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Palmitic acid (PA) is ubiquitously present in dietary fat guaranteeing an average intake

of about 20 g/d. The relative high requirement and relative content in the human body,

which accounts for 20–30% of total fatty acids (FAs), is justified by its relevant nutritional

role. In particular physiological conditions, such as in the fetal stage or in the developing

brain, the respectively inefficient placental and brain blood–barrier transfer of PA strongly

induces its endogenous biosynthesis from glucose via de novo lipogenesis (DNL) to

secure a tight homeostatic control of PA tissue concentration required to exert its multiple

physiological activities. However, pathophysiological conditions (insulin resistance) are

characterized by a sustained DNL in the liver and aimed at preventing the excess

accumulation of glucose, which result in increased tissue content of PA and disrupted

homeostatic control of its tissue concentration. This leads to an overaccumulation

of tissue PA, which results in dyslipidemia, increased ectopic fat accumulation, and

inflammatory tone via toll-like receptor 4. Any change in dietary saturated FAs (SFAs)

usually reflects a complementary change in polyunsaturated FA (PUFA) intake. Since

PUFA particularly n-3 highly PUFA, suppress lipogenic gene expression, their reduction

in intake rather than excess of dietary SFA may promote endogenous PA production

via DNL. Thereby, the increase in tissue PA and its deleterious consequences from

dysregulated DNL can be mistakenly attributed to dietary intake of PA.

Keywords: palmitic acid, de novo lipogenesis, fatty acid metabolism, dietary fatty acids, saturated/unsaturated

ratio

INTRODUCTION

Palmitic acid (PA) is one of the most abundant saturated fatty acids (SFAs) in nature, which is
present in animal and human tissues, plants, algae, fungus, yeast, and bacteria. Its distribution varies
both within species and among species, and its content can be influenced by several environmental
factors as the variation of soil pH, nutrient–ion interaction, age, water, and climate (1, 2).

The average dietary intake of PA is around 20–30 g/d representing about 8–10%en (3–5) and can
be found in different vegetable and animal fat sources (Table 1) (6), with levels of 20–30% in animal
lipids and 10–45% in vegetable oils. Methods that are used to prepare the food also impact on PA
amount; for example, in processed and preserved meats, the content is higher than fresh meat with
values up to 7.6/100 g of edible portion in salami and in lard 21/100 g of edible portion. It should
be pointed out that due to high within-food variability of PA content, it is very difficult to assess
its precise dietary intake. In addition, PA absorption and metabolic fate are strongly influenced by
several factors, such as food matrix and pathological or physiological conditions.
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TABLE 1 | Palmitic acid content of oils and fats from vegetable and animal

sources (expressed as percentage mass fraction of total FAs) (6).

Vegetable

sources

% Fraction/total

FA

Animal sources % Fraction/total

FA

Palm oil 40.1–47.5 Lard 21.07

Cottonseed oil 21.4–26.4 Goose 7.41

Cocoa butter 25.4 Whole chicken 2.19

Olive oil 7.5–20.0 Pork loin 2.06

Oat bran oil 17.4 Lamb 0.58–1.99

Avocado oil 17.2 Rabbit 1.22–1.95

Wheat germ oil 16.6 Beef meat 0.31–1.14

Corn oil 8.6–16.5 Horse meat 1.65

Peanut oil 8.3–14.0 Sheep meat 0.58

Soya bean oil 8.0–13.3 Goat meat 0.40

Grapeseed oil 5.5–11.0 Deer meat 0.12

Sesame oil 7.9–10.2 Salami 5.73–7.55

Coconut oil 8.2 Mortadella 5.70

Walnut oil 3.9–7.2 Ham 3.93–4.93

Linseed oil 4.0–7.0 Speck 3.71

Almond oil 6.5 Pancetta 5.67–5.99

Safflower oil 4.8–6.2 Butter 20.86

Linola oil 6.0 Parmesan cheese 8.04

Cashew nut oil 4.0–6.0 Fontina cheese 7.31

Rapeseed oil 1.5–6.0 Cream 5.72

Sunflower oil 5.4–5.9 Ricotta cheese (cow) 3.49

Hazelnut oil 5.2 Ricotta cheese (sheep) 2.85

Canola oil 4.0 Cow’s whole milk 0.92–1.97

Eggs sources Sheep’s whole milk 1.58

Hen egg (whole) 1.90–5.90 Goat’s whole milk 1.34

Duck egg 3.00 Semiskimmed milk 0.45

Turkey egg 2.72 Yogurt 0.92

IMPORTANCE OF THE MATRIX AND PA
DISTRIBUTION ON METABOLISM

In evaluating the effects of food on health, the overall
macronutrient composition and structure need to be considered,
i.e. the “food matrix” (7), meaning that food chemical
compounds behave differently in isolated form in comparison to
part of food structures (8), as well as the resistance of a food to
the mastication and the viscosity of aliments, which may affect
the bioavailability and digestibility of dietary lipids (9). Dietary
fats comprise cholesterol and fatty acids (FAs), which can be free
or components of complex lipids, as triacylglycerols (TAGs), and
phospholipids (PLs), organized in structures able to modulate FA
final metabolic fate. FA esterification on different positions of the
TAG glycerol backbone (central sn-2 position, external sn-1 and
sn-3 positions) or on a PL may also impact on their digestibility
and metabolism (10–16). PA in foods is mainly present esterified
in PL and TAG.

Dietary PL represents 1–10% of total daily fat intake (17). PL is
mainly catabolized by pancreatic phospholipase A2 (PLA2) that
produces free FA (FFA) and lysophosphatidylcholine (lysoPL),

which once absorbed by the intestinal epithelium are reacylated
or hydrolyzed to form PL or glycerol-3-phosphorylcholine,
respectively. FFAs are instead used for TAG synthesis that are
subsequently incorporated into chylomicrons (17).

Over 90% of dietary FAs are esterified to TAG preferentially
hydrolyzed by digestive lipases (18) on sn-1,3 positions followed
by pancreatic lipase to give 2-monoacylglycerol (2-MAG) and
FFA (15), which cross the apical membranes of the enterocytes
and are reassembled into TAG for secretion to plasma in
chylomicrons. SFA released from positions sn-1 and sn-3 may
form insoluble soaps with ions as calcium that are not absorbed,
a singularity lost if SFA is in the TAG sn-2 position (19),
as confirmed by animal and human infant studies which
demonstrate that sn-2 esterified FA is efficiently absorbed as
2-MAG (20, 21). The peculiar sn-2 position of PA in human
milk results from the activity of the glycerol-3-phosphate (G-3-
P) acyltransferase, present in the mammary gland, which acylates
an unsaturated FA at the sn-1 position of G-3-P and subsequently
a PA at the sn-2 position (22, 23). Human milk, which contains
20–25% of PA with respect to the total FA whose 70% is in sn-2
of TAG, limits PA malabsorption providing the infant with high
PA (19, 23–25). Conversely, 45 and 58% of cow and rodent milk
fat (25 and 15% of PA on the total FA, respectively) are esterified
at the TAG sn-2 position (23, 26). FA composition of the early
diet influences intestinal membrane FA, which affects nutrient
transport, permeability, and inflammatory pathways that persist
into later life (27, 28). Notably, PA also plays an important role
in the developing fetus with the term infant reaching 13–15% of
body fat of which 45–50% is PA,mostly derived from endogenous
synthesis in the fetus (29).

PA peculiar tissue distribution results in its better
incorporation in several tissues, for example, adipose tissues,
with a lower deposition of fat in the visceral depots and higher
in the subcutaneous fat (30). Interestingly, several studies
demonstrated the protective effect of breastfeeding against
obesity in childhood (31, 32) and adulthood (33–36). Also,
donkey milk contains high concentrations of PA in sn-2 of TAG
and is recognized as the best potential substitute for human milk
due to its remarkable nutritional value, good palatability, and
reduced allergenicity (37, 38). A recent study in rats showed that
oral supplementation with human or donkey milk ameliorated
metabolism and reduced inflammation potentially mediated
by an improved redox status, mitochondrial uncoupling, and
dynamics (39). In addition, it has been demonstrated that PA in
sn-2 bymodifying endocannabinoids and congeners biosynthesis
in different tissues may potentially concur in the physiological
regulation of energy metabolism, brain function, and body
fat distribution (40). In contrast to milk, in animal tissues that
include human adipose tissue and also beef tallow and in soybean
oil and cocoa butter, PA is mainly at sn-1,3 position, whereas the
sn-2 is occupied by an unsaturated FA (41–45). Lard, having high
amounts of PA at TAG sn-2, represents an exception (23), and
in animal studies, PA from lard was better absorbed with respect
to PA from cocoa butter and palm oil (46, 47). This PA peculiar
position led food industries to often use interesterification
to produce functional infant formula containing TAG with a
high amount of sn-2 PA (48, 49). Amounts of PA in the sn-2
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position in breast-fed infants (81%) or in infants fed formula
prepared with synthesized TAG (39%), plasma chylomicron
TAG containing PA in sn-2 position were higher with respect to
those fed with standard infant formula with 6% of PA in sn-2
position (50), and it was shown in infants that PA loss in stools
was 8-folds less using infant formula with lard TAG with respect
to randomized lard (51). Also, an increase in the proportion of
sn-2 PA by interesterification of TAG in coconut oil and palm
olein improved PA absorption and metabolism in rats (52, 53).
Therefore, the matrix/esterified position plays a crucial role in
determining the metabolic fate of dietary PA.

ASSESSMENT OF DIETARY PA INTAKE IN
HUMANS

Most of the studies aimed at evaluating dietary FA intake
rely on food frequency questionnaires (FFQs), and food diaries
where even repeated measurements do not necessarily provide
valid measures of individual intake. Extreme intakes may
reflect under- and overreporting rather than true low or high
intakes, and subjects most prone to reporting bias may be
repeatedly misclassified in quantiles of the distribution (54). In
addition, assessing the precise nutrient intake is quite difficult
because of the errors made in recalling or the identification
of the amounts of foods eaten, especially in processed
foods (55).

Measurement of circulating PA is not also a reliable marker
of its dietary intake; in fact, the dietary consumption of PA
has low impact on plasma levels compared with its endogenous
biosynthesis; data from a controlled human feeding trial showed
that variations in SFA intake from 11 to 30%en did not
change circulating SFA, including PA (56). Accordingly, cohort
studies did not show a solid correlation between the PA dietary
intake (evaluated by FFQ) and its plasma levels (r = −0.02
to 0.09) (57–60).

Factors other than dietary intake have been suggested
to influence FA composition in tissues, first FA metabolism
efficiency, genetic variations, and even intrauterine and perinatal
program. In fact, considering the relationship between the tissue
FA composition and dietary fat, among plasma lipid fractions,
only TAGs appear to reflect dietary polyunsaturated FA (PUFA)
and SFA, but not monounsaturated FA (MUFA) (61) within the
first hours after intake (62). Whereas, FA in serum cholesteryl
esters (CEs) and in PL is related to average intake of dietary FA
composition during the previous 3–6 weeks, FA of erythrocyte
membrane PL and adipose tissue TAG reflect the dietary fat
intake of previous months or years, respectively (62).

Noteworthy, it has been demonstrated, by isotope labeling
studies in men, that low-fat high-carbohydrate diet stimulates de
novo lipogenesis (DNL) with the accumulation of VLDL-TAG PA
that led to linoleic acid (LA) reduction probably due to dilution
effect, whereas with high-fat (40% fat, 45% carbohydrate)
DNL is neglectable (63). This suggests that circulating PA
levels are largely driven by endogenous synthesis through DNL
rather than direct dietary intake. Therefore, the relative strict
regulation of PA tissue concentration, with variable amount

of the endogenously produced, leads to a high unreliability
of the use of PA plasma levels as a tool to determine its
dietary intake.

The potential increase of tissue PA by dietary intake is
prevented by the contribution of its conversion to palmitoleic
(POA), by the insertion of one double-bond through stearoyl-
CoA desaturase-1 (SCD1) (62), which reduces PA availability in
tissues, but also via elongation to stearic acid (SA) and further
desaturation via SCD1 to form oleic acid (OA). A possible
protective capacity of OA to drive PA to be deposited in the
neutral form of TAG (64, 65) and POA to improve insulin
sensibility has been described (66).

FATE OR METABOLISM OF PA FROM DNL

When the energetic sources are in excess, the non-fat surplus,
mainly carbohydrates, is converted to FA by DNL, a pathway
that begins with the conversion of acetyl-CoA into malonyl-
CoA by acetyl-CoA carboxylase (ACC). During fed and
insulin-stimulated conditions, ACC increases malonyl-CoA
levels whereas AMP-activated protein kinase (AMPK) stops
the synthesis, probably by inhibiting sterol regulatory element-
binding protein (SREBP) (67).

Further evidence indicates that adipose tissue DNL supports
metabolic homoeostasis of distant organs, as in liver and
muscle, by producing cytokine-like lipids, lipokines, with
antidiabetogenic and antiinflammatory activities, such as POA
and branched FA esters of hydroxy FA (FAHFA) (66, 68).

In normal conditions, adipose tissue is the major site for DNL,
which significantly contributes to body lipid reserves, energy
storage, and to the maintenance of serum TAG homeostasis
that derived instead from dietary sources (69–75). Furthermore,
adipose tissue DNL is considered as an energy-inefficient
source of lipids because it yields fewer lipids per calorie
consumed, thus being a promising strategy for the treatment
of lipotoxicity-related diseases. In fact, adipose tissue DNL
is positively correlated with postprandial energy expenditure
(76) subsequently to carbohydrate overfeeding, but not fat
overfeeding which failed to significantly increase any component
of energy expenditure (77, 78).

On the other hand, under specific conditions in the liver,
such as insulin resistance, the impaired glycogen biosynthesis
and consequent accumulation of glucose induce DNL that may
contribute up to 26% to ectopically intrahepatocellular lipids in
the pathogenesis of nonalcoholic fatty liver disease (NAFLD). In
fact, hepatic DNL is positively correlated with insulin resistance
and fatty liver, whereas the correlation with adipose tissue DNL
is the opposite (73, 79–81).

In addition, a high-carbohydrate diet, particularly rich in
simple sugars as fructose (82–84), activates a lipogenic response
and increases the synthesis and secretion of VLDL in liver (85)
contributing to hypertriglyceridemia (74). DNL contributes to
10–35% of the total VLDL-TAG pool, probably increasing the
size (∼130 nm), but not the number of VLDL secreted (86), and
is in general higher in insulin-resistant states, and in overweight
subjects compared to lean individuals (87–91).
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Regulation of DNL occurs through the regulation of
transcriptional factors as SREBP-1c and carbohydrate-
responsive element-binding protein (ChREBP), activated by
increased insulin signaling and increased glucose concentrations,
respectively, and both induced by feeding (85, 92–95).

In liver, PUFA downregulates DNL via decreased expression
of SREBP-1c (96), and leptin reduced adipogenesis through the
inhibition of SREBP-1c expression (97). In addition, insulin and
SREBP-1c stimulate peroxisome proliferator-activated receptor-
γ (PPAR γ) expression (98, 99), which regulates glucose and
lipid metabolism thus having adipogenic and lipogenic effects
(100) and promotes FA storage in mature adipocytes by the
stimulation of lipoprotein lipase (LPL), CD36, and glucose
transporter GLUT-4 (101–103).

Therefore, DNL has a dual function, to supply PA in deficiency
conditions, such as in the fetus (29) and developing brain (104)
to overcome the difficulties of PA to pass, respectively, the
placenta and the brain–blood barrier and to prevent the excess
accumulation of glucose in the liver. In the latter case, significant
increase of tissue PA is detected eluding the homeostatic
control of tissue PA concentration and increased endogenous
PA productionmay enhance inflammatory susceptibility through
toll-like receptor (TLR4) activation (105) and insulin resistance
by ceramide accumulation (106).

CONSIDERATIONS OVER HIGH SFA DIETS
VS. PUFA-DEFICIENT DIETS ON
METABOLISM

Dietary guidelines recommend limiting SFA intake to <10% of
calories per day. Correlation between dietary SFA intake and
cardiovascular disease (CVD) is quite controversial (107). The
Cochrane analysis showed an association between reducing SFA
intake and a reduction in cardiovascular events and replacing
the energy from SFA with PUFA appear to be useful strategies,
whereas effects of replacement withMUFA are unclear (108). SFA
increases LDL plasma particle concentration but also their size,
which is less associated with CVD (109) because more rapidly
cleared than small-dense LDL particles from the circulation
due to reduced receptor-mediated uptake (110). SFA increases
blood total, LDL, and HDL cholesterol concentrations and
decreases fasting TAG concentrations not changing the total–
HDL cholesterol (TC/HDL) ratio. The capacity of increasing
circulating HDL levels decreases with increasing chain length of
SFA and for some studies, but not all, myristic acid and PA, and
also carbohydrate intake, negatively affect TC/HDL ratio (111).

In vitro cell culture studies showed that PA in the free form
in the medium elicits, insulin resistance (112), inflammation via
TLR4 (105) and prometastatic activities (113), which implies
that increased dietary PA may result in higher PA availability
to cell tissues in the free form, while as already mentioned,
higher intake of SFA results in a decrease of circulating
PA in the free form and increase of its monounsaturated
metabolites POA and OA. Therefore, in vitro models, while
may elucidate a limited molecular mechanism, are by far not
mimicking pathophysiological conditions. The extremely high

concentrations typically used in vitro are not achievable in
vivo, thus the results obtained do not prove any relevant
pathophysiological information.

Any change in dietary SFA reflects a complementary change
in MUFA and/or PUFA intake. As mentioned above, PUFA (70),
particularly n-3 highly PUFA such as EPA and DHA, suppresses
lipogenic gene expression by reducing the nuclear abundance
and DNA-binding affinity of transcription factors responsible
for imparting insulin and carbohydrate control to lipogenic and
glycolytic genes (114); thereby, most of the detrimental effects
should be ascribed to the lower PUFA intake rather than high
dietary SFA.

From, a meta-analysis of randomized controlled trials
emerged that replacing 5% energy from carbohydrate with SFA
had no significant effect on fasting glucose but lowered insulin,
and replacing SFA with PUFA lowered glucose, HbA1c and
HOMA. This suggests that consuming more unsaturated FA
in place of either carbohydrates or SFA will help to improve
blood glucose control while exchanging dietary carbohydrate
with SFA does not appreciably influencemarkers of blood glucose
control, and therefore an approach based only on reducing
carbohydrates or SFA intake, without considering the source of
energy replacement would not be optimal (115).

Data are often contradictory and may be difficult to interpret
into dietary advise: some studies suggested that n-6 PUFA would
increase CVD risk (116, 117), and therefore the Institute of
Medicine recommends a relatively modest range of 5%–10%
energy consumption from PUFA, limiting its plausibility as a
meaningful replacement for SFA (118). Increasing dietary PUFA
may not be desirable as dietary levels of LA are already higher
than recommended (119), particularly the n-6/n-3 PUFA ratio
(119). The physiological role played by the SREBP-1c, which is
inhibited by n-3 FA (114) and in general by PUFA (18), for
glycogen biosynthesis and overall glucose homeostasis (120),
stresses the point that balance between different dietary FA is
strongly recommended and any unbalance may lead or increase
the chance to set into motion a disrupted metabolism. In fact,
while replacing SFA with LA has an established cholesterol
lowering effect, it has not been shown that this lowering reduces
mortality (107).

In addition, recently, it has been shown that lower dietary
PUFA/MUFA and n-3/n-6, and not SFA, were associated
with disturbances in metabolic syndrome-related indices in
postmenopausal women, and that polymorphisms of FA
desaturase FADS1 (rs174546) and FADS2 (rs3834458) were
associated with unfavorable FA profile in red blood cells (121).
It has also been demonstrated that the polymorphism rs1761667
of multifunctional CD36 scavenger receptor that facilitates FA
uptake and oxidation, leads to a distinct metabolic pattern in
normal weight and in obese subjects (122). Thus, changes of
tissue FA profile and associated metabolic changes may also be
determined by different genetic polymorphisms, which should be
considered in developing personalized therapeutic strategies for
ameliorating dyslipidemia and other metabolic disorders.

From several studies exploring the molecular mechanism of
dietary FA interactions emerged that the reduction of PUFA
intake, especially n-3 PUFA, rather than the excess of dietary
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SFA, may favor insulin resistance (123), promoting endogenous
PA production via DNL. Thus, the increase in tissue PA from
dysregulated DNL and its deleterious consequences can be
mistakenly attributed to dietary intake of PA (Figure 1).

Interestingly, it has been proposed that the claimed adverse
effect on cholesterol exerted by high dietary SFA/PUFA ratio may
represent a physiological mechanism aimed at fulfilling the needs
of tissues for cholesterol (126) and the yield of larger LDL makes
this increase not to be related to CVD (7).

Many of the purported harmful effects of dietary PA are based
on experimental animal studies, mainly on mice on a high-fat
diet, which consists of 45–60%en whereas the optimal fat content
in the rodents diets ranges from 9 to 16%en (127). Therefore,
high-fat diets contain from 3- to 6-folds of the fat content
required, with usually an extremely high percentage of PA and

low in PUFA and n-3/n-6 PUFA ratio, which makes difficult to
pinpoint the effects of a high-fat content, high concentration of
PA, or high n-6/n-3 PUFA ratio. These diets were created to
induce obesity as quickly as possible (128) and not to assess the
nutritional impact of dietary FA. Therefore, whereas they might
be suitable as a model of obesity, they cannot be taken into
consideration for translational nutritional studies on the effects
of dietary FA (128).

CONCLUSIONS

Several pieces of evidence suggest that the nutritional impact
of dietary FA is strictly related to the balance among them
and with other macronutrients. Most of the studies claiming
negative effect of PA rely on in vitro cell culture studies,

FIGURE 1 | Combined consequences of liver insulin resistance and reduced PUFA intake. Insulin resistance in the liver is characterized by hyperinsulinemia and a

reduced ability to store glycogen. In the presence of excess glucose, CHREBP is activated which, in turn, together with hyperinsulinemia, induces SREBP1c, and

synergistically induces DNL (124) and thereby the biosynthesis of endogenous PA. Reduced PUFA intake can further promote PA and cholesterol biosynthesis since

PUFAs inhibit both SREBP1c (123) and SREBP2 (125). Enhanced DNL can cause fatty liver and formation and release of VLDL enriched with PA and cholesterol

esters. As a result, the accumulation of ectopic fat occurs in different tissues, and the increase in tissue PA can sustain insulin resistance by inducing inflammation

through the activation of TLR4 (105) and accumulation of ceramides (106), setting in motion a vicious circle. Because reduced PUFA intake is often associated with an

unbalanced increase in dietary SFA/PUFA, the rise in tissue PA can be mistakenly attributed to its dietary intake. CHREBP, carbohydrate-responsive element-binding

protein; SREBP, sterol regulatory element-binding protein; DNL, de novo lipogenesis; PA, palmitic acid; PUFA, polyunsaturated fatty acid; TLR4, toll-like receptor 4;

SFA, saturated fatty acid.
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incubating cells with extremely high concentrations and as a
single FA without considering that dietary PA does not modify
its tissue concentration, or with animal models of obesity
with an extremely high-fat content not achievable by humans
(128) and not specifically designed for studying dietary FA and
thereby without any translatability to human conditions. More
preclinical and clinical studies are needed to better discern the
metabolic fate and interaction between dietary and de novo PA
particularly in relation to PUFA intake, macronutrient balance,
and pathophysiological states.

To blame a single nutrient, such as PA, widely present
in our diet from several sources and with several well
recognized fundamental physiological properties (129), as
detrimental, suggesting that is sufficient to reduce its dietary
intake for improving our health and prevent pathological
states from CVD to cancer, is rather simplistic but it has
a great praise probably because of the human nature to
choose less time and energy consuming solutions for complex
issues (130).

Thus, guidelines or recommendations to the general
population to avoid or increase the intake of single nutrients,

without considering the complexity of nutrient-nutrient
interactions and the individual-specific nutritional response
in relation to age, genetic, environmental, physiological and
pathophysiological conditions, do not follow the amount of
growing scientific data that suggest we should not be focusing
on single nutrients but on increasing diet variability within a
personalized nutritional approach.
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