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Endothelial protein C receptor (EPCR), cannabinoid receptor 2 (CBR2), and estrogen
receptor α (ERα) play vital roles in osteoblasts proliferation. Also, collagen peptides
have osteoblasts proliferation stimulation abilities, and di/tri-peptides could be absorbed
by the intestine more easily. This study obtained three di/tripeptides with potential
osteoblasts proliferation stimulation abilities of yak bone collagen, namely, MGF, CF,
and MF, by in silico screening. Results suggested that these three peptides exhibited
good absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties.
They also had strong affinities with EPCR, CBR2, and ERα, and the total -CDOCKER
energy (-CE) values were 150.9469, 113.1835, and 115.3714 kcal/mol, respectively.
However, further Cell Counting Kit-8 (CCK-8) assays indicated that only MGF could
significantly (P < 0.05) stimulate osteoblasts proliferation at 0.3 mg/ml. At the same time,
the proliferating index (PI) of the osteoblasts treated with MGF increased significantly
(P < 0.05), and the alkaline phosphatase (ALP) activity decreased highly significantly
(P < 0.01). In summary, MGF exhibited the potential to be an effective treatment
for osteoporosis.

Keywords: yak bone collagen, di/tripeptides, osteoblasts proliferation, in silico screening, molecular docking

INTRODUCTION

Osteoporosis is a systemic skeletal disease characterized by low bone mass and destruction of
bone microstructure, which will result in a high risk of bone fragility and susceptibility to fracture
(1, 2). About 590 million people over the age of 60 suffer from osteoporosis worldwide (3). The
situation may worsen with the increasing aging of the world population, resulting in an enormous
economic and social burden (4). Previous studies have demonstrated that it is an effective method
for improving osteoporosis with bone collagen peptides (5–7).

Researchers have confirmed that osteoblasts proliferation could increase the number of
osteoblasts and then contribute to the improvement of osteoporosis (8). Recent reports have shown
that peptides derived from food could stimulate osteoblasts proliferation via epidermal growth
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factor receptor (EGFR) (9, 10). Ye et al. (11) reported that
yak bone collagen peptides (YBCPs) could promote osteoblasts
proliferation by inducing EGFR dimerization. Except for EGFR,
receptors such as EPCR, CBR2, and ERα can also influence
osteoblasts proliferation. For instance, activated protein C (APC)
can stimulate osteoblasts proliferation through binding to EPCR
(12); miR-187-3p can promote osteoblastic precursor cells
proliferation by regulating CBR2 expression (13); also, estradiol
can promote osteoblasts proliferation by ERα-mediated Wnt/β-
catenin signal pathways (14). However, their potential to be the
receptors of peptides with osteoblasts proliferation stimulation
abilities has been seriously ignored.

Compared with other oligopeptides (<hexapeptides),
di/tripeptides usually have a higher absorption level (15).
Matsui (15) reported that di/tripeptides could be transported
through H+-coupled peptide transporter 1 (PepT1), and their
transportability may be 1,000-fold higher than pentapeptides.
Besides, di/tripeptides are more stable against digestive enzymes’
degradation because fewer peptide bonds make them hard to be
recognized by the gastrointestinal protease (16). There is more
research showing that di/tripeptides have broad physiological
activities. For example, dipeptide VY can significantly inhibit
the activity of the angiotensin-converting enzyme (ACE) (17);
tripeptide WIR has a potential anti-Alzheimer’s disease effect
(18); and dipeptide YL exhibits antidepressant-like activities
in mice (19). However, surprisingly less research was on
di/tripeptides with osteoblasts proliferation stimulation abilities.
The possible reason was that most studies on anti-osteoporosis
peptides still followed the traditional methods (a process
involving preparation, isolation, and characterization), requiring
much labor and costs (20–22). In silico methods may increase
the screening efficiency and avoid the weakness of traditional
approaches to some extent (23).

Yak is a unique livestock animal on the Qinghai-Tibetan
Plateau (24). Yak bones, rich in collagen and minerals, have been
used to strengthen bones in Tibetan medicine from ancient times
(25). Our previous studies have demonstrated that polypeptides
from yak bone collagen could promote osteoblasts proliferation
(11). To identify di/tripeptides with osteoblasts proliferation
stimulation abilities of yak bone collagen, in silico screening
and molecular docking were performed. First, the sequence
of the α1 and α2 chains of yak collagen-I was downloaded
and digested virtually. Subsequently, di/tripeptides with good
ADMET properties and potential proliferation stimulation
abilities were obtained through bioactivity prediction, ADMET
prediction, and molecular docking targeted on EPCR, CBR2,
and ERα. Then, the proliferation stimulation abilities of these
peptides were verified by CCK-8, cell cycle, and ALP assays.
Moreover, the interaction mechanisms between di/tripeptides
and targets were analyzed via molecular docking results.

MATERIALS AND METHODS

Materials and Reagents
MC3T3-E1 cell lines and differentiation-induced medium were
provided by Procell Life Science and Technology Co., Ltd.

(Wuhan, China). Fetal bovine serum (FBS) was purchased
from Zhejiang Tianhang Biotechnology Co., Ltd. (Beijing,
China). Penicillin-streptomycin (P/S) was obtained from
Yuan Ye Biotechnology Co., Ltd. (Beijing, China); 0.25%
trypsin/EDTA and α-Minimum Essential (α-MEM) were
purchased from Epsilon Technology Co., Ltd. (Shanghai, China).
ALP assay kit was provided by Beyotime Biotechnology Co., Ltd.
(Shanghai, China). CCK-8 reagent was purchased from Beijing
Solarbio Biotechnology Co., Ltd. (Beijing, China). Propidium
iodide was obtained from Biotopped Biotechnology Co., Ltd.
(Beijing, China).

Methods
Enzymolysis Simulation of Yak Bone Collagen
Collagen-I is the primary type of animal bone collagen with
a triple-helical structure consisting of two α1 chains and one
α2 chain (26). The sequence of the α1 chain (NCBI accession
number: ELR60286) and α2 chain (NCBI accession number:
ELR46121) (27) of yak collagen-I was downloaded from the NCBI
database.1 Three common proteases in food laboratories, namely,
proteinase K, pepsin, and trypsin, were used for enzymolysis
simulation by the program ExPASy PeptideCutter.2 The protease
with most cutting sites will be used to obtain di/tripeptides.

Bioactivities Prediction
The bioactivities of di/tripeptides released from yak collagen-
I were predicted by the online tool PeptideRanker3 (28). The
peptides with prediction scores≥ 0.5 were used for further study.

Absorption, Distribution, Metabolism, Excretion, and
Toxicity Prediction
According to the instruction, the ADMET properties of
these peptides were predicted by Discovery Studio 2019
(BIOVIA). In detail, bad valencies were fixed after sketching the
primary structures of peptides. Then, the “aqueous solubility,”
“cytochrome P4502D6 inhibition,” “hepatotoxicity,” and “human
intestinal absorption (HIA)” of peptides with prediction
scores ≥ 0.5 were predicted via ADMET predictors.

Molecular Docking
The procedure of molecular docking was based on the method
adopted by Vidal-Limon et al. (29), with a slight modification.
The crystal structures of EPCR (PDB ID: 1LQV) (30), CBR2
(PDB ID: 6PT0) (31), and ERα (PDB ID: 1X7R) (32) were
obtained from the Protein Data Bank (PDB).4 Their structures
were constructed with protein cleaning and preparation. The
docking sites were set at the binding position of the original
ligands. For peptides, CHARMm forcefield was imputed and then
minimized by the Smart Minimizer algorithm. The max steps
were set as 2,000, and the RMS gradient was 0.01. After these
pretreatments, the CDOCKER protocol of Discovery Studio 2019
(BIOVIA) was used for molecular docking.

1https://www.ncbi.nlm.nih.gov/
2http://web.expasy.org/peptide_cutter/
3http://distilldeep.ucd.ie/PeptideRanker/
4http://www1.rcsb.org/
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Synthesis of Di/Tripeptides
Peptides MGF, CF, and MF were synthesized chemically by
Beijing Protein Innovation Co., Ltd. (Beijing, China) and were
characterized by the liquid chromatography-mass spectrometry
(HPLC-MS) method. The HPLC conditions were as follows:
The inject volume was 10 µl, and the detection wavelength was
220 nm. A flow rate of 1.0 ml/min was utilized on a Thermo
Fisher HPLC equipped with a Kromasil 100-5C18 (4.6 mm,
250 mm, 5 µm). Buffer A was 0.1% trifluoroacetic acid (TFA) in
acetonitrile, and buffer B was 0.1% TFA in water. Elution started
with 20% buffer A followed by a gradient to 45% buffer A for
20 min and then a gradient to 80% buffer A for 0.1 min. The
purity of all synthesized peptides was more than 98%.

Cell Counting Kit-88 Assay
MC3T3-E1 cells were cultured in α-MEM medium containing
1% P/S and 10% FBS and incubated at 37◦C in a humidified
atmosphere with 5% CO2. The procedure of cell proliferation
assays was based on the method adopted by Che et al. (33),
with a slight modification. MGF, CF, and MF were dissolved
in the α-MEM medium containing 1% FBS and 1% P/S. Then,
MC3T3-E1 cells were seeded in a 96-well plate at a density of
2 × 103/well. After 24 h of adherence and 24 h of starvation,
the cells were treated with peptides MGF, CF, and MF at
concentrations ranging from 0 to 1.0 mg/ml for 72 h, respectively.
The relative proliferative rate was measured according to the
instructions provided by the CCK-8 reagents supplier (Solarbio,
Beijing, China).

Cell Cycle Assay
The procedure of cell cycle assays was based on the method
adopted by Liu et al. (5), with a slight modification. MC3T3-
E1 cells were seeded in a 6-well plate and treated with peptide
MGF (0.30 mg/ml) and CF (1.00 mg/ml) for 72 h, respectively.
Then, the cells were collected and washed twice with precooling
PBS. Afterward, the cells were fixed with 75% ethanol for
12 h and washed twice with precooling PBS. Their DNA
contents were stained with propidium iodide and analyzed
by the flow cytometer (CytoFLEX, Beckman, United States).
The proliferation index was calculated based on the following
equation (34):

Proliferation index (PI) (%) =
S+G2/M

G0/G1+S+G2/M
× 100 (1)

Alkaline Phosphatase Activity Assay
The procedure of ALP activity assays was based on the method
adopted by Zhu et al. (7), with a slight modification. Peptides
MGF and CF were dissolved in the differentiation-induced
medium containing 1% FBS and 1% P/S. MC3T3-E1 cells were
treated with peptide MGF (0.30 mg/ml) and CF (1.00 mg/ml) for
120 h, respectively. Their ALP activities were measured according
to the instruction of the ALP assay kit supplier (Beyotime,
Shanghai, China). The absorbance was detected at 405 nm using
a microplate reader (Eon, BioTek, United States).

Statistical Analysis
All experiments were repeated at least three times. The data were
presented as mean value ± standard deviation and analyzed by
one-way ANOVA of SPSS 22.0 software (SPSS Inc.). Significant
level was set at P < 0.05 and P < 0.01.

RESULTS AND DISCUSSION

Sequence Analysis of Yak Bone Collagen
and Enzymolysis Simulation
Based on the sequence information of yak collagen-I provided
by the NCBI database5 (Supplementary Figure 1), the α1 chain
was found to consist of 1,459 amino acids, and the wealthiest
amino acids were glycine (26.7%), proline (19.1%), and alanine
(9.8%). Similarly, the α2 chain consisted of 1,366 amino acids,
and the wealthiest amino acids were also glycine (27.9%), proline
(17.2%), and alanine (9.0%). The sequence of both α1 chain
and α2 chain was consistent with the typical collagen sequence
(Glycine -X-Y)n, where X was usually a proline (35). The
hydrophilicity and hydrophobicity of the α1 chain and α2 chain
were analyzed by ProtScale6 (36). As shown in Figure 1A, the
highest and lowest amino acid scale values of the α1 chain
were 2.633 and -3.200, respectively. Also, the values of the α2
chain were 2.467 and -2.733, respectively (Figure 1B). The larger
positive value indicated the greater hydrophobicity, while the
smaller negative value indicated the greater hydrophilicity (37).
This result suggested that unwinding yak bone collagen-I could
be soluble in water and hydrolyzed by proteases, which was
consistent with previous studies (21, 38, 39).

Many proteases have been used to prepare bone collagen
peptides, such as papain, trypsin, and pepsin. It was a prerequisite
to choose a protease with most cutting sites because more
di/tripeptides could be obtained. Three common proteases in
food laboratories, namely, trypsin, proteinase K, and pepsin,
were selected to predict their yak bone collagen-I hydrolysis
capacities. Pepsin, a kind of aspartic protease rich in polar and
aspartic acid residues (40), has different enzyme cutting sites at
different pH values. Therefore, the hydrolysis capacity of pepsin
was considered, respectively, at pH > 2 and pH 1.3. According
to the data given in Table 1, both α1 chain and α2 chain of
yak collagen-I could be hydrolyzed by these three proteases.
For the α1 chain, cleavage sites ranged from 87 to 425. Pepsin
(pH 1.3) had the lowest hydrolysis ability, while proteinase K
had the highest hydrolysis ability. Similarly, the α2 chain could
also be hydrolyzed more completely (with 417 cleavage sites) by
proteinase K than the other two proteases. Hence, proteinase K
was used to obtain di/tripeptides.

Bioactivity Prediction for Di/Tripeptides
As indicated in Supplementary Table 1, after the enzymolysis
simulation by proteinase K, 83 di/tripeptides were derived from
the α1 chain, and 79 di/tripeptides were derived from the α2
chain of yak bone collagen-I. However, 48 peptides were repeated.

5https://www.ncbi.nlm.nih.gov/
6https://web.expasy.org/protscale
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FIGURE 1 | Hydrophobicity distribution of the amino acids of α1 chain (A) and α2 chain (B) of yak collagen-I.

TABLE 1 | The cutting sites number of proteases.

Number

Protease α1 chain α2 chain Total

Proteinase K 425 417 842

Trypsin 119 116 235

Pepsin (pH > 2) 115 127 242

Pepsin (pH 1.3) 87 104 191

So, the total number of di/tripeptides was 114. PeptideRanker,
an online prediction tool, was used to predict the potential
bioactivity of peptides. The prediction scores ranged from 0.0
to 1.0, where “0.0” indicates unlikely, and “1.0” indicates highly
likely (41). Using PeptideRanker, Ding et al. (42) identified
antioxidant peptides YSSPIHIW (0.74), ADLYNPR (0.65), and
HYDSEAILF (0.53) from pea protein. Liu et al. (43) identified
α-glucosidase inhibitory peptides KVIISAPSKDAPMF (0.50),
SQHISTAGMEASGTSN MKF (0.51), and STFQQMW (0.77)
from Changii Radix. Yu et al. (44) identified peptides ADM (0.52)
and ADW (0.82) from Oncorhynchus mykiss nebulin as bitter
taste receptor blockers. We believed that peptides with prediction
scores ≥ 0.5 were worth studying in this work. The molecular
weight and bioactivity prediction score of these 114 peptides were
included in Supplementary Table 1. There were 41 peptides with
bioactivity prediction scores ≥ 0.5, and they would be used for
ADMET predictions and molecular docking.

Absorption, Distribution, Metabolism,
Excretion, and Toxicity Prediction and
Molecular Docking
It is crucial to predict the ADMET properties in the search
for lead compounds since some compounds may have poor
aqueous solubility, and others may be toxic or have poor
absorbency. These unexpected properties can lower research
assurance and increase the overall program cycle and costs.
Therefore, four ADMET properties of peptides, namely, aqueous
solubility, cytochrome P4502D6 inhibition, hepatotoxicity, and

HIA, were predicted by ADMET predictors of Discovery Studio
2019 (BIOVIA). Aqueous solubility is an important index that
affects small peptides’ absorbability. Small peptides with good
aqueous solubilities tend to have high biological availability (45).
As shown in Supplementary Table 2, there were 16 dipeptides
and 25 tripeptides for ADMET predictions in total. They had
a similar or better aqueous solubility prediction compared with
some reported bioactive di/tripeptides, such as ACE and DPP-
IV inhibitory peptides ADF, MIR, and FGR from egg proteins
(46). This endowed them with good drug-like properties. As an
essential part of Phase-I metabolism, cytochrome P4502D6 could
oxidize xenobiotics to increase their excretion from the body (47).
The results suggested that all peptides could assimilate in Phase-
I metabolism and have no drug-drug interactions since they did
not exhibit cytochrome P4502D6 inhibition effects. This property
was consistent with DMG, an ACE inhibiting tripeptide from
soy proteins reported by Zhao et al. (48). However, 32 peptides
showed hepatotoxicity and poor HIA (HIA > 1). In this case,
the remaining 7 dipeptides (MF, CF, GF, ML, SF, GY, MA) and
2 tripeptides (MGF and PGF) with good ADMET properties
were used for CDOCKER docking. -CE value, having a positive
relationship with the stability of ligand-receptor complexes
(14), was used to evaluate the affinity between peptides and
receptors (EPCR, CBR2, and ERα). According to data given in
Supplementary Table 2, the total -CE value ranged from 97.561
to 150.9469 kcal/mol. Tripeptide MGF had the biggest total -
CE value with 150.9469 kcal/mol. There was little difference in
the total -CE of dipeptide MF (113.1835 kcal/mol), CF (115.3714
kcal/mol), and GY (113.6556 kcal/mol). GY (HIA = 1), however,
had a poorer HIA prediction compared with CF (HIA = 0)
and MF (HIA = 0). Therefore, we speculated that MGF, CF,
and MF had good ADMET properties and potential osteoblasts
proliferation stimulation abilities.

Effect of Peptides on MC3T3-E1 Cells
Proliferation
The effect of MGF, CF, and MF on MC3T3-E1 cells proliferation
was determined by the CCK-8 method. MGF had a significant
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FIGURE 2 | Effect of peptide MGF, CF, and MF on MC3T3-E1 cells’ proliferation. (A) Group treated with MGF for 72 h. (B) Group treated with CF for 72 h. (C) Group
treated with MF for 72 h. ∗P < 0.05, #P < 0.01.

(P < 0.05) proliferation stimulation ability at 0.30 mg/ml and
exhibited good concentration-dependent effects (Figure 2A).
CF, however, had a poor proliferation stimulation ability,
and it could highly significantly (P < 0.01) suppress
MC3T3-E1 cells proliferation at 0.80 and 1.00 mg/ml
(Figure 2B). In the meantime, MF had no stimulation
or suppression activity at concentrations ranging from 0
to 1.00 mg/ml, indicating that it may be a false-positive
result (Figure 2C). Therefore, MGF and CF were used for
further studies.

Effect of Peptides on MC3T3-E1 Cells’
Proliferating Index and Alkaline
Phosphatase Activity
The effect of MGF and CF on MC3T3-E1 cells’ PI was
further investigated by the flow cytometer. As indicated in
Figures 3A,B,D, the PI of MC3TE-E1 cells significantly increased
(P < 0.05) after treatment with MGF for 72 h, suggesting
that the proportion of cells in the division stage increased.
So, the osteoblasts proliferation stimulation effects of yak bone
collagen peptides may attribute to the transformation of the
cell cycle. This conclusion was consistent with the previous
studies conducted by Liu et al. (5) since their studies also
showed that the G1 phase of osteoblasts treated with bovine bone
collagen peptides significantly decreased. Similarly, CF exhibited
an opposite effect on the PI of osteoblasts (Figures 3A,C,D).
ALP activity is the marker of early osteogenic differentiation
(49). As shown in Figure 3E, the ALP activities of MC3T3-
E1 cells treated with MGF and CF for 120 h both highly
significantly (P < 0.01) decreased, which was different from
other studies (7, 10). This result indicated that MGF might
have a long-term proliferation-promoting effect since cells in
the division stage have a poor differentiation ability. Adenosine
30,50-cyclic monophosphate (cAMP) and guanosine 30,50-cyclic
monophosphate (cGMP) signaling pathways have an opposite
effect on cell proliferation and differentiation. Zhang et al.
(50) found that the elevation of intracellular cAMP could
enhance bone morphogenetic protein (BMP) action and increase

the ALP activity of osteoblastic cells in experimental animals.
Therefore, the long-term proliferation-promoting effect of MGF
may attribute to the concentration of intracellular cAMP being
lower than cGMP. CF, however, could also suppress the ALP
activities of osteoblasts, indicating that it might be the antagonist
of these receptors, which was consistent with the CCK-8 and
cell cycle assays.

Molecular Interaction Mechanism of
MGF, CF, and Receptors
The above results show that MGF and CF had an opposite
effect on osteoblasts proliferation. To elucidate the reasons for
this difference, molecular docking was performed to investigate
the binding mode of MGF, CF, and receptors. Their molecular
interaction mechanism was displayed, respectively, in the
form of 2D images.

The binding of peptides and EPCR could be Ca2+ dependent
since Ca2+ may help position peptides to facilitate non-bond
interactions with EPCR. As shown in Figure 4A, there were 3
common non-bond interactions of peptides and EPCR, namely,
hydrogen bonds, electrostatic interactions, and hydrophobic
interactions. The non-bond interaction between MGF and
residue Leu82 of EPCR was alkyl interaction. At the same time,
CA37, CA41, and CA47 formed metal-acceptors with MGF.
CF was bound to EPCR by hydrogen bonds, pi-anion, and pi-
cation interactions. Gln85 formed a hydrogen bond with CF,
and Glu86 formed a pi-anion interaction. CA37 and CA40 made
contact with CF by pi-cation interactions. The metal-acceptor
interactions between CA37, CA41, and CF were also important.
Unfavorable positive-positive interaction, however, was formed
between Arg81 and CF (Figure 4B).

The EPCR is a multifunctional and multiligand receptor
expressed highly in the endothelium lining blood vessels (51, 52).
It can activate protein C (PC) to form activated protein C (APC,
a signaling molecule downregulating thrombin generation) in a
Ca2+-dependent manner (30, 53). However, an essential function
of EPCR has been largely ignored in recent years. Studies
conducted by Kurata et al. (12) showed that APC could promote
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FIGURE 3 | Effect of peptide MGF and CF on MC3T3-E1 cells’ PI and ALP activity. (A) Control group. (B) Group treated with MGF for 72 h. (C) Group treated with
CF for 72 h. (D) PI of MC3T3-E1 cells treated with MGF and CF. (E) ALP activity treated with MGF and CF for 120 h. ∗P < 0.05, #P < 0.01.

FIGURE 4 | Molecular interactions of MGF, CF, and EPCR. (A) Molecular interactions of MGF and EPCR. (B) Molecular interactions of CF and EPCR.
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FIGURE 5 | Molecular interactions of MGF, CF, and CBR2. (A) Molecular interactions of MGF and CBR2. (B) Molecular interactions of CF and CBR2.

FIGURE 6 | Molecular interactions of MGF, CF, and ERα. (A) Molecular interactions of MGF and ERα. (B) Molecular interactions of CF and ERα.

osteoblasts proliferation through activating p44/42 MAP kinase
by binding to EPCR. We found that some di/tripeptides, such
as MGF, could have a similar effect with APC in this study.
Moreover, the activity differences between MGF and CF may
attribute to the different binding residues.

Molecular Interaction Mechanism of
MGF, CF, and Cannabinoid Receptor 2
As shown in Figure 5A, three residues (i.e., Ser90, Phe91,
and Thr114) of CBR2 formed 4 hydrogen bonds with MGF
(Thr114 formed 2 hydrogen bonds). In addition, the interactions
of Tyr190, Tyr194, and MGF were pi-sulfur and pi-cation
interactions, respectively. His95, Pro184, Ile186, Tyr190, Leu191,

and Trp194 were bound with MGF by hydrophobic interactions.
CF was bound to CBR2 by hydrogen bonds (Thr114), pi-cation
interactions (Trp194), pi-pi stacked interactions (Phe117), and
pi-alkyl interactions (Cys288) (Figure 5B).

Cannabinoid receptors are essential parts of the
endocannabinoid system. There are two types of cannabinoid
receptors, namely, cannabinoid receptor 1 (CBR1) and CBR2, in
the human body (54). Drugs targeted in CBR2 may treat many
disorders and avoid the psychiatric side effects of CBR1 (55).
HU-308, a CBR2-specific agonist, can alleviate the Ti-induced
decrease in osteoblast survival, mineralization capability, ALP,
and osteocalcin activity (56). In this study, we found that both
MGF and WIN 55,212-2 (a CBR2-specific agonist) could bind
with residues Phe91, His95, Pro184, and Ile186 of CBR2 (31).
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Also, there were two same interaction sites (i.e., Thr114 and
Trp194) of MGF and CF. Xing’s research (31) showed that
Trp194, Phe117, and Trp258 of CBR2 played essential roles
in distinguishing agonist (WIN 55,212-2) from the antagonist
(AM10257), indicating that the peptides may have a different
activation mechanism of CBR2. The result suggested that
Thr114 and Trp194 played an essential role in the peptide-
binding process, while other binding sites may determine the
activity difference.

Molecular Interaction Mechanism of
MGF, CF, and Estrogen Receptor α
The results of Figure 6A suggested that MGF formed hydrogen
bonds with Glu353 (also attractive charge interaction), Leu387,
and Met388. The interactions of Leu346, Ala350, Phe404, Leu525,
and MGF were maintained by hydrophobic interactions and pi-
sulfur interaction. CF formed 3 hydrogen bonds with Glu353
(also attractive charge interaction) and Leu346. It also formed 2
pi-alkyl interactions with Ala350 and Leu525. All these residues
were included by the MGF binding (Figure 6B).

ERα is a nuclear transcription factor that can regulate many
human physiological processes (57). It has been reported that
ERα can induce osteoblasts proliferation following estradiol
stimulation (58). Based on this, we speculate that MGF can
promote osteoblasts proliferation via ERα. All residues of ERα

that interacted with MGF were also included by the catechin
(an ERα modulator)—ERα interactions (59). The result suggested
that Glu353, Leu346, Ala350, and Leu525 residues were critical
for ERα-binding peptides, while Leu387, Met388, and Phe404
residues could contribute to peptides’ osteoblasts proliferation
stimulation effect.

CONCLUSION

This study identified three di/tripeptides with potential
osteoblasts proliferation stimulation abilities from yak bone
collagen, namely, MGF, CF, and CF, by in silico screening.
Among them, MGF showed significant (P < 0.05) MEC3T3-E1
cells’ proliferation-promoting activities (the relative proliferation
rate was 116.32%) after the treatment for 72 h at 0.3 mg/ml,
which was consistent with the results of in silico screening.

The proliferation-promoting effect of MGF may attribute to its
particular binding sites with EPCR (Leu82), CBR2 (Ser90, Phe91,
His95, Pro184, Ile186, Tyr190, and Leu191), and ERα (Leu387,
Met388, and Phe404). The result suggested that MGF could be
used as a lead compound for anti-osteoporosis drugs. However,
in vivo assays are needed to validate the in silico prediction results.
Other potential bioactivities of MGF are also needed for further
exploration.
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