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Filamentous microalga Klebsormidium sp. has huge potential to become a natural

and healthy additive in aquatic feed since it contains various bioactive nutrients,

such as linoleic acid (LA), carotenoids, and chlorophylls. Therefore, an eight-week

feeding experiment was performed to evaluate the effects of dietary Klebsormidium

sp. on the growth performance, antioxidant and anti-inflammatory status, metabolism,

and mid-intestine morphology of Litopenaeus vannamei. Two isonitrogenous and

isolipid diets supplemented with and without 5% Klebsormidium sp. were prepared.

Results showed that L. vannamei fed with Klebsormidium sp. had better growth

performance and feed utilization by optimizing mid-intestine morphology and improving

the carbohydrate metabolism. In addition, Klebsormidium sp. also enhanced the

antioxidant capacity of L. vannamei by downregulating antioxidant parameters

(hepatopancreas T-SOD, hepatopancreas GSH-PX, hemolymph T-SOD, hemolymph

MDA) and RNA expression levels of antioxidant genes (gsh-px and cat). Furthermore, the

supplementations of dietary Klebsormidium sp. significantly improved hepatopancreas

health by downregulating RNA expression levels of pro-inflammatory related genes (relish

and rho). Therefore, a dose of 5% Klebsormidium sp. is recommended for the daily diet

of L. vannamei to improve the growth performance, antioxidant and anti-inflammatory

status, metabolism, and mid-intestine morphology of shrimp.

Keywords: Klebsormidium sp., Litopenaeus vannamei, growth performance, antioxidant, hepatopancreas health

INTRODUCTION

High-density farming and environmental pollution are two main reasons that limit the
development of the shrimp industry since they lead to the growth of pathogenic microorganisms
in water, making shrimp vulnerable to bacterial diseases (1, 2). To address this issue, antibiotics
are widely used in aquaculture to prevent and treat bacterial diseases (3). However, the problem
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of long-term antibiotic exposure in aquatic animals is the
antibiotic residue in aquatic products. This causes adverse effects
on humans when seafood with numerous antibiotic residues is
consumed. For example, it reduces the effectiveness of antibiotics
in human if they face infections (4), and changes the diversity
of gut microbiota (5). In this situation, there is a need to
identify healthy and economic additives for substituting the use
of antibiotics in the aquaculture field.

Crustaceans are generally considered to have a low ability
to biosynthesize de novo polyunsaturated fatty acids (PUFAs).
They lack 112 and 115 desaturase enzymes, which makes it
hard for them to convert the oleic acid (OA) into linoleic acid
(LA) and linolenic acid (LNA) (6). Therefore, shrimps require
essential fatty acids (EFAs) in their daily diet. Besides, the supply
of PUFAs at optimal levels and ratios in their diet is also beneficial
for their growth performance (7), anti-inflammatory status (8,
9), and resistance to diseases (10–13). Therefore, substances
rich in PUFAs might be an excellent choice as aquaculture
feeding additives.

Klebsormidium sp., a filamentous microalga that is rich in
LA with a rapid growth rate (14), can exist in typical extreme
environments such as drought (15, 16) and deep freeze climate
(17, 18). Except for n-6 PUFAs, Klebsormidium sp. is also
a rich source of various bioactive pigments (carotenoids and
chlorophylls) (19, 20). Therefore, this microalga fits the criterion
of healthy and natural additive in aquatic feed. However, until
recently, knowledge about the effect of dietary Klebsormidium sp.
on aquatic animals is unclear.

Litopenaeus vannamei, belonging to the genus Penaeus, is
mainly found in the tropical waters along the Pacific coast of
the United States (21). For nearly two decades, L. vannamei has
gained more attention and is widely cultured in China, India, and
some Southeast Asian countries due to its delicious meat and
high nutritional value (22). However, with the development of
green aquaculture, the use of antibiotics is strictly limited during
farming worldwide. Therefore, it is necessary to identify a healthy
and cost-effective aquatic additive for substituting antibiotics,
which are used for improving the health of shrimp. In the
present study, an eight-week feeding experiment was performed
to investigate the growth performance, antioxidant and anti-
inflammatory status, metabolism, and mid-intestine morphology
of L. vannamei fed with and without dietary Klebsormidium sp.
The study results might provide a reference for formulating the
diet of L. vannamei.

MATERIALS AND METHODS

Microalgae Culture and Experiment Feeds
Preparation
Strains of Klebsormidium sp. were obtained from the Culture
Collection of Algae at the University of Göttingen (SAG) and
scaled up in our laboratory in the following manner: Briefly,
a 160-L vertical flat-plate glass photobioreactor and a BG-
11 medium (23) with initial 9 mmol L−1 nitrogen (nitrogen
source: sodium nitrate) and 1% bubbled CO2 (v/v) were used to
culture Klebsormidium sp. Continuous illumination (24 h) with

300 µmol photons m−2 s−1 was provided for cultivating the
Klebsormidium sp. for 15 days.

Klebsormidium sp. contained 17.97% crude protein, 31.95%
crude lipid (including 9.23% LA), and 29.31% carbohydrate (dry
matter) (Table 1).

As shown in Table 2, two artificial diets (containing
approximately 40% crude protein and 7% crude lipid) with 0%
(D1) and 5% (D2)Klebsormidium sp., respectively, were prepared
using the method detailed in our earlier study (24). Briefly, dry
ingredients were weighed andmixed thoroughly in aHobart-type
mixer (A-200T, Canada). Then, pre-weighed fish oil, soybean
lecithin, soybean oil, and distilled water (35%, v/w) were added
to the mixture until a homogenous mixture was obtained. Then,
the wet dough was passed through a mono screw extruder (South
China University of Technology, China) with a 1.2mm diameter
die. Diets were then dried and stored at−20◦C until use.

Experimental Shrimp and Experimental
Environment Management
Experimental L. vannamei were obtained from the Chinese
Academy of Fishery Science (Lingshui, China). Shrimp were
fed the D1 group diet to acclimatize them to the experimental
environment for 1 month before the feeding trial. Then, after a
24-h starvation treatment, 320 shrimp (initial body weight 0.64
± 0.02 g) were distributed randomly into the recirculating water
system with eight cylindrical fiber tanks (300 L). Each diet was
randomly assigned to quadruplicate tanks. The feeding frequency
was three times per day at 06:00, 12:00, and 18:00 with 8%
of total shrimp weight for 56 days. During the experimental
period, environmental conditions were maintained as follows:
water temperature: 26.8–28.1◦C; pH: 7.5–7.7; salinity: 29–32‰;
dissolved oxygen: > 7.0 mg/L; total ammonia nitrogen: < 0.1
mg/L; and sulfide: < 0.05 mg/L.

Sample Collection
At the end of the feeding trial and after a 24-h starvation
treatment, all experimental L. vannamei from each tank were
weighed and counted. Then, eight shrimp, collected randomly
from each tank, were anesthetized (MS-222, Sigma, USA) for
obtaining the blood sample. Their hepatopancreas was separated

TABLE 1 | Main fatty acid profiles (%, dry matter) and proximal compositions (%,

dry matter) of Klebsormidium sp.

Items Klebsormidium sp.

Fatty acid profiles (%, dry matter)

C16:0 6.94%

C18:0 1.10%

C18:2 9.23%

C18:3 0.74%

others 1.75%

Proximal composition (%, dry matter)

Protein 17.97%

Lipid 31.95%

Carbohydrate 29.31%
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TABLE 2 | Ingredients and proximate compositions of two experimental diets (%,

dry matter).

Ingredients D1 D2

Fish meal 25 25

Soybean meal 27 27

Peanut meal 12 12

Wheat flour 23.4 18.4

Beer yeast 3 3

Shrimp bran powder 3 3

Fish oil 1 1

Soybean lecithin 1 1

Soybean oil 1 1

Choline chloride (50%) 0.5 0.5

Vitamin C phosphate 0.1 0.1

Vitamin and mineral premixa 2 2

Monocalcium phosphate 1 1

Klebsormidium sp. 0 5

Sum 100 100

Nutrient levelsb (%, dry matter)

Moisture 7.45 7.62

Crude lipid 7.12 7.25

Crude protein 40.52 40.37

aCompositions of vitamin and mineral mixture (kg−1 of mixture): vitamin A, 250,000

IU; riboflavin, 750mg; pyridoxine HCl, 500mg; cyanocobalamin, 1mg; thiamin, 500mg;

menadione, 250mg; folic acid, 125mg; biotin, 10mg; a-tocopherol, 3,750mg; myo-

inositol, 2,500mg; calcium pantothenate, 1,250mg; nicotinic acid, 2,000mg; vitamin D3,

45,000 IU; vitamin C, 7,000mg, Zn, 4,000mg; K, 22.500mg; I, 200mg; NaCl, 2.6 g; Cu,

500mg; Co, 50mg; FeSO4, 200mg; Mg, 3,000mg; Se, 10 mg.
bMeasured values.

for studying antioxidant parameters and mRNA expression
analysis. At the same time, a similar section of the L. vannamei
mid-intestine was obtained and fixed in 4% paraformaldehyde for
intestinal histological examination. Blood samples were stored
at 4◦C for 12 h and then centrifuged (7,100 g, 10min, 4◦C) to
obtain hemolymph. All hepatopancreas and hemolymph samples
were separated rapidly and then maintained in liquid nitrogen
until examination.

Diets and Klebsormidium sp. Composition
Analysis
Moisture, crude lipid, and crude protein of diets and
Klebsormidium sp. were determined using the standard
method of AOAC (25). Briefly, crude protein content (N× 6.25)
was determined by the Kjeldahl method (1030- Autoanalyzer;
Tecator, Höganäs, Sweden); crude lipid content inspection
was performed according to the Soxhlet extractor method
(Soxtec System HT6, Tecator, Sweden); moisture content was
examined by drying in the ventilated oven at 105◦C for 24 h. The
carbohydrate content of Klebsormidium sp. was analyzed using
the modified phenol-sulfuric acid method (5). Analysis of the
fatty acid profiles of Klebsormidium sp. was done using Agilent
Gas Chromatograph (Agilent 6890N GC, Agilent Technologies,
USA) following Zhang et al. (26).

Hepatopancreas and Hemolymph
Antioxidant Parameters Quantification
We followed the method detailed in our previous study
for homogenizing hepatopancreas (27). Briefly, hepatopancreas
was homogenized (1:9) in phosphate buffer and then the
homogenate was centrifuged (10min, 4◦C, 1,200 g). Afterward,
the supernatant was collected for further analysis.

Activities of total superoxide dismutase (T-SOD)
(A001-1), total antioxidant capacity (T-AOC) (A015–2),
glutathione peroxidase (GSH-PX) (A005-1), and the content of
malondialdehyde (MDA) (A003-1) were measured following kits’
instructions (Nanjing Jiancheng Bioengineering Institute, China)
(Kits’ instructions can be seen in additional appended files).

Determination of Mid-Intestine Histological
The section of the mid-intestine was stained according to the
study of Zhao et al. (28). Specifically, the mid-intestine section
was stained using H&E, and the histological was observed under
the microscope (Olympus CKX41 microscope, Japan).

MRNA Isolation and Expression
Quantification
Hepatopancreas RNA isolation and expression quantification
were performed according to the method detailed in our
previous study (29). Briefly, total RNA was isolated using
Trizol R© reagent (Invitrogen, USA) following the manufacturer’s
instructions. To ascertain RNA quality and quantity, we used 1%
agarose gel electrophoresis and a spectrophotometer, respectively
(NanoDrop 2000, Thermo Fisher, United States). Afterward,
cDNA was synthesized using the PrimeScript TM RT reagent
Kit (Takara, Japan), following the manufacturer’s instructions.
Real-time PCR for target genes was performed using an SYBR R©

Premix Ex TaqTM II (Takara, Japan) and quantified on the
LightCycler 480 (Roche Applied Science, Basel, Switzerland). We
used ef1a as the housekeeping gene for gene expression in the
present study (30). Relative mRNA expression levels of target
genes were determined using the 2−11CT method (31). Primers
related to the present study are shown in Table 3.

Statistical Analysis
All data in our present study are shown as means ± standard
error (SE). Data analysis was performed in SPSS 22.0 (SPSS,
Chicago, IL, USA), followed by an independent sample t-test
where p < 0.05 was regarded as the significant difference
between groups.

RESULTS

Growth Performance
As shown in Table 4, the diet supplemented with Klebsormidium
sp. significantly improved the growth performance and
feed utilization of L. vannamei. Substantially higher growth
performance parameters [weight gain rate (WGR) and specific
growth rate (SGR)] of L. vannamei were obtained in the D2
group than in the D1 group (p < 0.05). The feed conversion
ratio (FCR) of L. vannamei fed with Klebsormidium sp. was
significantly lower compared to the control group (p < 0.05).
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TABLE 3 | Sequences of primers used for real-time quantitative PCR.

Gene Primer sequence (5′–3′) Reference

ef1a-F TGGCTGTGAACAAGATGGAC (32)

ef1a-R AGATGGGGATGATTGGGACC

sod-F CCGTGCAGATTACGTGAAGG (33)

sod-R GTCGCCACGAGAAGTCAATG

gsh-px-F GGCACCAGGAGAACACTAC (32)

gsh-px-R CGACTTTGCCGAACATAAC

cat-F TACTGCAAGTTCCATTACAAGACG (34)

cat-R GTAATTCTTTGGATTGCGGTCA

relish-F CTACATTCTGCCCTTGACTCTGG (32)

relish-R GGCTGGCAAGTCGTTCTCG

rho-F GTGATGGTGCCTGTGGTAAA (32)

rho-R GCCTCAATCTGTCATAGTCCTC

hsp70-F CAACGATTCTCAGCGTCAGG (33)

hsp70-R ACCTTCTTGTCGAGGCCGTA

chymotrypsin-F GGCTCTCTTCATCGACG (35)

chymotrypsin-R CGTGAGTGAAGAAGTCGG

trypsin-F TCCAAGATCATCCAACACGA (35)

trypsin-R GACCCTGAGCGGGAATATC

hk-F AGTCGCAGCAACAGGAAGTT (36)

hk-R CGCTCTTCTGGCACATGATA

fas-F GCGTGATAACTGGGTGTCCT (36)

fas-R ACGTGTGGGTTATGGTGGAT

TABLE 4 | Growth performance and feed utilization of Litopenaeus vannamei fed

diets supplemented with/without Klebsormidium sp. for 56 days.

D1 D2

IBW 0.64 ± 0.01 0.64 ± 0.02

FBW 5.98 ± 0.03 6.26 ± 0.05

WGR 828.31 ± 15.07 935.4 ± 6.71

SGR 3.98 ± 0.03 4.17 ± 0.01

FCR 1.24 ± 0.03 1.13 ± 0.01

SR 96.25 ± 1.25 99.38 ± 0.63

IBW (g per shrimp): initial body weight.

FBW (g per shrimp): final body weight.

Weight gain rate (WGR, %) = 100 × (final body weight – initial body weight)/initial

body weight.

Specific growth rate (SGR, % day−1): 100 × (Ln final shrimp weight – Ln initial shrimp

weight)/the experimental duration in days.

Feed conversion ratio (FCR) = dry diet fed/wet weight gain.

Survival rate (SR) (%) = 100 × (final number of shrimp)/(initial number of shrimp).

Values are mean ± SE (n = 4). Means in the same row with different superscripts are

significantly different (p < 0.05).

After the 8-week diet treatment, the survival rate (SR) of L.
vannamei ranged from 96.25 to 99.38% in the present study (p
> 0.05).

Antioxidant Capacity
The antioxidant parameters of L. vannamei fed with and without
Klebsormidium sp. are shown in Table 5. L. vannamei fed
with Klebsormidium sp. showed significantly lower antioxidant

TABLE 5 | Hepatopancreas and hemolymph antioxidant parameters of L.

vannamei fed diets supplemented with/without Klebsormidium sp. for 56 days.

D1 D2

Hepatopancreas

T-SOD (U/mgprot) 10.4 ± 0.88a 7.11 ± 0.68b

T-AOC (U/mgprot) 0.27 ± 0.01 0.2 ± 0.04

GSH-PX (U/mg prot) 624.12 ± 49.36a 201.49 ± 72.37b

MDA (nmol/mgprot) 1.26 ± 0.03 1.02 ± 0.02

Hemolymph

T-SOD (U/mL) 273.75 ± 6.08a 219.35 ± 12.54b

T-AOC (U/mL) 3.7 ± 0.12 2.78 ± 0.19

GSH-PX (U/mL) 419.35 ± 54.11 522.58 ± 49.27

MDA (mmol/ mL) 8.27 ± 1.04a 5.38 ± 1.15b

Values are mean ± SE (n = 4). Means in the same row with different superscripts are

significantly different (p < 0.05).

enzyme activities (hepatopancreas T-SOD, hepatopancreas GSH-
PX, and hemolymph T-SOD) compared to the control group
(p < 0.05). In addition, significantly lower hemolymph MDA
content was found in the dietary Klebsormidium sp. treatment
group than in the control group (p < 0.05). No statistical
differences in hepatopancreas T-AOC, hepatopancreas MDA
content, hemolymph T-AOC, and hemolymph GSH-PX were
found between the two experimental groups (p > 0.05).

The RNA expression levels of antioxidant genes in the
hepatopancreas are shown in Figure 1. The RNA expression
levels of catalase (cat) and gsh-px in the D2 group were
significantly lower than that in the D1 group (p< 0.05). However,
dietary Klebsormidium sp. could not alter the RNA expression
level of sod in the hepatopancreas (p > 0.05).

RNA Expression Levels Related to
Pro-Inflammatory Genes
The RNA expression levels of pro-inflammatory related genes
in the hepatopancreas are shown in Figure 2. Remarkably lower
RNA expression levels of pro-inflammatory related genes (relish
and rho) were obtained in the D2 group than that in the
D1 group (p < 0.05). There was no significant difference in
the RNA expression level of hsp70 between the experimental
groups (p > 0.05).

RNA Expression Levels Related to
Digestion and Metabolism
As shown in Figure 3, the diet supplemented withKlebsormidium
sp. could not alter the RNA expression levels of digestive enzyme
genes (chymotrypsin and trypsin) in the hepatopancreas of L.
vannamei (p > 0.05).

The RNA expression levels of metabolic enzyme genes in
the hepatopancreas are shown in Figure 3. Significantly higher
mRNA expression of hexokinase (hk) and fatty acid synthase (fas)
were found in the D2 group compared to the D1 group (p< 0.05).
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FIGURE 1 | Hepatopancreas RNA expression levels of antioxidant genes of

Litopenaeus vannamei fed diets supplemented with/without Klebsormidium

sp. for 56 days. a,bThe small letters indicated significant differences at p <

0.05.

FIGURE 2 | Hepatopancreas RNA expression levels of pro-inflammatory

related genes of L. vannamei fed diets supplemented with/without

Klebsormidium sp. for 56 days. a,bThe small letters indicated significant

differences at p < 0.05.

Mid-Intestine Morphology
The mid-intestine morphology of L. vannamei fed with and
without Klebsormidium sp. is shown in Figure 4. Mid-intestine
morphology parameters (the intestinal mucosal layer thickness
and the intestinal villi height) in the D2 group were significantly
higher than that of the D1 group (p < 0.05).

DISCUSSION

As a green additive in aquatic feed, microalgae have gained more
attention in recent years due to their high nutritional value and
convenience of scaling up the culture (37). Different microalgae
might contain various nutrients, such as polyunsaturated fatty
acid (PUFAs) (38, 39), pigment (40, 41), vitamins (42), minerals
(43), and algae polysaccharides (44), which are beneficial to

FIGURE 3 | Hepatopancreas RNA expression levels of digestive and

metabolic enzyme genes of L. vannamei fed diets supplemented with/without

Klebsormidium sp. for 56 days. a,bThe small letters indicated significant

differences at p < 0.05.

the health of aquatic animals. Therefore, microalgae have huge
potential to substitute synthetic additives and reduce the budget
of the aquatic feed in aquaculture (45).

In the present study, L. vannamei fed with Klebsormidium sp.
obtained better growth performance parameters (WGR and SGR)
and feed utilization (FCR) than the control group. These results
are similar to the studies of L. vannamei fed with Haematococcus
pluvialis (46), Trachinotus ovatus fed with Tribonema sp. (28),
and Oplegnathus fasciatus fed with Spirulina (47). However, no
significant difference in growth performance of Carassius auratus
gibelio fed with/without Tribonema sp. was reported in the
study of Chen et al. (48). Different results in previous studies
might be attributed to differences in animal species, animal
size, microalgae species, the dose of dietary microalgae, and
the experimental condition. The degree of development of the
intestinal morphology was one of the essential indices to affect
the growth performance and feed utilization of animals because
the gut contacted and absorbed the nutrients directly (49). In
particular, higher intestinal villi height indicated a larger contact
area between the gut and nutrients and combined with a thicker
intestinal mucosal layer, it implied better absorption ability of
animals (50, 51). The present study demonstrated that dietary
Klebsormidium sp. supplements were significantly beneficial to
mid-intestine morphology parameters (the intestinal villi height
and the intestinal mucosal layer thickness) of L. vannamei. A
previous study showed that a diet supplemented with fish oil
(EPA, DHA-rich) or perilla oil (ALA-rich) had protective effects
on the intestine morphology of rat samples since n-3 PUFA
could mitigate the TNBS-induced colitis, thus reducing the death
of intestinal epithelial cells (52, 53). You et al. (54) and other
researchers (28, 55, 56) also pointed out that dietary n-3 PUFAs
are beneficial to the gut morphology development of aquatic
animals. In the present study, better mid-intestine morphology
of L. vannamei was obtained in the D2 group, which might be
because of rich LA in Klebsormidium sp. that could be converted
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FIGURE 4 | Light microscopy of mid-intestine morphology of L. vannamei fed diets supplemented with/without Klebsormidium sp. for 56 days. Scale bars (A,B) =

100µm; Scale bars (C,D) = 25µm. (E,F) represent the mid-intestinal mucosal layer thickness and intestinal villi height of L. vannamei. a,bThe small letters indicated

significant differences at p < 0.05.

to EPA and DHA (57), resulting in effective growth performance
and feed utilization of L. vannamei.

The growth performance of L. vannamei is also influenced
by its metabolic capacity because better metabolic capacity
indicates a better nutrient utilization ability in shrimp (58). In
addition, hexokinase could convert D-hexose into D-hexose-6-
phosphate, which is one of the most important rate-limiting
steps in the glycolysis reaction (59). In the present study, the
mRNA expression level of hk was significantly upregulated in
L. vannamei fed with Klebsormidium sp. Layam and Reddy
(60) had shown that dietary Spirulina increased the hexokinase
activity of streptozotocin-diabetic rats. However, few studies have
been published about the regulating mechanism of microalgae

on glycolysis. A previous study demonstrated that conjugated
linoleic acid could activate the AMPK pathway in chick
embryos (61), an essential pathway associated with regulating
cellular energy homeostasis. Therefore, in the present study,
the upregulation of the mRNA expression level of hk might
be attributed to the LA in Klebsormidium sp., activating
the AMPK pathway and then regulating the glycolysis of L.
vannamei. Without a doubt, further study of this subject is
required. In the present study, the improvement of carbohydrate
metabolism capacity may contribute to improving the growth
performance and feed utilization of L. vannamei. In addition,
other micronutrients like carotenoids (62) in Klebsormidium sp.
might be attributed to promoting the growth.
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Respiratory bursts will occur if aquatic animals are subjected
to environmental stressors, which could produce reactive oxygen
species (ROS) for reducing oxidative stress (63). This is one
of the effective self-defense mechanisms in cells. However,
overproduction of ROS might also attack normal physiological
cells and thus cause oxidative damage to cells (64). In this
situation, cells would activate the antioxidant system and
enhance the activity of antioxidant enzymes (like SOD, GSH-PX,
CAT) to scavenge the overproduction of ROS for protecting the
cells from oxidative stressors (65, 66). Therefore, the activity of
antioxidant enzymes could be regarded as an important index
to evaluate the antioxidant capacity of L. vannamei. Except
for antioxidant enzymes, the MDA content, which reflects the
damage degree of cell structure, can also be used to assess
the oxidative state of shrimp (64, 67). In the present study,
significantly lower antioxidant enzyme activities (hepatopancreas
T-SOD, hepatopancreas GSH-PX, and hemolymph T-SOD),
RNA expression levels of hepatopancreas antioxidant genes (gsh-
px and cat), and hemolymph MDA content were obtained
in the dietary Klebsormidium sp. treating group compared to
the control group. Previous studies have shown that PUFAs-
rich microalgae (such as Nannochloropsis, Tetraselmis, and
Thalassiosira) could bring various health benefits (68, 69).
Besides, the inhibition effect of free radical-induced DNA break
by LA has been demonstrated in in vitro studies, indicating its
potential medicinal value (70). Therefore, in the present study,
a diet supplemented with Klebsormidium sp. could improve the
antioxidant capacity of L. vannamei, which was correlated to
the LA.

Apart from the respiratory burst, an inflammatory response
is another important self-defense mechanism of cells for
eliminating pathogens (71). However, an excessive inflammatory
response might attack healthy tissues and cells and cause various
pathological diseases (72). Among them, the NF-κB pathway
was one of the crucial inflammatory responses of L. vannamei
(32). Relish and rho are two well-known transcription factors
involved in the NF-κB pathway (32, 73). In the present study,
L. vannamei fed with Klebsormidium sp. obtained remarkably
lower RNA expression levels of relish and rho than the control
group, indicating that Klebsormidium sp. could mitigate the
pro-inflammatory response. This result might be due to the
rich LA in Klebsormidium sp. Previous studies showed that n-
3 PUFA (EPA, DHA) could inhibit the inflammatory response
of rodent samples by reducing the inflammatory mediators (like
prostaglandin E2 (PGE2), leukotriene B4 (LTB4), TNF-α, and
IL-6) (74–76). Therefore, Klebsormidium sp. could improve the
anti-inflammatory capacity of L. vannamei by suppressing the
NF-κB pathway.

CONCLUSION

Overall, diet supplementations of 5% Klebsormidium sp. were
beneficial to L. vannamei since they could improve the
growth performance, antioxidant and anti-inflammatory status,
carbohydrate metabolism, and mid-intestine morphology of
shrimp. Therefore, the dose of 5% Klebsormidium sp. is
recommended for the daily diet of L. vannamei.
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