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Excess sugar consumption—common in youth—is associated with poor health.
Evidence on the relationship between sugar consumption and the oral microbiome,
however, remains scarce and inconclusive. We explored whether the diversity,
composition, and functional capacities of saliva microbiota differ based on the
consumption of select sugary foods and drinks (“sweet treats”). Using 16S rRNA gene
sequencing, we characterized saliva microbiota from 11 to 13-year-old children who
participated in the Finnish Health in Teens (Fin-HIT) cohort study. The sample comprised
children in the lowest (n = 227) and highest (n = 226) tertiles of sweet treat consumption.
We compared differences in the alpha diversity (Shannon, inverse Simpson, and Chao1
indices), beta diversity (principal coordinates analysis based on Bray–Curtis dissimilarity),
and abundance (differentially abundant operational taxonomic units (OTUs) at the genus
level) between these low and high consumption groups. We performed PICRUSt2 to
predict the metabolic pathways of microbial communities. No differences emerged
in the alpha diversity between low and high sweet treat consumption, whereas the
beta diversity differed between groups (p = 0.001). The abundance of several genera
such as Streptococcus, Prevotella, Veillonella, and Selenomonas was higher in the high
consumption group compared with the low consumption group following false discovery
rate correction (p < 0.05). Children with high sweet treat consumption exhibited higher
proportions of nitrate reduction IV and gondoate biosynthesis pathways compared with
the low consumption group (p < 0.05). To conclude, sweet treat consumption shapes
saliva microbiota. Children who consume a high level of sweet treats exhibited different
compositions and metabolic pathways compared with children who consume low levels
of sweet treats. Our findings reveal novel insights into the relationship between sugary
diets and oral microbiota.
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INTRODUCTION

The human microbiome—microbes and their genes inhabiting
the body—plays an essential role in regulating health and disease,
and is influenced by host conditions and several environmental
factors, especially the diet (1). Excess sugar consumption is
characteristic of the modern diets of children and adolescents (2–
4), and associated with several health risks such as dental caries,
obesity, and cardiovascular diseases (5–7). Evidence links the
aberrant composition of the gut microbiome to the development
of conditions including metabolic diseases such as obesity and
diabetes (8), possibly a consequence of sugar consumption
that may affect the gut habitat leading to altered bacterial
communities and influencing metabolism (9). The majority
of the mono- and disaccharides ingested are absorbed in the
small intestine (9), and thus do not reach the large intestine
unless consumed in large quantities (10), whereas oral bacteria
are exposed to easily metabolized ingested sugars for which
metabolism leads to harmful end-products such as lactic acid
(11). Dental caries is a disease resulting in a net mineral loss of
teeth due to the acidity produced by bacterial sugar metabolism
(12). Furthermore, the frequent consumption of sugar leads to
an increase in acid-producing bacteria in the dental biofilm and
further to caries.

The role of sugar in the development of caries is well-known,
whereas studies on the relationship between oral microbiota
profiles and sugar consumption remain scarce. Additionally,
existing evidence on the association between oral microbiota
profiles and sugar consumption is inconsistent. In adults, no
association was found between sugar consumption and saliva
microbiota (13, 14), but, in contrast, in subgingival microbiota
frequent sucrose consumption associated with decreased species
richness and differences in the beta diversity (15), and some
cariogenic bacteria such as Streptococcus sobrinus were less
abundant among those who consumed fewer free sugars (14).
Among 17- to 21-year-olds, saliva microbiota profiles varied
according to differences in sucrose intake (16). We found only
one study examining associations between sugar consumption
and oral microbiota among children. In that study among 11-
year-old children, the daily consumption of sugar-sweetened
beverages was linked to less diversity and richness in oral
microbiota and differences in the bacterial abundance (17).

Oral microbiota harbors the largest microbial community
after the gut, consisting of several different microbial
communities—that is, the microbial composition varies in
different locations in the mouth (18). Saliva microbiota consists
of bacteria shed from oral surfaces (19), thus representing
different communities without having its own resident
microbiota (20). Saliva microbiota has been previously linked
to metabolic, autoimmune, and immunodeficient conditions,
rendering it an affordable and feasible source for biomarkers
(21). Furthermore, saliva microbiota may mirror the caries and
periodontitis status of the host, and remains relatively stable in
orally and systematically healthy individuals (19). Interestingly,
oral bacteria can pass through the gastrointestinal tract to a
greater extent than previously thought, possibly colonizing the
large intestine even in healthy individuals (18, 22). In some
disease states, such as rheumatoid arthritis and colorectal cancer,

the flux from the oral cavity to the gut may be more pronounced
(22), suggesting that oral microbiota plays a role not only in oral
diseases, but in systemic health as well.

This study aims to examine whether saliva microbiota profiles,
including the diversity and composition, differ according to the
consumption of sugary products (“sweet treats”) among school-
aged children. In addition, we aim to explore the functional
capacities of saliva microbiota. To our knowledge, this is the first
study to examine the associations between sugary products and
saliva microbiota and its functional capacities. Thus, our study
provides novel evidence about the relationships between saliva
microbiota and sugar consumption among school-aged children.

MATERIALS AND METHODS

This study utilized material from the Finnish Health in Teens
(Fin-HIT) study, a large, geographically diverse cohort consisting
of over 11 000 children and adolescents aged 9–12 years old at
enrolment. Data were collected in 2013 and 2014 in schools across
Finland. A detailed description of the cohort appears elsewhere
(23). We previously analyzed saliva samples from 1,000 randomly
selected Fin-HIT participants (24). After exclusion based on
antibiotic use 3 months prior to saliva sampling, missing values
in sweet treat consumption as well as low sequencing depth, 700
children remained in the cohort for further investigation.

Sweet Treat Consumption
Based on children’s responses on a self-administered food
frequency questionnaire, the sweet treat index (STI) was
calculated to indicate a sum for the weekly consumption
frequencies of sweet treats (25). These consisted of
chocolate/sweets, ice cream, sweet pastries, biscuits/cookies,
sugary juice drinks, and sugary soft drinks. Response options
ranged from 0 times a week to 14 times a day. To calculate
the STI, the consumption frequencies for each food item
were summed. Based on tertiles of the STI, participants were
categorized as low (first tertile), medium (second tertile) and high
(third tertile) groups. We calculated these separately for girls and
boys given their different sweet treat consumption patterns (26).
Since we sought to compare microbiota profiles between the
extreme ends of sweet treat consumption, we included here only
participants in the first and third tertiles, leaving us a sample
size of 453 with well-defined groups of sweet treat consumption.
The low consumption group included 116 (30.0%) girls with
STI ≤ 3.5 and 111 (35.5%) boys with STI ≤ 5.5, and the high
consumption group included 125 (32.3%) girls with STI > 8.0
and 101 (32.3%) boys with STI > 10.0.

Background Information
Children’s age- and sex-specific body mass index z-scores (BMIz)
were calculated based on the measured height and weight (27)
at baseline. Waist–height ratios (WHtR) were calculated by
dividing the waist circumference by height (missing values, n = 3).
When used as covariates, the three missing WHtR values were
replaced with the group mean. Maternal occupation at the time
of the child’s birth was used as an indicator of socioeconomic
status (SES) obtained from the Medical Birth Register from
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the National Institute for Health and Welfare (THL) (28), and
mothers were categorized as upper-level employees, lower-level
employees, manual workers, students, or other. We obtained
information on the history of cavitated caries lesions and gingival
health from THL’s national Register of Primary Health Care visits,
which includes data on dental examinations, to which all Finnish
children are invited. The oral health data were available for 324
(71.5%) children. Based on the DMFT index (29) (number of
decayed, missing, or filled teeth on permanent dentition; missing
values, n = 159), 228 (70.4%) children were categorized as having
no history of cavitated caries lesions (DMFT = 0) for whom
oral health data were available, while 96 (29.6%) children had
a history of cavitated caries lesions (DMFT > 0). Based on the
community periodontal index of treatment needs (30) (CPITN;
missing values, n = 159) indicating gingival health status, 112
(34.67%) children were categorized as having good oral hygiene
(CPITN = 0) and 212 (65.4%) children had poor oral hygiene
(CPITN = 1–2) (missing values, n = 159). Oral health was
examined within± 12 months of saliva sampling.

16S rRNA Gene Amplicon Sequencing
and Bioinformatics Analysis
The saliva sampling procedure and 16S rRNA gene sequencing
are detailed elsewhere (24). In brief, children provided an
unstimulated saliva sample during the school day using the
Oragene R© DNA (OG-500) Self-Collection Kit (DNA Genotek
Inc., Ottawa, Ontario, Canada). Saliva samples were mixed
with a stabilizing reagent within the collection tube and
stored at room temperature per the manufacturer’s instructions.
After an intensive lysis and mechanical disruption protocol of
microbial cells, genomic DNA was extracted using a CMG-
1035 saliva kit and Chemagic MSM1 nucleic acid extraction
robot (PerkinElmer) (24) and the V3–V4 variable regions of
the 16S rRNA gene were amplified with primers [S-D-Bact-
0341-b-S-17 (5′ CCTACGGGNGGCWGCAG 3′) and S-D-Bact-
0785-a-A-21 (5′ GACTACHVGGGTATCTAATCC 3′)] (31). The
Truseq (TS)-tailed 1-step amplification protocol was used to
amplify the 16S rRNA gene (32). The concentration of the
resulting DNA was measured using the Agilent 2100 Bioanalyzer
(Agilent Technologies Inc., Santa Clara, CA, United States).
The 2 × 270 bp paired-end sequencing of the PCR amplicons
was carried out on the Illumina HiSeq1500 platform (Illumina
Inc., San Diego, CA, United States). High-quality sequences were
processed on the mothur pipeline (v.1.35.1) and reads were
aligned using the Silva 16S rRNA reference database (V119),
and clustered at >98% homology to identify the operational
taxonomic units (OTUs). The bacterial taxa were recognized at
the genus level based on sequencing data from previous Fin-
HIT studies (24). We calculated alpha diversity indices (Shannon
index, inverse Simpson index, and Chao1 index), as well as the
beta diversity using Bray–Curtis distances with the R package
“vegan” (R version 1.4.1106, package version 2.5-7).

Statistical Analyses
We performed the chi-square test to compare the categorical
background characteristics and the independent samples t-test to

compare the continuous background characteristics between low
and high sweet treat consumption groups. Results are shown as
counts and percentages (%), or as means and standard deviations
(SDs). These analyses were performed using the SPSS statistical
program, version 26 (IBM Corp., Armonk, NY, United States).

We compared the alpha diversity between the low and
high sweet treat consumption groups using the analysis of
variance (ANOVA) and covariance (ANCOVA) with the R
package “stats” (version 4.0.3), while differences in the microbial
community composition (beta diversity) were compared
using the permutational multivariate analysis of variance
(PERMANOVA; R package “vegan,” version 2.5-7). Results
are shown for the crude as well as adjusted models, which
we adjusted for sex, age, WHtR, and maternal SES. Sex was
previously identified as a major contributor to saliva microbiota
(24). Sugar intake may contribute to central obesity (33), leading
us to include the WHtR. For visualization, we plotted the beta
diversity with the principal coordinates analysis (PCoA) using
the Bray–Curtis dissimilarity index. Moreover, we performed
a sensitivity analysis in which we compared the alpha and beta
diversities in a subgroup of 324 children for whom we had
complete data on the oral health variables, and adjusted further
for caries status and gingival health status to examine the possible
distracting effect of caries and gingivitis. In the entire sample,
we identified differentially abundant OTUs at the genus level
using general linear models with a negative binomial distribution
using the DESeq2 function incorporated in the R package
“phyloseq” (version 1.34.0), correcting the p-values using the
false discovery rate (FDR). These analyses were performed using
version 1.4.1106 of the R software program. We set the level of
statistical significance to p < 0.05.

Analysis of Metabolic Pathways
We predicted the functional potential of saliva microbiota
using the Phylogenetic Investigation of Communities by
Reconstruction of Unobserved States (PICRUSt2; version 2.0.0-
b.2) (34) and used the MetaCyc database as the pathway
reference. We identified the differentially present pathways
between groups of low and high sweet treat consumption
with STAMP (v.2.1.3) (35) using the Welch’s test applying the
Bonferroni correction as well as the FDR-adjusted (Benjamini-
Hochberg correction) p-value of 0.05.

RESULTS

Participant Characteristics
The mean (SD) age of children was 11.7 (±0.3) years, with
53.2% of whom were girls. The majority (98.3%) spoke either
Finnish or Swedish (the national languages in Finland) as
their native language, with a likely similar ethnic background.
Table 1 summarizes the characteristics of participants based
on low and high sweet treat consumption. Low and high
sweet treat consumption groups exhibited similar background
characteristics; they differed modestly based on age (p = 0.044),
but not based on any other background variable including oral
health status (p > 0.05).
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TABLE 1 | Participant characteristics by low and high sweet treat consumption
(n = 453).

Low High p

n = 227 n = 226

Age in years, mean (SD) 11.65 (± 0.34) 11.72 (± 0.36) 0.044a

Missing, n 0 0

BMI z-scoreb, mean (SD) 0.11 (± 1.02) -0.03 (± 1.00) 0.138a

Missing, n 0 0

WHtRc, mean (SD) 0.43 (± 0.04) 0.42 (± 0.04) 0.284a

Missing, n 3 3

Maternal SESd, n (%) 0.435e

Upper-level employees 103 (45.4%) 94 (41.6%)

Lower-level employees 81 (35.7%) 89 (39.4%)

Manual workers 17 (7.5%) 19 (8.4%)

Students 19 (8.4%) 12 (5.3%)

Other 7 (3.1%) 12 (5.3%)

Missing, n 0 0

Caries statusf, n (%) 0.627e

No 119 (71.7%) 109 (69.0%)

Yes 47 (28.3%) 49 (31.0%)

Missing, n 61 68

Gingival health statusg, n (%) 0.483e

Healthy 54 (32.5%) 58 (36.7%)

At risk 112 (67.5%) 100 (63.3%)

Missing, n 61 68

aResults from independent samples t-test.
bAge- and sex-specific BMI z-scores calculated based on measured height and
weight (27).
cWaist–height ratios calculated by dividing waist circumference by height.
dMaternal occupation at the time of child’s birth from the Medical Birth Register
from the National Institute for Health and Welfare (28).
eResults from the chi-square test or Fisher’s exact test.
f Caries status based on dichotomous scores of decayed (D), missing (M) due to
caries, and filled (F) permanent teeth (DMFT): no, no history of cavitated caries
lesions; yes, history of cavitated caries lesions.
gGingival health status based on Community Periodontal Index for Treatment
Needs (CPITN) values: healthy = 0, at risk = 1 or 2.
BMI, body mass index; SES, socioeconomic status; WHtR, waist–height ratio.

Alpha and Beta Diversities
We observed no differences in the alpha diversity between low
and high sweet treat consumption in terms of the Shannon
index, the inverse Simpson index, or the Chao1 index in a crude
model nor in a model adjusted for sex, age, WHtR, and maternal
SES (p > 0.05 for all; Figure 1). In contrast, the beta diversity
of saliva microbiota differed between low and high sweet treat
consumption in a crude model (R2 = 0.011, p = 0.001) as well
as in a model adjusted for age, sex, WHtR, and maternal SES
(R2 = 0.011, p = 0.001; Figure 2).

The sensitivity analyses regarding the alpha and beta
diversities among children for whom information was available
on caries and gingival health status produced similar results
as those for the entire sample. The alpha diversity in terms
of the Shannon index, the inverse Simpson index, and Chao1
index did not differ between the low and high sweet treat

consumption groups (p > 0.5 for all; Supplementary Figure 1).
The beta diversity differed between the low and high sweet treat
consumption groups in a crude model (R2 = 0.015, p = 0.001)
and in a model adjusted for sex, age, WHtR, maternal SES,
caries status, and gingival health status (R2 = 0.015, p = 0.001;
Supplementary Figure 2).

Differentially Abundant Taxa
The six most abundant phyla in the entire sample
were Firmicutes (52.2%), Bacteroidetes (17.9%),
Proteobacteria (16.3%), Actinobacteria (7.0%), Candidate
division TM7 (3.5%), and Fusobacteria (2.9%), accounting for
99.8% of saliva microbiota in all participants. Since adjusting
for covariates did not affect the alpha and beta diversity results,
we conducted further abundance analysis without adjustments.
We identified differences in the relative abundance of bacteria
at the genus level according to sweet treat consumption in
a total of 37 OTUs whose abundance differed significantly
(Table 2). Compared with the low sweet treat consumption
group, we observed a higher abundance of Veillonella, Prevotella,
Streptococcus, Megasphaera, Campylobacter, and Selenomonas,
and a lower abundance of several genera such as Haemophilus,
Parvimonas, Anaerovorax, Treponema, Staphylococcus, and
Fusobacterium in the high sweet treat consumption group
(FDR-adjusted p < 0.05; Table 2).

Since adding the oral health variables as covariates in
the sensitivity analysis did not change the alpha and beta
diversity results, we conducted no further analyses on the
abundance or functional capacities in the subsample with the
oral health data.

Functional Capacities of Saliva
Microbiota
Since the relative abundance of various taxa differed between
groups, we studied their overall effects on saliva microbiota.
We predicted the functional capacities of the microbiota
and, using the Bonferroni correction method, discovered two
metabolic pathways (Figure 3) that were more abundant in
the high sweet treat compared with the low sweet treat
consumption group: assimilatory nitrate reduction IV (adjusted
p = 0.02) and anaerobic gondoate biosynthesis (adjusted
p = 0.034). When adjusting the FDR using the Benjamini-
Hochberg method, we found 82 metabolic pathways that were
differentially present in children with low and high sweet treat
consumptions (FDR-adjusted p < 0.05). These results appear in
Supplementary Figure 3.

DISCUSSION

In this study of Finnish children aged approximately 12 years
old, we found differences in the composition and functional
capacities of saliva microbiota between those with low sweet
treat consumption and those with high sweet treat consumption.
As sweet treats, we considered a range of commonly consumed
sugary drinks and foods, reflecting a relevant health-related
eating behavior instead of individual food items. The groups
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FIGURE 1 | Violin plots of the alpha diversity in the saliva microbiota in children with low (n = 227) and high (n = 226) sweet treat consumption for (A) Shannon index,
(B) Inverse Simpson index, and (C) Chao1 index. Adjusted p-value based on an analysis adjusted for sex, age, waist–height ratio, and maternal socioeconomic
status. Results from ANOVA and ANCOVA.

did not differ in terms of their oral health. We identified
no differences in the alpha diversity between groups, whereas
different compositions of saliva microbiota were observed. We
also found several genera differentially abundant in the group
with a high sweet treat consumption. Therefore, we sought to
identify their effects by predicting their functional capacities.
We uncovered two metabolic pathways relating to nitrate and
gondoate metabolism highlighted in the group with a high sweet
treat consumption.

We found no difference in the diversity and richness of
saliva microbiota between low and high sweet treat consumption
frequencies. In a study among 11-year-old Chinese children,
30 children reporting daily consumption of sugar-sweetened
beverages presented with less rich and diverse oral microbiota
when compared with 150 children who consumed such beverages
less than six times a week (17). By contrast, a study measuring
the intake of free sugars among young Danish adults found
no difference in the alpha diversity between low (<5% of
total energy intake [E%]) and high intake (≥5E%) groups
(14). In that study, they measured the amount rather than the
frequency of intake, finding that even the high consumption
group exhibited a mean intake below the recommendation
of no more than 10E% (36). The different measurements of

sugar consumption in these studies may partly explain the
differing results.

In contrast to the diversity, we found that the composition
of microbiota differed according to sweet treat consumption.
A relative abundance analysis revealed 37 differentially abundant
OTUs, indicating that sugar consumption (measured as a
use frequency of sweet treats) is a relevant predictor of
the composition of saliva microbiota. We observed OTUs
belonging to the core taxa including Veillonella, Prevotella, and
Streptococcus (37) enriched in the group with a high sweet treat
consumption. Although part of the core microbiota, these genera
may associate with oral diseases (38–40). Veillonella species
are non-motile anaerobic bacteria in the phylum Firmicutes,
abundantly found in the oral cavity (41). Some oral Veillonella
species have been associated with the development of caries,
periodontitis, peri-implantitis, and other oral diseases (38, 42),
and, for example, V. parvula associates with severe early
childhood caries (43). However, some Veillonella species. convert
lactic acid to weaker acids, possibly diminishing caries (41).
Moreover, they can convert nitrate into nitrite, which is favorable
to oral health. As an early colonizer in the oral cavity, Veillonella
play a critical role in guiding the development of polymicrobial
biofilm communities in the oral microenvironment (42).
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FIGURE 2 | Principal coordinates analysis (PCoA) based on the Bray–Curtis distances (beta diversity) according to low (n = 227) and high (n = 226) sweet treat
consumption. Results based on PERMANOVA. Adjusted p-value from a model adjusted for sex, age, waist–height ratio, and maternal socioeconomic status.

Prevotella are among the most dominant and abundant bacteria
in the oral cavity with moderately saccharolytic abilities (44).
Furthermore, Prevotella have been connected to early childhood
caries (40), and P. intermedia was shown to be characteristic in
patients with periodontitis (45).

Streptococci form a part of the core microbiota in the
oral cavity, with the majority of Streptococcus species being
acidogenic and/or acid-tolerant (46). Such bacteria have the
ability to metabolize carbohydrates through fermentation
and produce acids as well as efficiently colonize oral tissues
(39). S. mutans is a well-known cariogenic species (47),
and, while present in a healthy mouth, its abundance
increases with the growing availability of sucrose (15).
Sucrose increases the biomass of S. mutans in the biofilm
through an acidic environment and intra- and extracellular
polysaccharide synthesis (48), with frequent exposure to
dietary sugar acidifying the microenvironment on the teeth
leading to enamel demineralization (39). In addition to
S. mutans, S. sobrinus is another species linked to caries

(39). By contrast, some Streptococcus species can neutralize
acidity by producing alkali, as well as producing hydrogen
peroxide and antimicrobial compounds (39), thus inhibiting
the growth of S. mutans. In a healthy mouth, a balance between
cariogenic bacteria and non-cariogenic commensal bacteria
exists. Haemophilus is another common inhabitant of the
oral cavity, including H. parainfluenzae, which appears to
carry some beneficial immunomodulatory effects (49). Then
again, H. influenzae is a well-known pathogen (50). Here, we
noticed a lower abundance of Haemophilus in the high sweet
treat consumption group compared with the low sweet treat
consumption group.

We found Treponema and Staphylococcus were less abundant
in the high sweet treat consumption group compared with
the low sweet treat consumption group. Treponema has
been associated with periodontitis as well as correlating
positively with inflammatory cytokines in these patients (51).
Although T. denticola belongs to the red complex, which is
considered the most destructive group of periodontal pathogens

Frontiers in Nutrition | www.frontiersin.org 6 April 2022 | Volume 9 | Article 864687

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/
https://www.frontiersin.org/journals/nutrition#articles


fnut-09-864687 April 18, 2022 Time: 13:37 # 7

Lommi et al. Saliva Microbiota and Sugar Consumption

TABLE 2 | List of differentially abundant OTUs at genus level (or closest taxa)
according to sweet treat consumption.

OTU Nearest taxa Base mean Log2fold
change

p

Otu000002 Veillonella 4131.816 +0.486 0.010

Otu000005 Prevotella 2265.019 +0.699 0.001

Otu000007 Micrococcineae 1921.206 −0.340 0.025

Otu000011 Streptococcus 1028.093 +0.407 0.040

Otu000020 Megasphaera 423.199 +0.598 0.006

Otu000021 Campylobacter 299.759 +0.317 0.032

Otu000022 Prevotellaceae 270.280 −0.503 0.016

Otu000031 Coriobacterineae 158.380 +0.465 0.008

Otu000032 Oribacterium 157.283 −0.272 0.035

Otu000036 Leptotrichia 86.499 −0.406 0.030

Otu000039 Haemophilus 78.997 −0.974 0.030

Otu000048 Catonella 59.865 −0.365 0.009

Otu000050 Johnsonella 57.463 −0.502 0.001

Otu000043 Prevotella 48.113 +0.614 0.016

Otu000047 Selenomonas 46.146 +0.645 0.016

Otu000055 Prevotella 39.515 −1.151 1.48E−05

Otu000061 Candidate division SR1 39.140 −1.033 0.042

Otu000083 Parvimonas 18.304 −0.665 0.025

Otu000100 Actinomycetales 13.005 +0.627 0.030

Otu000102 Prevotella 11.857 +1.078 0.003

Otu000106 Candidate division SR1 10.820 −0.717 0.040

Otu000082 Prevotellaceae 10.341 −4.487 0.010

Otu000108 Peptostreptococcaceae 9.542 −1.051 8.34E−05

Otu000117 Peptococcus 7.913 −0.645 0.028

Otu000123 Johnsonella 5.371 −1.430 1.11E−06

Otu000134 Veillonella 4.640 −0.694 0.001

Otu000126 Anaerovorax 2.997 −4.207 0.001

Otu000154 Oribacterium 2.845 −0.471 0.041

Otu000175 Treponema 2.246 −1.230 0.009

Otu000174 Veillonella 2.063 −0.901 0.005

Otu000190 Micrococcineae 1.603 −1.004 0.016

Otu000210 Prevotella 1.579 +1.254 0.009

Otu000189 Staphylococcus 1.323 −1.137 0.040

Otu000211 Fusobacterium 1.125 −0.806 0.037

Otu000232 Veillonella 1.061 −0.614 0.042

Otu000240 Streptococcus 0.990 −0.627 0.030

Otu000242 Haemophilus 0.869 −0.665 0.040

A positive log2fold change value indicates a higher abundance, while a negative
value indicates a lower abundance in the high sweet treat consumption group
(n = 227) compared with low consumption (n = 226). P-value adjusted for
false discovery rate.
Base mean refers to the mean of normalized counts across all samples.
OTU, operational taxonomic unit.

(52), and is commonly found in patients with periodontal
diseases, other Treponema species associate with periodontal
diseases as well (53). By contrast, S. epidermidis was found
enriched in caries-free children (54), and some antibiotic-
resistant S. epidermis have been identified in the dental plaque
of healthy individuals (55). Then, again, pathogenic species
S. aureus has been linked to several oral diseases such as
periodontitis (56). The clinical relevance of these findings
remains unclear.

When we predicted the functional capacities of the microbiota,
we found two metabolic pathways—nitrate reduction and
gondoate biosynthesis—enriched in the group with a high sweet
treat consumption. Nitrate metabolism has been associated
with a lower occurrence of caries and gingival inflammation,
and appears to participate in the maintenance of host oral
and systemic health (57). Nitrate (NO3

−) appears to inhibit
the salivary acidification resulting from glucose ingestion.
Denitrifying oral bacteria reduce nitrate to nitrite (NO2

−)
and further to nitric oxide (NO), which has antimicrobial
properties and can possibly limit the growth of certain bacteria
affecting the composition of the biofilm (57). Nitrite can be
reduced to ammonium as well and the presence of nitrate
in the oral cavity and is associated with a decrease in the
production of lactate and an increase in the production of
ammonium. This may result in neutralizing pH and further
protect from caries. Moreover, the enterosalivary nitrate–nitrite–
nitric oxide pathway depends on oral nitrate-reducing bacteria,
and these bacteria contribute to the storage pool of nitrite and
nitric oxide in the blood and tissues, consequently positively
influencing the host’s physiological status such as blood pressure
(58). Dietary sugars, especially in the form of sugar-sweetened
beverages, may impact blood pressure (59). Taken together, the
nitrate reduction pathway may be upregulated to neutralize
acidity resulting from frequent sugar consumption. This may
in part explain the similar caries status we found in low and
high sweet treat consumption groups. Gondoate is a long-
chain unsaturated fatty acid, and its biosynthesis pathway was
enriched in the saliva microbiota of adult patients with oral
squamous cell carcinoma (60). In the gut microbiome, gondoate
biosynthesis decreased during the exacerbation of Crohn’s disease
(61). The clinical relevance of our findings that the gondoate
pathway upregulates in the high sweet treat consumption group
remains unclear.

We adjusted the alpha and beta diversity analyses for age,
sex, waist–height ratio, and maternal SES. These potential
confounders did not influence the alpha and beta diversities,
indicating that sweet treat consumption independently impacts
microbial diversity and composition at least in the saliva. In
addition, we ran a sensitivity analysis among those children
for whom information on their oral health was available (the
DMFT index to indicate a history of cavitated caries lesions and
CPITN to indicate gingival health), and adjusted the alpha and
beta diversity analyses further for these variables. In this study,
these were utilized as dichotomous variables, and adjusting for
them changed neither the alpha nor the beta diversity results.
Given the nature of the dichotomous variables, we were unable to
identify those with more severe oral health problems. However,
we found some OTUs related to oral infection-associated genera
at a higher abundance in the high sweet treat consumption
group. Oral health was examined on average 4.3 (±2.2) months
prior to or after saliva sampling, but this was unlikely to have
impacted these results.

The strengths of the study include the large number of
children in the Fin-HIT cohort study conducted across Finland
as well as the anthropometric measurements and saliva sampling
completed by trained fieldworkers. Moreover, data relating to
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FIGURE 3 | Proportions of differentially active metabolic pathways between children with a low and high sweet treat consumption. Metabolic pathways were
predicted using PICRUSt2 and analyzed with STAMP. Differences in mean proportions are shown with 95% confidence intervals. Results based on Welch’s test,
p-values using the Bonferroni correction. Only pathways with adjusted p-value < 0.05 are shown. PWY490-3 = nitrate reduction IV (assimilatory),
PWY-7663 = gondoate biosynthesis (anaerobic) from MetaCyc (https://metacyc.org/).

oral health were obtained from objective and reliable national
health care registers. Another strength of our study lies in
our use of a summed variable, indicating the consumption
of several different types of sugary drinks and foods. Yet,
we acknowledge that this measurement was not capable of
capturing all possible sources of added sugar. Nonetheless,
this study carries some potential limitations as well. There
was a lack of standardization in saliva sampling in relation
to the time of day or meal, although sampling was carried
out primarily in the morning after breakfast, but before lunch.
The timing of food intake may influence the diurnal variation
of microbiota (62), although microbial profiles were found to
remain stable for 24 hours and even for a week (63). We
had no information on the putative cases with a low saliva
flow rate, possibly impacting microbiota (20). Furthermore, our
data do not include information on dental hygiene habits. To
overcome this, we considered CPITN as a reflection of such
habits. Not assessing smoking represents a minor limitation,
given that smoking is extremely rare among Finnish 12-
year-old children (64). Food consumption information was
assessed through a short, self-administered food frequency
questionnaire, and while it is feasible in a large cohort of
school-aged children, it does not provide detailed information
on the components of the diet. Moreover, misreporting is
possible when measuring food consumption. Then, again, food
frequency questionnaires rank participants according to their
food consumption (65), which we achieved here. Data on saliva
microbiota were based on 16S rRNA gene amplicon sequencing
and the Silva reference database,1 which provide species-level
identification of bacteria for only some OTUs. Moreover, we
relied on sequencing data from previous Fin-HIT studies (24),
and thus, were limited to a genus-level analysis. Species-level
identification of the bacteria would have been beneficial. We
had no information on total bacterial loads, possibly relevant for
this topic (66, 67). In addition, the functionality of microbiota
was predicted using PICRUSt2, which provides >80% reliability
to pathway discovery (34, 68). Some methodological challenges
may be overcome using shot-gun metagenomic approaches
instead (69).

1https://www.arb-silva.de/

To conclude, this study revealed that sweet treat consumption
shapes saliva microbiota and its functions in school-
aged children. The frequent consumption of sweet treats
associated with a differentially abundant microbiota as
well as with differentially expressed metabolic pathways.
Our findings improve our understanding of the impact of
sugary diets on the oral microbiome and can be used to
target future studies.
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