants, 6 were scored higher than 0.5
suggesting the pathogenic nature of these mutants. The highest
score was observed in the F114D (0.926) variant followed by
Y108A (0.926) and R96M (0.921), respectively (Table 1). 11G
prediction by I-mutant showed that all the selected nsSNPs
or variants showed decreased stability (11G < 0) (Table 2).
However, the lowest stabilities were found in the F114D and
Y198A variants with 11G values−3.13 and−2.44, respectively.
MU-Pro analysis suggested that all the selected 7 variants were
found to decrease protein stabilities, where Y108A (11G:
−2.20) and F114D (11G: −1.78) showed the highest protein
disabilities. According to the MU-Pro and mCSM analyses, all
the selected variants were found to decrease stabilities except for

the E234P variant which has a stabilizing property as predicted
by mCSM. In mCSM, destabilizing was observed in all variants.
Among them, Y108A (11G: −2.696) and F114D (11G:
−2.694) variants showed a highly destabilizing nature (Table 2).
The iStable server showed that all 4 MTs, namely E234P,
R316Q, R322Q, and C392D exhibited decreased stabilities. The
3 variants (R316Q, R322Q, and C392D) unanimously showed
11G < 1 kcal/mol calculated by three tools (I-Mutant, MuPro,
and iStable), which would predict to disturb the structure and
function of the protein. Functional impacts of R96M, Y108A,
and F114D MTs were previously done through a structural-
based experiment while the functional impact of 4 MTs such
as E234P, R316Q, R322Q, and C392D remains to be explored
(21). Therefore, in this study, we have elucidated the structural
and functional impacts of 4 MTs namely E234P, R316Q, R322Q,
and C392D on the FTO protein. Further, sequence conservation
analysis showed that the Glutamate, Arginine, and Cysteine
residues positioned at 234, 316, 322, and 392, respectively,
exhibited≥ 0.8 scores and thus indicated that the above residues
are functionally conserved (Supplementary Table 3).

3D structure of FTO consists of two
distinct domains

FTO is ∼559 amino acid long protein (Uniprot: Q9C0B1)
and its crystal structure is available at PDB which was resolved
at ∼2.5Å resolution. However, the above reported structure has
missing residues at flanking ends of N- (∼31) and C-terminals
(∼62). Thus, we computationally modeled the full-length
tertiary structure of FTO using the I-TASSER server service.
The predicted tertiary model has −0.59 and 0.64 C- TM-scores,
respectively, which indicate that the model is reliable and has
a better global topology. Further reliability of the generated
model was verified by superposing the template and model
(Supplementary Figure 1). We omitted ∼31 and 38 residues
long extreme N- and C-terminals as these residues formed
highly disordered structures and also these regions do not
affect the conformation and catalytic activity of the protein.
The tertiary structure of FTO comprised 9 α-helices and 14 β-
sheets. Double-stranded distorted β sheets reside solely in NTD
along with 4 α helices (α1–α4) while CTD consists of 5 unique
helices (α5–α9). NTD controls core catalytic activity with the
involvement of CTD and encompasses β5–β14 (Figure 1D).
CTD is primarily made up of α-helices in which α7, α8,
and α10 formed a three-helix bundle. One end of the helix
interacts with NTD thus involved in the stabilization of NTD
conformation. Mutations in the CTD domain greatly affected
the conformation and catalytic activity of the protein (28).
Out of 4 selected mutations, 3 mutations (E234P, R316Q, and
R322Q) were located at NTD while 1 mutation (C392D) was
located at CTD (Figure 1E). The tertiary model obtained from
I-TASSER was assigned as wildtype (WT) and structures of all
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FIGURE 1

Mutational profile and tertiary structure of FTO protein. (A) Types of mutations, (B) total transition and transversion of non-synonymous
missense mutations, (C) number of deleterious and neutral non-synonymous SNP, (D) tertiary structure of full length FTO protein showed
different domains and (E) tertiary structure of protein showed various mutations. Protein structures were depicted in cartoon mode and
substrate binding site was highlighted in blue dotted circle. Helices and sheets were labeled in α and β symbols. Different MTs such as E234P,
R316Q, R322Q, and C392D were shown in red, blue, mustard and magenta color sticks, respectively. NTD, N-terminal domain; CTD, C-terminal
domain.

4 mutants (MTs) were prepared in the PyMOL tool using WT
as templates. All WT and MT models were further subjected
to quality assessment by evaluation of their 3D geometry and
stereochemical properties. The model quality evaluation results
suggested that WT and all MTs had a negligible number of
amino acids at the disallowed region of Ramachandran plots
and had high structure quality as indicated by > 85% of ERRAT
scores for WT and all MT models (Supplementary Table 4).

System and structure stability analyses

The sequence level prediction of protein stability was
examined through various tools as discussed above. The protein
stabilities at the structure level of WT and all MTs were
assessed through MD simulations which were performed in
duplicate for 100 ns each (Supplementary Figure 2). During
MD simulations various parameters such as RMSD, RMSF,
and Rg were measured concerning equilibrium structures.
RMSDs of WT and MTs were thoroughly stabilized within a
time scale of 100 ns (Figure 2A). WT and all MTs showed
steady behaviors of RMSDs after ∼60ns time. Hence, well-
equilibrated trajectories were utilized for further analysis in all
cases (Figure 2B). The average RMSD values of WT, E234P,

R316Q, R322Q and C392D were approximately 0.50, 0.44, 0.39,
0.54, and 0.56 nm, respectively (Table 3). E234P and R316Q
MTs showed higher RMSDs than WT with 13 and 22 nm of
percent differences, respectively, while R322Q and C392D MTs
showed lower RMSDs than WT with percent differences of
−8 and −12 nm, respectively. The Above data showed that
RMSDs of all MTs displayed stable behaviors with more or fewer
RMSD values as compared to WT indicating that E234P, R316Q,
R322Q, and C392D MTs largely affected the structure of the
FTO protein. The effect of different mutations on the protein
compactness and size was monitored by measuring the Rg at
the function of time. WT and all MTs showed a similar pattern
of Rg with average values being ∼2.64, 2.62, 2.62, 2.63, and
2.63 nm for WT, E234P, R316Q, R322Q, and C392D, respectively
(Supplementary Figure 3). All MTs displayed similar Rg values
with WT indicating that the compactness of the FTO protein
remains unaffected upon these mutations.

Root mean square fluctuations
analyses

Next, we wanted to check the stabilities and flexibilities of
WT and MT proteins at residues and secondary structure levels.
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TABLE 1 Functional annotation of FTO variants.

Variants MutPred2 score Molecular consequences Probability P-value

R96M 0.921 Altered Ordered interface 0.37 3.0e-03

Loss of Relative solvent accessibility 0.33 4.0e-03

Altered DNA binding 0.32 1.7e-03

Gain of Loop 0.29 7.0e-03

Loss of Allosteric site at R96 0.26 0.01

Altered Transmembrane protein 0.23 1.9e-03

Altered Metal binding 0.20 0.04

Y108A 0.926 Altered Ordered interface 0.35 2.3e-03

Altered Transmembrane protein 0.26 1.2e-03

Loss of Acetylation at K107 0.21 0.04

Loss of Allosteric site at Y106 0.20 0.04

Altered Stability 0.20 0.01

Altered DNA binding 0.16 0.16

Gain of Catalytic site at R112 0.10 0.04

F114D 0.943 Loss of Strand 0.27 0.03

Gain of Relative solvent accessibility 0.26 0.03

Altered Transmembrane protein 0.25 1.3e-03

Altered Ordered interface 0.24 0.04

Altered DNA binding 0.22 0.01

Gain of Allosteric site at R112 0.20 0.04

Altered Stability 0.13 0.03

E234P 0.598 Altered Metal binding 0.52 3.6e-03

Altered Ordered interface 0.24 0.05

Gain of Allosteric site at W230 0.20 0.04

R316Q 0.237 – – –

R322Q 0.504 – – –

C392D 0.727 Altered Ordered interface 0.25 0.02

Altered Disordered interface 0.19 0.04

Altered Transmembrane protein 0.13 0.02

TABLE 2 Stability analysis of FTO variants.

Variants I Mutant MuPro mCSM iSTABLE

11G Stability 11G Stability 11G Stability 11G Stability

E234P −0.08 Decrease −1.06 Decrease 0.00 Stabilizing −0.24 Decrease

R316Q −1.36 Decrease −0.80 Decrease −1.40 Destabilizing −0.47 Decrease

R322Q −1.32 Decrease −0.59 Decrease −1.36 Destabilizing −0.53 Decrease

C392D −0.78 Decrease −1.10 Decrease −1.53 Destabilizing −0.46 Decrease

To accomplish this, we measured root mean square fluctuation
(RMSF) and secondary structures (α-helix, β-sheet, bridge, turn,
coil, and bend) of WT and MT proteins for individual residue
and domain throughout the simulation period. The fluctuation
intensities varied among different regions of WT and all MTs
proteins (Figure 2C). The regions occupied around positions
I (160-190), II (250-260), III (345-355), and (IV) (420-430
residues) showed > 0.5nm of RMSFs in WT and all MTs.
WT showed maximum fluctuation in region I (∼1 nm) and

E234P showed maximum fluctuation at region IV (∼0.6 nm)
(Figure 2C). The R322Q MT showed maximum fluctuation
in region I (∼0.9nm). The R316Q, R322Q, and C392D MTs
showed fewer fluctuations in regions II and IV thus implying
that these MTs decreased the flexibilities of the given segments
of the FTO protein. Further to investigate the effect of different
mutations on the secondary structures of the FTO protein,
a dictionary of secondary structure of protein (DSSP) was
performed during MD simulation. It was found that the
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FIGURE 2

MD simulation profiles of WT and MT proteins. (A) Root mean square deviation (RMSD) profiles of WT and different MTs measured in
nanometers at function of time, (B) RMSD profiles of WT and different MTs from equilibrated trajectories of 70–90 ns time periods (20 ns total)
measured in nanometers at function of time, and (C) Root mean square fluctuations (RMSF) of different MTs along with WT measured in
nanometers. Highly fluctuated protein residues were shown in shaded areas and labeled in numbers. WT, E234P, R316Q, R322Q, and C392D
were labeled in black, red, blue, mustard, and magenta color, respectively.

coil contents in all MTs were increased as compared to WT
(Supplementary Table 5). The increased coil content led to
decreased protein flexibility which was also observed during the
RMSF analyses.

Structure–function relationship

Further, we wanted to study the structural and functional
properties of various MTs along with WT by calculating the
solvent-accessible surface area (SASA), protein–protein (intra),
and protein–water (inter) hydrogen bonding. Overall, SASA

TABLE 3 Mean RMSD and Rg of WT and MTs and the percentage
difference between them.

RMSD
(nm)

Percent
difference
(WT-MT)

Rg (nm) Percent
difference
(WT-MT)

WT 0.50 0 2.64 0

E234P 0.44 13 2.62 1

R316Q 0.39 22 2.62 1

R322Q 0.54 −8 2.63 0.5

C392D 0.56 −12 2.63 0.5

was further divided into hydrophobic and hydrophilic SASA
which showed steady behaviors throughout the simulation
period in WT as well as in all MTs (Supplementary
Figure 4). The total mean values of SASA for WT, E234P,
R316Q, R322Q, and C392D were approximately 258.7, 250.6,
254.4, 253.4, and 252.7 nm2, respectively (Figure 3A) All
MTs displayed lesser values of SASA as compared to
WT. This suggested that all MTs have a low surface
area of exposure for the interaction with other molecules.
WT, E234P, R316Q, R322Q, and C392D exhibited average
hydrophilic SASA values of about 126.4, 124.6, 125.7, 126.6,
and 124.6 nm2, while hydrophobic SASA of all MTs remained
similar to WT. Furthermore, SASA per residues basis was
calculated, and it was found that GLN86, LYS121, PHE176,
TYR220, GLU281, and ARG459 exhibited higher SASA values
than the rest of the amino acid residues in WT and all
MTs (Figure 3B).

Wild Type and MTs showed consistent behaviors of intra-
and inter-H-bonds formation (Supplementary Figure 5). The
average intra-H-bonds of WT, E234P, and C392D displayed
a similar number of H-bonds (360) while R316Q (354) and
R322Q (348) MTs showed a lesser number of intra-H-bonds
as compared to WT (Figure 3C). Lesser number of inter-H-
bonds were found in E234P (1090) MTs as compared to WT
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FIGURE 3

Structural properties analyses of WT and MT proteins. (A) Total, hydrophobic and hydrophilic solvent accessible surface area plot, (B) solvent
accessible surface area of protein residues, (C) total number of intra or protein-protein hydrogen bond and (D) total number of inter or
protein-water hydrogen bond. WT, E234P, R316Q, R322Q, and C392D were labeled in black, red, blue, mustard, and magenta color, respectively.

(1092), while R316Q (1101) and R322Q (1100) MTs exhibited
higher mean values of inter-H-bonds (Figure 3D). The above
results showed that R316Q and R322Q MTs exhibited lesser
intra-H-bonds indicating the above MTs are more flexible and
less stable. Moreover, these MTs exhibited higher inter-H-bonds
indicating that the above MTs had higher interacting capacities
as compared to WT.

Mutations in NTD affected the
conformation of CTD

The function of protein depends upon its motion which
is elucidated by conformational sampling in phase space
from MD simulated trajectories. To study the appropriate
motions of the protein resulting from atomic trajectories,
we performed essential dynamics and reduce the dimension
of data using principal component analysis (PCA). R322Q
MT exhibited relatively higher trace values of covariance
matrix while E234P, R316Q, and C392 MTs consisted of
lower matrix values as compared to WT suggesting that the
R322Q MT accompanied higher motions as compared to WT

(Supplementary Table 6). During PCA, we examined the
first 30 eigenvectors with corresponding eigenvalues which
showed cumulative percentage of more than 85% in WT
and all MTs (Figure 4A and Supplementary Table 6). In
conjunction with the first 30 eigenvectors, we observed that
the first 3 eigenvectors or PCs shared more than 50% of
the cumulative percentage, which plays a significant role in
the motions of protein (Supplementary Table 6). Moreover,
to further confirm the movement of protein is not due to
random diffusion, we investigated cosine value, in which a lower
value (<0.2) was observed in the first 2 PCs (Supplementary
Table 7). Further, to understand the protein conformation, we
projected eigenvector 1 versus eigenvector 2 and eigenvector
2 versus eigenvector 3 in phase spaces (Figures 4B,C). In
all 3 projections (PC1, PC2, and PC3), E234P occupied a
smaller subspace in comparison to WT suggesting that it
restricted the motions of the FTO protein (Figures 4B,C).
Furthermore, to understand the motions at domain or 3D
structural levels, we utilized 30 frames of the first eigenvector
by sequentially superimposing the corresponding frames
(Figure 5). We found that the motions were found at both
N- and C-terminal domains. MTs such as E234P and R316Q
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FIGURE 4

Essential dynamics profile of WT and MT proteins. (A) Plot of first 30 eigenvectors with corresponding eigenvalues. (B) Projection of
eigenvector1 versus eigenvector2 and (C) projection of eigenvector2 versus eigenvector3. WT, E234P, R316Q, R322Q, and C392D were labeled
in black, red, blue, mustard, and magenta color, respectively.

(Figures 5B,C) have fewer motions in both domains, while
R322Q and C392D MTs (Figures 5D,E) showed more motions
as compared to WT (Figure 5A). Interestingly, mutations in
the N-terminal domain (NTD) affected the motions of both
NTD and the C-terminal domain (CTD). Motions were limited
to loop and turn regions of N- and C-terminal domains
(Figures 5a–e). The results of PCA are quite interesting as
it could differentiate the properties of different MTs instead
of having similar patterns of RMSD (Figures 6A,B and
Supplementary Table 8), RMSF (Figures 6C,D), and Rg
(Figures 6E,F) of NTD and CTD.

Betweenness centrality and residues
interaction network analyses

Betweenness centrality (CB) analysis was performed to
understand the key residues involved in the function of the
protein. During this analysis, the residues in the protein

were represented as nodes while the connections among these
residues were denoted as edges. Here, we calculated 3 main
centralities: betweenness centrality (CB), closeness (CC), and
degree (CD) for WT and all MTs out of which CB has the
significance of calculating the importance of each residue in the
signaling of proteins upon different mutations. We mapped the
residues having CB ≥ 0.05 in WT and all MTs and found a
similar number of residues involved in signaling (Figure 7A).
Similarly, we have calculated the difference between the CB

values of WT and MTs and the residues satisfying CB ≥ 0.02
(Figure 7B and Supplementary Table 9). These residues
were mainly confined to the catalytic core and NTD and
CTD of the FTO protein (Supplementary Figure 6). In this
analysis, 28 and 40 residues play a significant role in the
signaling of E234P and C392D MTs, respectively (Figure 7B
and Supplementary Table 9), while no residues satisfying
the conditions ≥ 0.02 existed in R316Q and R322Q MTs.
This suggested that substitution of Arginine at 316 and 322
with Glutamine largely influenced the residue signaling of
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FIGURE 5

Essential motions analyses of WT and MT proteins. (A) WT, (B) E234P, (C) R316Q, (D) R322Q, and (E) C392D. Motions in both NTD and CTD were
highlighted in black dotted circles. Red to blue regions indicated minimum to maximum motions, respectively. Panels (a–e) showed
corresponding porcupine structures. Length and direction of cones in the porcupine structures represented magnitude and direction of the
motions. NTD, N-terminal domain; CTD, C-terminal domain.

the FTO protein. Moreover, all individual MTs affected the
dynamics and stabilities of different MTs (Supplementary
Figure 7)

Furthermore, the residues-residues interactions network
of WT and all MTs were plotted to investigate different
types of bonding. To accomplish this task, a Cytoscape
plugin with RINalyzer was employed in which nodes were
represented as residue and different types of bonding such as
van der Waals (VDW), hydrogen bonds (H-bond), pi-pi, and
ionic interactions were represented as edges (Supplementary
Figure 8). Further, a 2D interaction map of mutated residues
was analyzed to examine the different types of interactions with
surrounding residues and compared with native (Figure 7C).
The van der Waals and hydrogen bonds were mainly affected
in the E234P MT. The VDW interactions were reduced
in all MTs except R316Q while R316Q displayed a similar
number of VDW interactions with respect to WT (Figure 7C
and Supplementary Figure 8). However, the H-bonds were
decreased in R316Q and R322Q MTs as compared to WT
while the H-bonds in C392D MT remained unaffected.
The Pi-pi stack bonding was also reduced in R322Q MT.
The residues network analysis results indicated that all

non-covalent interactions were affected and impaired in almost
all MTs.

Mutations affected substrate binding

FTO and its substrate binding were monitored by
calculating the protein-ligand binding affinity using the docking
approach which was measured in kcal/mol. N6-Methyl-deoxy-
adenosine-5′-monophosphate (6mA) is one of the major
substrates of FTO and we used this as a ligand for measuring
the binding affinity upon different mutations. A combination of
5 docking tools was employed for WT- and MT-6mA complexes
and it was found that all docking tools showed a similar pattern
of docking scores even when all docking tools have different
scoring functions (Figure 8A). The average docking scores of
WT, E234P, R316Q, R322Q, and C392D were −6.2, −5.02,
−5.1, −5.6, and −5.5 kcal/mol, respectively (Supplementary
Table 10). The docking results indicated that all MTs exhibited
high docking scores compared to WT suggesting that all
MTs showed low binding affinities to the substrate than
WT. Further to understand the residues participating in
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FIGURE 6

MD simulation profiles of N- and C-terminal domains of WT and MT proteins. (A,B) RMSD profiles of N- and C-terminal domains, (C,D) RMSF
profiles of N- and C-terminal domains, and (E,F) radius of gyration plots of N- and C-terminal domains. WT, E234P, R316Q, R322Q, and C392D
were labeled in black, red, blue, mustard, and magenta color, respectively.

both hydrophobic and hydrophilic interactions during ligand
binding, we analyzed the 3D and 2D plots of high-scored
protein-ligand complexes (Figure 8B). The results suggested
that 18 bonds (hydrophobic:15; hydrophilic:3) existed between
the WT- and C392D-6mA complexes (Figure 8B). R322Q-
6mA formed the maximum number of bonds (hydrophobic:
17; hydrophilic: 3) (Figure 8B) while E234P-6mA formed the
minimum number of bonds (hydrophobic: 9; hydrophilic: 0)
(Figure 8B). Further, different MTs led to a change in the
electrostatic and hydrophobic nature of the core and binding
regions of the protein compared with the WT-substrate complex
(Supplementary Figure 9). The protein-ligand interaction
studies indicated that binding affinities of almost all MT-ligand
complexes were decreased which suggested that binding of the
FTO substrate was largely affected by the given point mutations.

Stabilities and rescoring of binding energies of docking
complexes (WT and MTs) were assessed through 100ns

MD simulation (Figure 9). Binding energies of all docking
complexes were calculated by g_mmpbsa script using the
last 20ns-stabled MD simulated trajectories (55). Initially, the
stabilities of WT- and MT-6mA complexes were assessed by
monitoring the protein and drug RMSD behaviors followed
by inspecting the Rg and RMSF of the protein in complexed
form. RMSD of WT, R316Q, R322Q, and C392D showed
steady behavior and stabilized after 40ns time while RMSD of
E234P was stabilized after 70 ns simulation time (Figure 9A).
RMSD of all WT and MT proteins in the complexed form
displayed consistent and equilibrated behaviors. The stability
of 6mA substrate in protein complexes was examined by
measuring the ligand RMSD which showed steady behaviors
after 45 ns simulation time in all cases (Figure 9B). Further,
the compactness of protein in complexed form was monitored
through the inspection of Rg behaviors and demonstrated
that Rg of WT and all MT proteins displayed consistent and
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FIGURE 7

Betweenness centrality (CB) and residues interactions analyses of WT and MT proteins. (A) Individual betweenness centralities of MTs along with
WT, (B) difference in betweenness centralities of WT and MTs and (C) 2D interaction maps of native and mutant residues. E234P (1 and 2),
R316Q (3 and 4), R322Q (5 and 6) and C392D (7 and 8). Straight dotted line in panel (B) indicated cut-off CB value which should be less than
0.02. Native and mutant residues were labeled in black and red, color, respectively, while different charge residues and bonding were depicted
in different color as shown above in the figure.

steady behaviors (Figure 9C). RMSF of protein in complexed
form showed similar patterns as observed in the apo form
(Supplementary Figure 10). The stability analyses of WT- and
MT-6mA complexes suggested that all complexes were well
stabilized throughout the simulation period. Binding energies
of WT- and MT-6mA complexes were studied by calculating all
energy components such as van der Waals (VDW), electrostatic,
polar solvation, and solvent accessible surface area (SASA)
energies. Binding energies of WT-, E234P-, R316Q-, R322Q-,
and C392D-6mA were −180.911 ± 2.1, −121.83 ± 11,
−32.92 ± 18.2, −83.78 ± 2.114.7, and −23.92 ± 18.5 kcal/mol,
respectively (Figure 9D). The lowest binding free energy of
the WT-6mA complex as compared to all MT-6mA complexes
demonstrated that all MT-6mA complexes have low binding

affinities than WT which also agreed with the docking results
and VDW energy was the major contributor.

Discussion

The current genomic era has enabled the researcher
to elucidate the precise structure and functions of disease-
associated mutations both at the gene and protein levels
(56). Various diseases such as multiple cancer, obesity, and
cardiovascular disease are arising due to point mutations (57–
59). The FTO gene which is highly dysregulated and known to be
involved in various types of cancer and obesity has been recently
identified (60). The FTO protein plays a role in adipogenesis
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FIGURE 8

Protein-ligand docking and interactions analyses of WT and MTs. (A) Docking scores from AutoDock Vina, QVina2, SMINA, LeDock and GNINA
docking tools. (B) 3D and 2D interaction maps of (1) and (2) WT-6mA, (3) and (4) E234P-6mA, (5) and (6) R316Q-6mA, (7) and (8) R322Q-6mA
and (9) and (10) C392D-6mA. WT, E234P, R316Q, R322Q and C392D were labeled in black, red, blue, mustard, and magenta color, respectively.
In 3D interaction map, protein and ligand were shown in surface and ball and stick mode, respectively. In 2D interaction maps ligand shown in
blue color and hydrophilic and hydrophobic interacting residues were labeled in red and black color.

and cancer through the 6mA-dependent demethylase activity
which affects various mRNA processing steps. It is involved in
obesity development by influencing the 6mA level of eating-
related hormones or certain adipogenesis-related chemicals.
The overexpression of the FTO gene increased the energy
intake by affecting the methylation of ghrelin mRNA (61).
FTO controls the splicing of the exon of the adipogenic
regulatory factor RUNXITI (RUNX1 translocation partner 1)
and is known to be involved in adipogenesis through 6mA-
YTHDF2 (YTH N6-Methyladenosine RNA Binding Protein 2)-
dependent pathway via regulating cell cycle proteins (62, 63).
Besides obesity, FTO has an important role in tumorigenesis
and pathogenicity of different types of cancer. It promotes
leukemic cell transformation and leukemogenesis through
inhibiting ATRA (all-trans-retinoic acid)-induced AML (acute
myeloid leukemia) cell differentiation and induced malignant
characteristics in breast cancer cells by targeting BNIP3 (BCL2
Interacting Protein 3) (64, 65). Knockdown of FTO increases
the level of 6mA which promotes cell proliferation and invasion
by activating PI3K (Phosphatidylinositol-3-kinase) signaling
in gastric cancer and increases lung squamous cell growth
and invasiveness by inhibiting the cell apoptotic genes (66,
67). FTO promotes chemotherapy resistance by increasing

the mRNA expression of β-catenin in cervical squamous cell
carcinoma (68).

Various mutations that occur both at the exon and intron
of FTO have been previously explored. Independent GWAS
studies reported two different SNPs (rs9939609, rs9930506) in
the first intron of the FTO gene significantly associated with
BMI (69, 70). A further study conducted on the European
population has identified another SNP (rs1558902) located in
the same chromosome (60). Three GWAS studies in the East
Asian populations, such as Korean, Chinese, and Japanese,
have identified various mutations in the FTO gene (rs9939609,
rs17817449, and rs12149832) as the most significant marker
of BMI (69, 70). In addition to this, six SNPs of the FTO
gene (rs6499640, rs1421085, rs8050136, rs3751812, rs9939609,
and rs9930506) were mostly associated with obesity (71, 72).
Besides the polymorphism of FTO found in obesity, it also
contributed to many other diseases among various populations.
A case-control study in the Chinese Han population found that
different variants of FTO gene like the C variant of rs1421085,
T variant of rs3751812, A variant of rs8050136, and rs9939609,
were associated with metabolic dysfunction-association fatty
liver disease (69). Enormous studies on the gene level have
been accomplished to cover the intronic and exonic profiles
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FIGURE 9

MD simulation profiles of WT and MT-6mA complexes. (A) RMSD profiles of WT and different MT proteins, (B) RMSD profiles of 6mA substrate in
complexed with WT and different MTs, (C) radius of gyration plots of WT- and MT-6mA complexes, and (D) interaction energy plot of WT- and
MT-6mA. WT, E234P, R316Q, R322Q, and C392D were labeled in black, red, blue, mustard, and magenta color, respectively. Different interaction
energies were measured in kilocalorie per mole.

of FTO, but none of the studies has explored the functional
or protein product of gene alterations. Additionally, a large
genomic study covering an entire pool of exonic variations has
never been performed and the mutations reflecting the structure
and functions of protein remain to be explored.

In this study, we have attempted to investigate the functional
consequences of all non-synonymous mutations of the FTO
gene occurring in the public database. Transition (Ti) and
transversion (Tv) analyses from all non-synonymous missense
mutations showed that the G > A and A > C were
highly prevalent Ti and Tv, respectively. After that sequence
and structure levels prediction of pathogenic mutations were
analyzed through a pile of tools and it was observed that most
of the mutations were pathogenic and deleterious. Around 245
missense mutations were analyzed out of which 7 mutations
(R96M, Y108A, F114D, E234P, R316Q, R322Q, and C392D)
were shown to be highly pathogenic. Previous experimental
studies have suggested that these mutations led to various
disease disorders. Structural, conformational, and functional
consequences of the above mutations were further inspected
through 3D structural modeling and molecular dynamics
simulation approaches. The tertiary structure of FTO protein
was constructed through the I-TASSER server. The I-TASSER
has been proved to be the best protein structure prediction tool
by CASP (Critical assessment of structure prediction) analysis

(73). Recently, a neural network-based tool such as AlphaFold
has been introduced for modeling the tertiary structures of
protein (74). Structures from both servers (I-TASSER and
AlphaFold) were compared with the PDB structure and found
low RMSDs suggesting that the modeled structures were very
similar to the experimental ones. The tertiary structure of
the FTO protein is mainly comprised of two large N- and
C-terminal domains with both consisting mixtures of helices
and sheets. NTD exhibited the catalytic activity of the protein
and CTD assisted in conformational movement during substrate
binding. Thus, both domains have functional importance. The
predicted model was having a better 3D geometry and good
global topology. The structural and functional analyses of WT
and MTs were further examined by calculating the RMSD, Rg,
and RMSF using the MD simulation technique. MD simulation
is commonly applied for refining the computational model,
to assess the stability of WT and MT proteins, to study the
conformational changes of the protein that are essential for
function, and to calculate the binding energy of ligand (22, 75).
RMSD of all WT and MTs were measured at the function of time
in 100ns and found that the RMSDs were well stabilized. Further,
Rg of WT and MTs were measured to study the effect of different
MTs on the compactness and globularity of the FTO protein and
it was observed that the various mutations had not affected the
protein compactness. Structural fluctuation and stability at the
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global and local levels were inspected by measuring the RMSF
and secondary structures of WT and MTs that formed. The
results suggested that fluctuations were mainly restricted to loop
or turn regions of the protein and coil content of all MTs was
increased, thus, impairing the overall flexibility of the protein.

The structure and functional impacts of various MTs on
the protein were elucidated by examining the SASA, intra- and
inter-H-bonds. SASA helps to determine the conformation of
protein through its accessibility in the surrounding environment
which mediates its interaction with the solvent molecule. The
SASA results suggested that the lower surface area available
for interactions was accompanied by almost all the MTs as
compared to WT. Hydrogen bond plays a crucial role in protein
stability, protein folding, and molecular interactions (76). Intra-
H-bonds (protein–protein) provide overall stability and shape
of the protein, while inter-H bonds (protein–solvent) confer the
capacity of formation of intermolecular interactions of proteins.
The H-bond results suggested that MT exhibited lower intra-
H-bond as compared to WT, thus, indicating that MTs had
deceased stabilities. Stable conformation of proteins is crucial
for their function and such conformations are better studied
by essential dynamics technique. The conformational effect of
different mutations on the FTO protein was analyzed by gmx
covar and anaeig modules of GROMACS. During this analysis,
we observed that major motions were accompanied by the
first 30 eigenvectors in all WT and MTs and restricted mainly
to the N- and C-terminal domains. The E234P and R316Q
MTs showed rigid motions in both domains as compared to
WT, while C392D MT showed higher motions. Mutations at
NTD largely affected the motions of CTD which imply that
both domains are essential for the stable conformation of the
protein. Further, to gain insight into the protein architecture
like residue-residue interactions, a residues network analysis
was conducted. In this analysis, betweenness centrality (CB),
which is a parameter to identify crucial residues involved in
the protein structure and functions, was measured for WT
and all MT proteins. The results suggested that substitution of
ARG316 and ARG322 to GLN316 and GLN322 largely affected
the residues network of the FTO protein. In addition to that,
residue-residue bindings were also analyzed and it was found
that H-bonding and all non-covalent interactions were largely
affected and impaired in MTs as compared to WT.

Considering the contributing role of 6mA modification
on gene expression, it has been enormously involved in
various human diseases like psychiatric, metabolic syndrome,
cardiovascular diseases, and various forms of cancer (77). It has
been recognized as one of the post-transcriptional regulatory
markers in different types of RNAs and plays an important
role in RNA splicing, translation, stability, translocation, and
high-level structure (78). The FTO protein interacts with 6mA
through its catalytic core site which mainly occurs in the NTD
(20). Next, we analyzed whether different missense mutations
affected the binding of FTO and 6mA, therefore, we performed
molecular docking of 6mA with both WT and MT proteins.

The docking results from 5 docking tools suggested that MTs
showed high docking scores as compared to WT, demonstrating
the weaker binding affinities with 6mA, thus indicating the
given mutations largely affected the FTO-6mA binding. Further,
rescoring of binding energies of docking complexes through
MD simulation demonstrated that MT-6mA complexes had
low binding affinities than the WT-6mA complex which again
indicated that the above mutations largely affected the FTO’s
substrate binding.

The FTO protein consists of 2 domains located at the N-and
C-terminals, and hence, known as N and C terminal domains
(NTD and CTD) (21). The currently studied mutations were
mainly located at NTD (E234P, R316Q, and R322Q) while one
mutation such as C392D was located at CTD. Residues at NTD
like E234, R316Q, and R322Q formed the part of the catalytic
core in which substrates like 6mA binds with protein (28).
Mutations in any residues of catalytic core distort the substrate-
binding cavity which ultimately abolishes the function of the
protein. In E234P MT, Glutamate (E), an acidic amino acid with
a negatively charged side chain is replaced by Proline (P), which
abolishes the side-chain H-bonding formed by the carboxylic
group, thus forming an unstable structure that distorts the
binding pocket. In R316Q and R322Q MTs, Arginine (R) is
located in the double-strand β-helix of NTD, replaced with
Glutamine (Q) having an amide group on their side chain.
Arginine is a basic amino acid having a positive charge due
to the presence of α-amino and imidazole groups on its side
chain which mediates the interaction with the surrounding
residues through multiple H-bonding and enhances the catalytic
activity of the protein. Substitution of R with Q at position 316
reduces the H-bonding, while at position 322, all interactions
such as H-bonding, van der Waals as well as ionic interactions
are affected leading to distortion and instability of catalytic
core, and hence, affecting the substrate binding which is
evident from MD simulation and docking results. Mutations
of R316Q and R322Q were reported to be associated with a
malformation syndrome inherited in an autosomal recessive
pattern (79). Finally, the C392D mutation located at the CTD
interacts with NTD. Cysteine (C) forms disulfide bridges which
stabilize the overall tertiary structure of the protein by inducing
conformation changes both in the N- and C-terminal domains
(28). Substitution of C at position 392 with Aspartate (D)
abolishes the van der Waals interactions that were formed with
Phenylalanine (F) 79 in NTD, and hence, destabilizes the overall
structure. Moreover, this also disrupts the interaction between
the N-and C-terminal domains which ultimately reduces the
demethylase activity of the protein.

Conclusion

The comprehensive mutational study of the FTO gene has
shown that the missense mutations are highly pathogenic and
largely affect the structure and conformation of the protein
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which ultimately affects the function of FTO. Furthermore,
mutations also lead to amending the FTO substrate binding. To
our knowledge, this is a prime study where the entire pool of
FTO variants was conducted which will assist in understanding
the mechanism of the associated diseases and disorders and
would set a path for precise therapeutics.
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