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The automatic recognition of food on images has numerous interesting applications,

including nutritional tracking in medical cohorts. The problem has received significant

research attention, but an ongoing public benchmark on non-biased (i.e., not scraped

from web) data to develop open and reproducible algorithms has been missing. Here, we

report on the setup of such a benchmark using publicly available food images sourced

through the mobile MyFoodRepo app used in research cohorts. Through four rounds,

the benchmark released the MyFoodRepo-273 dataset constituting 24,119 images

and a total of 39,325 segmented polygons categorized in 273 different classes. Models

were evaluated on private tests sets from the same platform with 5,000 images and

7,865 annotations in the final round. Top-performing models on the 273 food categories

reached a mean average precision of 0.568 (round 4) and a mean average recall of 0.885

(round 3), and were deployed in production use of the MyFoodRepo app. We present

experimental validation of round 4 results, and discuss implications of the benchmark

setup designed to increase the size and diversity of the dataset for future rounds.

Keywords: deep learning, benchmark, food recognition, images, artificial intelligence (AI)

For almost all of human history, the main concern about food centered around one single goal: to
get enough of it. Only in the past few decades has food ceased to be a limited resource for many.
Today, food is abundant for most—but not all—inhabitants of high- and middle-income countries,
and its role has correspondingly changed. Whereas the main goal of food used to be to provide
sufficient energy, today, the main public health challenges are the avoidance of excessive calories,
and the nutritional composition of diets.

The health burden of diets at the population level is increasingly well understood. Diets leading
to excess weight and obesity are thought to be at least partially responsible for chronic disease
mortality and morbidity associated with non-communicable diseases (NCD) (1). The nutritional
composition of diets is strongly linked to health outcomes. For example, diets high in sodium, low
in whole grains, low in fruits, low in nuts and seeds, and low in vegetables, are associated with the
highest number of deaths attributable to diet at the global level. As the “EAT-Lancet Commission
onHealth Diets from Sustainable Food” noted, unhealthy diets now pose a greater risk to morbidity
and mortality than unsafe sex, and alcohol, drug, and tobacco use combined (2).
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While the link between diet and health at the population
level is increasingly clear, there is at the same time a
growing understanding that things are not quite so simple
at the individual level. How exactly individuals’ diets affect
their health is only poorly understood. For example, recent
research focusing on a post-meal glucose, a specific biomarker
and risk factor of type II diabetes, has shown that there
is substantial individual variability in glycemic response to
identical meals (3). This suggests that the effect of diet on
health outcomes is modulated through various other factors
(such as the microbiome composition), and that generic diet
recommendations may be of limited use. As a consequence, the
concept of personalized nutrition has emerged, which aims to
adjust diets to the individual in order to maximize the positive
effect on health outcomes.

Furthermore, the increasingly recognized importance of the
microbiome and its relation to diet have put nutrition once again
on the radar of cutting-edge medical research. For example, it has
been shown that the gut microbiota affects the immune system,
drug metabolism, and the effect of immune therapies against
cancer (4–6). The fact that diet affects the gut microbiome is
well-established (7), but the exact mechanisms are not yet well
understood. Recent years have seen numerous studies addressing
the causal relationships between food and health outcomes, and
more research is expected in this area (8).

However, research in dietary patterns faces an important
obstacle: the accurate measurement of food intake. Traditionally,
the measurement of food intake has involved methods such as
food frequency questionnaires, or 24 h recalls. These methods
have been widely used, but are known to have substantial
problems. In recent years, digital alternatives have appeared,
hoping to leverage the ease-of-use of many mobile applications.
Applications that simply allow study participants to enter
their food intake manually via text, however, do not provide
significant advantages in terms of ease-of-use over paper-based
methods, as text entry on mobile devices is cumbersome.
More promising are applications that scan the bar codes
of food products, and subsequently extract the nutritional
content from associated databases. Perhaps the most promising
are applications leveraging the enormous advances in image
recognition in the past few years. The act of taking a picture of
food presents the least burden for a participant, but it provides a
formidable technical challenge to correctly extract the nutritional
content from an image alone, as it requires the recognition of the
food and the amount from image data.

Here, we provide an overview of an approach developed
to tackle this problem. The approach is based on the notion
that accurate food image recognition is feasible, but can not
easily be solved in one single go, and instead requires iterative
improvements over time. It is further based on the notion
that a crowd-sourced approach with properly aligned incentives
can efficiently leverage machine learning know-how around the
world, providing a much broader intellectual attention to the
problem than the classical “single group” research approach. Last,
but certainly not least, the approach is based on open data and
open source models, where the necessary data to train the models
are provided as open data (licensed under the Creative Commons

CC-BY-4.0 license), and the code of the submitted models have to
be released under an open-source license of choice in order to be
eligible for prizes. Currently, the images in the open data set have
been collected through the use of the MyFoodRepo mobile app,
which is used in medical cohorts in Switzerland, and increasingly
in other countries as well.

The result of this approach is the continuous AIcrowd Food
Recognition Benchmark, which we describe here in detail. We
then describe solutions to the problem provided by the winning
submissions to the recently finished round 4 of the benchmark.
Finally, we will describe open challenges, and next steps.

1. RELATED WORK

The use of machine learning for recognition of food in images
has had a renewed momentum because of introduction of
novel datasets like UEC-FOOD101 (9), UEC-FOOD256 (10),
UEC-FoodPix (11), UEC-FoodPixComplete (12), etc. The UEC-
FOOD101 and UEC-FOOD256 datasets primarily focus on
the food classification task with the assumption that each
image has a single food item, and the goal is to be able to
predict a food class for each image received. Both datasets also
include bounding box locations for the food item in the picture
to enable researchers attempting object detection. The UEC-
FoodPix and UEC-FoodPixComplete datasets introduces the
Food Image Segmentation task with a dataset of 10,000 images
which includemultiple food items per image, and associated pixel
wise segmentation masks. The Food Image Segmentation task
involves being able to accurately identify multiple food items in
the same image, and draw accurate boundaries for each of the
food items. With the maturity of Deep Learning, the Food Image
Segmentation task has started to deliver promising results on a
task that was previously considered extremely complex. Pishva et
al. (13) demonstrate the feasibility of segmenting and classifying
73 kinds of bread from images of break on a plate. While the
results are impressive, the dataset is collected using a fixed camera
setting, where the bread is put at the center of a unicolor plate.
With uniform background, the segmentation task is a relatively
easier problem that the real world counterparts. A usable Food
Image Segmentation approach will have to address numerous
real world aspects of the problem, including, but not limited
to, multiple food items on a place, different shapes/textures of
the food items, overlapping food items, images obtained from
arbitrary camera placements, and uneven lighting conditions.
Ciocca et al. (14) introduce the UNIMID2016 dataset which
includes the multi-food setting, however the images were taken
in a laboratory setting where each food item is placed on a
separate plate and all the plates are placed on a tray—making the
segmentation task relatively easier. Aguilar et al. (15) introduced
the usage of deep learning in food image recognition, by applying
YOLOv2, DarkNet-19 on the UNIMIB2016 dataset to eventually
obtain a precision of 0.841. With the emergence of large datasets,
and cheap compute, deep learning algorithms have become a
popular choice for problems where the principal modality of
the data are images or text. Mask R-CNN (16) has been a
popular approach for instance segmentation tasks. Ye et al.
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(17) used Mask R-CNN with MobileNet and ResNet for food
segmentation by handpicking 10 food categories from the MS
COCO dataset. Using the said dataset, Ye et al. (17) did a
comparative analysis of deep learning architectures (Mask R-
CNN with MobileNet and ResNet), vs Multi-SVM; eventually
demonstrating that Mask R-CNN with ResNet outperformend
Multi-SVM by a significant margin. Freitas et al. (18) reported
results from various experiments with different deep learning
architectures (including Mask R-CNN, DeepLab V3, SegNet,
ENet) on a proprietary dataset of Brazilian food items. They
demonstrate that Mask R-CNN outperforms the rest of the
approaches, with a mAP of 0.87, whereas the rest of the methods
scored a mAP of <0.79.

The performance of modern deep learning approaches highly
depends on the size and the quality of the dataset. The results of
the instance segmentation task in theMS COCOBenchmark (19)
only reiterate the same thought. Large real world datasets of food
images along with high quality human annotations are finally
enabling classification, detection, and instance segmentation of
food items as accessible problems which yield usable tools. The
data made available through the benchmark described here is
unbiased in the sense that MyFoodRepo users took pictures
of their food continuously in order to track their nutrition in
the context of a research cohort. This is in stark difference
to food images posted to the web or social media, which are
typically shared because they are aesthetically pleasing, and
datasets consisting of images collected from these sources will be
similarly biased.

2. DATASET

2.1. Source Data
The data used in this study was made available by the
MyFoodRepo app users between July 7th 2018 and June

8th 2020. The dataset consists of 24,119 images containing
a total of 39,325 segmented polygons. The distribution of
the segments per image is as follows, shown as number of
segments in an image|number of images: 1|15,701, 2|4,397,
3|2,341, 4|1,014, 5|409, 6|160, 7|56, 8|23, 9|13, 10|3, 11|1, 12|1.
The food images are categorized in 273 different classes with
at least 35 annotations per class. The pictures taken via the
MyFoodRepo app are private by default, but users can choose
to make their anonymized images public for research purposes.
Since late 2018, the number of public pictures has been steadily
growing because theMyFoodRepo app is used by the participants
of the Swiss Food & You cohort, a personalized nutrition
study focusing on postprandial glycemic responses. The share
of public/private images has been growing in similar magnitude,
shown in Figure 1.

TheMyFoodRepo app offers three ways to track food intake:

• Manual entry
• Barcode scan
• Image of food taken with camera

The last case—data input in the form of images taken by the
phone’s camera—represents the majority of data input (~80%)
through the MyFoodRepo app.

FIGURE 1 | Cumulative number of images collected via the MyFoodRepo App

(including classes not considered in this paper).

2.2. Instance Segmentation and Class
Labeling
The resulting images are initially analyzed by an algorithm that
performs instance segmentation and food class prediction of the
segmented items as shown in Figure 2. The segmentations and
food classes are further manually assessed by human annotators
via the MyFoodRepo annotation web interface. The human
annotation was performed by expert annotators in the Digital
Epidemiology Lab specifically trained for this task. In case
of uncertainty, an annotator has the option to communicate
with the MyFoodRepo user through the app to ensure the
annotation is accurate. The combination of an initial annotation
by the algorithm, the annotators’ expertise, and the possibility to
interact with the user for further clarifications, lead to a high-
confidence data set necessary for research purposes. Because
of the need for efficiency, each image was only handled by
one human annotator. The resulting data set shows a fat-tailed
distribution of images per class (Figure 3) with variable images
sizes (Figure 4). The co-occurence matrix of 26 food classes
which have a co-occurrence of more than 40 instances across
the publicly available dataset is shown in Figure 5. The human
assessment mainly consists of redrawing instance segment
annotations and correcting class assignments. If the algorithmic
analysis led to an incorrect or missing segmentation, or predicted
the wrong food class, the human annotator will provide manual
corrections. This human correction and verification step is
critical for quality assurance. The MyFoodRepo app is used in
multiple medical cohort studies, and a high accuracy of the
data annotation is of paramount importance. At the same time,
every additional verified annotation helps grow the high-quality
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FIGURE 2 | Sample images and corresponding annotations for some of common food classes in myFoodRepo dataset.

training dataset which is subsequently used to improve the deep
learning models for food image recognition. These improved
models can then be used by the MyFoodRepo app to better assist
the annotators. Over time, this cycle is expected to decrease the
time spent by human annotators per image, and thus allows for a
higher and higher data throughput while maintaining quality.

This assisted annotation approach leads to a bi-modal
distribution in terms of the number of points per annotated
polygon across all the annotated polygons as shown in Figure 6.
Human annotators often draw polygons consisting of around
eight points for reasons of efficiency, whereas the instance
segmentation algorithms predict polygons with much a higher
number of points.

The food classes were primarily derived from the first
Swiss national survey on nutrition, “menuCH” (20) that was
conducted using the validated Globodiet tool. However, during
the productive use of the MyFoodRepo in medical cohorts in

Switzerland, the scope of this food class list was found to be
insufficient, and new food classes where created on the go
when MyFoodRepo users uploaded pictures of food items not
belonging to any yet existing class.

2.2.1. Benchmark

The food recognition benchmark was designed as an initiative
to engage a broader community of researchers to train better
models for food recognition, which in turn are used to
assist the annotators, catalyzing the process of creating much
larger annotated datasets needed to train better models for
food recognition.

The benchmark relies on the MyFoodRepo app’s users
to report their daily food intake (Figure 7-1). The images
collected by the MyFoodRepo app are then processed by
the Food Recognition API (Figure 7-2) to generate instance
segmentation and classification annotations for the images. The
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FIGURE 3 | Distribution of number of annotations available across the food

classes in the dataset. The individual food class names are not mentioned for

readability. The public release of the dataset was done in three phases—the

first phase of the public release consisted of the images from the top-40

classes, the second phase of the public release consisted of the images from

the top-61 classes, and the third phase of the public release consisted of the

images from the top-273 classes.

FIGURE 4 | Distribution of the image width and image height in the public

dataset.

annotated images are then passed on to a team of annotators
(Figure 7-3) who enrich the quality of those annotations by
redrawing certain segments, correcting mislabeled food classes,
or manually annotating instances of food items that were
missed by the algorithm in the Food Recognition API. This
process generates the MyFoodRepo dataset. The MyFoodRepo

dataset has a public component (Figure 7-4b) and a private
component (Figure 7-4a), depending on the privacy preferences
of the users of the app. The public dataset, along with the
corresponding annotations, is provided as a training set for
the community (Figure 7-5) of participants, who analyze the
dataset and train their models (Figure 7-6) using the dataset.
The trained models are then subsequently submitted to AIcrowd
for evaluation (Figure 7-7), which generates the leaderboard for
the participants. The leaderboard (Figure 7-8) acts as a feedback
for participants who use the feedback signal to improve their
models, and who continue to submit their improved models to
the AIcrowd evaluators. The AIcrowd evaluators use the private
version of the MyFoodRepo dataset (Figure 7-3a) to evaluate
the submissions, hence ensuring that the submitted models are
evaluated in a setting that is a close to the real world as possible.
The best models on the leaderboard are automatically deployed
as an API (Figure 7-2) by the AIcrowd evaluators. The API
then continues to assist the annotators to annotate a larger
number of images, more accurately, more efficiently and much
faster, leading eventually to a much larger public training dataset
available for participants to train their models. The improved
models are then submitted by the participants to the evaluators,
which feed an improved leaderboard and an improved food
recognition API for the annotators.

The first iteration of the Food Recognition Benchmark was
organized across four different rounds.

2.2.1.1. Round 1

Round 1 of the Food Recognition Benchmark started on
10th October 2019 and ended on 31st December 2019. This
round focused on the 40 food categories which had at-
least 35 annotations each. The training dataset(train-v0.1)
consisted of 5,545 images and 7,735 annotations. The test
dataset(test-v0.1) had 1,959 images and 2,176 annotations.

2.2.1.2. Round 2

Round 2 of the Food Recognition Benchmark started on 28th
January 2020 and ended on 17th May 2020. This round focused
on the 61 food categories which had at-least 35 annotations each.
The training dataset(train-v0.2) consisted of 7,949 images
and 11,468 annotations. The test dataset(test-v0.2) had 3,115
images and 3,667 annotations.

2.2.1.3. Round 3

Round 3 of the Food Recognition Benchmark started on
1st September 2020 and ended on 8th January 2021. This
round focused on the 273 food categories which had at-
least 35 annotations each. The training dataset(train-v0.4)
consisted of 24,119 images and 39,325 annotations. The test
dataset(test-v0.4) had 5,000 images and 8,061 annotations.

2.2.1.4. Round 4

Round 4 of the Food Recognition Benchmark started on 15th
January 2021 and ended on 1st March 2021. This round
continued to focus on the same problem formulation as Round-
3 and had 273 food categories which had at-least 35 annotations
each. The training set was the same as Round-3, and a new test set
containing 5,000 images and 7,865 annotations was introduced.
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FIGURE 5 | Co-occurrence matrix of 26 food classes which have a co-occurrence of more than 40 instances across the publicly available dataset. When computing

the co-occurrence matrix, the self co-occurrence values were not considered, and for illustration purposes, it has been artificially set to a value slightly above the

maximum co-occurrence values across all the classes in consideration.

FIGURE 6 | Distribution of the Number of Points across all the polygons

(instance segmentation annotations). For the sake of clarity, this plot excludes

a small fraction of the annotations with number of points higher than 1,500.

The training dataset released as a part of Round 3 and Round
4 constitute the MyFoodRepo-273 dataset and is accessible
at: https://www.aicrowd.com/challenges/food-recognition-
challenge/dataset_files.

The test dataset across all the rounds will not be publicly
released as it is composed of the private MyFoodRepo dataset.

The benchmark will continue to use the round specific test sets to
evaluate future submissions to the specific rounds.

2.2.2. Evaluation Metrics

Intersection over Union (IoU) is used to describe the extent
of overlap of two boxes, with 1 indicating that they are the
same and 0 indicating no overlap. It is defined as the area of
overlap divided by the area of union. If a prediction has an IoU
> 0.5 with a ground truth annotation of the same class it is
considered to be a true positive, otherwise a false positive. For a
single class, we can create a Precision/Recall Curve based on the
confidence scores of the predictions. The area under this curve
is the Average Precision (AP). Mean Average Precision (mAP) is
the AP averaged over all of the classes. Average Recall (AR) is the
recall averaged over IoU thresholds from 0.5 to 1. Mean Average
Recall (mAR) is AR averaged over the different classes. As it is a
single metric which includes the trade-off between precision and
recall mAP is typically used to measure the accuracy of object
detection and instance segmentation tasks.

In line with the tradition established by the PASCAL VOC
Challenge (21) we usemAP andmAR to evaluate the results. The
IoU in PASCAL VOC is computed on bounding box predictions
for object detection tasks, and in case of the Food Recognition
Benchmark, we compute the IoU from the overlap of the instance
segmentation masks instead.
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FIGURE 7 | A high level design for Food Recognition Benchmark. Section 2.2.1 contains a detailed explanation of the all the individual components of the Benchmark

and how they interact with each other.

2.2.3. Benchmark Statistics

The first iteration of the Food Recognition benchmark saw
participation from 1,065 participants (as of 17th April, 2021)
from 71 countries. A total of 2,603 submissions were made,
amounting of approximately 2.5 TB of user-submitted code and
models. The best model in round 1 had a mean average precision
of 0.573 and a mean average recall of 0.831. The best model
in round 2 had a mean average precision of 0.634 and a mean
average recall of 0.886. The best model in round 3 had a mean
average precision of 0.551 and a mean average recall of 0.885.
The best model in round 4 had a mean average precision of 0.568
and a mean average recall of 0.767. The results from each round
are reported in Table 1.

3. METHODS

The methods section summarizes the best solutions that were
explored in the context of the Food Recognition benchmark.
Most of the instance segmentation methods follow the same
anatomic pipeline and usually consist of two stages. The first stage
of the pipeline focuses on extracting the feature maps from the
input image and later use these features to propose the interesting

regions that may contain the object. The second stage is a parallel
network of different predicting heads, where Classification,
Bounding Box, Masking are done for the interesting region. The
participants in the competition explored various architectures
including Mask R-CNN (16), Hybrid Task Cascade (HTC) (22),
Cascade R-CNN (23), DetectoRS (24).

In the experiments reported in this manuscript, we evaluate a
subset of the said architectures: Hybrid Task Cascade (22), and
Mask R-CNN (16).

We observe that the cascade models provided significantly
better performance than the other models, with HTC providing
the best performance. This led us to focus on using HTC with
two different backbones—ResNet 50, ResNet 101 (25). We also
provide comparative study of the performance of Mask RCNN
model with three different backbones—ResNet 50, ResNet 101,
and ResNext 101 (25).

Mask R-CNN is a simple and flexible extension of Faster R-
CNN (26) to perform instance segmentation. Faster R-CNN can
efficiently detect objects in an image, and with a few changes,
Mask R-CNN can do the same and also able to generate a
good segmentation mask for each instance of an object. Mask
R-CNN does this by adding a mask head in parallel to the
head responsible for making classification and regression. It is
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TABLE 1 | Mean Average Precision (mAP) and mean Average Recall (mAR) scores from the best submissions received across the four rounds of the Food Recognition

Benchmark.

Number of

food categories

Number of

training images

Number of

training annotations

Mean average precision

IoU >0.5

Mean average recall

IoU >0.5

Round 1 40 5,545 7,735 0.573 0.831

Round 2 61 7,949 11,468 0.633 0.886

Round 3 273 24,119 39,325 0.551 0.884

Round 4 273 24,119 39,325 0.568 0.767

These results include results from ensembling approaches used by participants, which are not used in our (reproducible) experiments, the results of which are reported in Table 2.

among the first few methods to perform end-to-end instance
segmentation. Stage 1 of Mask R-CNN extracts the feature
maps using the help of a Feature Pyramid Network (FPN)
backbone architecture with the help of well-known CNN-based
architectures such as ResNet50, ResNet101, etc. FPN network
creates a lateral connection with the various residual blocks. It
provides a top-down pathway by using semantically rich layers
to make higher-resolution layers. The Region Proposal Network
(RPN) network then proposes thousands of regions which are
then checked if they are a foreground or background. Regions
predicted as background are discarded and foreground regions
are called as Regions of Interest (RoI). These RoIs are then passed
through the RoIAlign (16) which aligns the extracted features
with the input. The RoI is then passed to the second stage
which performs the classification and predicts a bounding box
of the proposed region. The same RoI is passed to the masking
head in parallel which predicts the binary mask for the object
in RoI. Mask R-CNN is a single-stage detector, trained with a
lower threshold such as 0.5 IoU. It results in producing many
noisy predictions.

Cai and Vasconcelos (23) proposed the very first multi-
stage object detection architecture which encapsulates a sequence
of detectors. They are trained with growing IoU thresholds
to enables the network to make smart decisions over close
false positives. The sequence of detectors also called a cascade
is proved to work better than all other single-stage object
detectors. Even after this intuitive idea of the cascade, it
misses the relationship between detection and segmentation.
Chen et al. (22) on the other hand take full advantage of
the reciprocal relationship between the different heads, here,
detection and segmentation. Hybrid Task Cascade is different
in several aspects. Instead of executing bounding box regression
and masking in parallel, it interleaves. It includes a straight path
that reinforces the flow of information between mask branches
by feeding the previous stage’s mask features to the present one.
It also adds semantic segmentation and combines it with the
bounding box and masking branch. It seeks to investigate more
contextual information. Overall, these changes to the framework
architecture increase the flow of information not only between
stages but also across tasks.

FPN uses the lateral connections to the bottom-up layers in
CNN architecture which helps in looking at the image once or
twice. DetectoRS (24) is a state-of-the-art instance segmentation
algorithm, which is an extension of (22) and focuses only
on the backbone architecture of Hybrid Task Cascade. At the

macro level, they proposed Recursive Feature Pyramid (RFP)
which is built on top of Feature Pyramid Network (FPN). RFP
creates feedback connections from the FPN layers into the
bottom-up backbone layers. Unrolling this recursive network to
a sequential will help look at the input image more than twice.
This change recursively improves the FPN to generate a more
powerful feature representation, improving the performance. At
the micro-level, they propose Switchable Atrous Convolution
(SAC). It uses the switch functions to gather the results obtained
by convolving the same input features with varying atrous rates.

3.1. Preprocessing
Exploratory data analysis on the annotated images in the dataset
revealed some issues. A very small number of images containing
disoriented instance segmentation masks were removed from
the training set. Numerous annotations included bounding
boxes which did not match the corresponding segmentation
masks. This would present a problem for cascade models
which used both the masks and the bounding boxes as labels,
so all of the bounding boxes for all annotations in both
the train and validation sets were re-computed to match the
segmentation masks.

3.2. Data Augmentation
To avoid over-fitting, we used fairly aggressive data
augmentation, powered by the albumentations library (27).
The dataset contains images in a wide range of sizes, ranging
from 183 × 183 to over 4,000 × 4,000. However, 50% of the
images are between 480 × 480 and 852 × 852, with only 20%
smaller than 400 × 400 or larger than 973 × 973. Accordingly,
we used multi-scale training with the sizes ranging from 480 ×

480 to 960 × 960. Random horizontal flip was used along with
random rotation. As some objects in images (such as glasses of
water) depend on their orientation, we kept rotation to between
4 and 12 degrees. Random shifting and scaling were also used,
as well as perspective augmentations. As the resolution of the
training images varies greatly, random JPEG compression was
applied. Random hue, saturation, brightness, contrast, blur,
median blur, and Gaussian noise were also used.

Many of the classes are very similar and very difficult to
distinguish even for a human. On the assumption that the only
way to distinguish between such classes as peppermint tea and
herbal tea was through subtle differences in coloring, we kept
color-related augmentations to a minimum. Accordingly, a small
amount of RGB shift was used with a low probability.
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3.3. Experiment Configuration
We altered mmdetection’s default learning rate decay schedule
to use a gamma of 0.5 instead of 0.1, but the learning rate was
decayed using a more frequent schedule than the default.

Test time augmentation (TTA) was performed using
mmdetection’s MultiScaleFlipAug to evaluate each image at
three sizes and two horizontal flips. The sizes were chosen
as the lower and upper ends of the sizes used for multi-scale
training and the midpoint between those two values. This means
that each image was evaluated six times. This produced a large
number of detections, many of them overlapping, resulting in a
large number of false positives.

3.4. Model Ensembles
Casado-Garcia et al. (28) propose methods to ensemble the
results of multiple object detection models. Their method groups
detections by class and overlapping IoU > 0.5, then uses one of
several methods to determine which groups to keep, and finally
retains the detection with the highest score from each retained
group. While we are interested in the masks, their method
operates on bounding boxes and calculating the IoU of the masks
proved to be impracticable within a reasonable amount of time.
However, for this purpose the bounding boxes were found to be
an acceptable proxy for the grouping and merging of predictions.

Our methodology for merging predictions used the same
grouping function proposed by Casado-Garcia et al. (28), but
the subsequent steps were tailored for this problem. Since many
of the masks have unusual, non-compact shapes, which results
in large bounding boxes, we wanted to favor larger boxes over
smaller ones. To do this, we assigned each detection a weight
which was calculated by multiplying the area by the score, then
non-maximum suppression (NMS) was performed using this
weight rather than the confidence score. After each group had
been reduced to one detection, the remaining detection was
assigned the maximum of the scores in the group.

The application of this method of merging results resulted
in an increase in mAP when applied to the output of a single
model. We believe that this is due to the removal of redundant
predictions resulting from TTA. The top scoring submissions
were ensembles of multiple models, which had their predictions
merged using the same method. As we did not replicate
the multi-model ensembles, we leave further discussion to
future work.

3.5. Negative Results
We also explored numerous approaches, which did not yield
significant results. We would like to document these negative
results for completeness.

We trained a separate image classification model and used
its predictions to condition the predictions made by the object
detection and instance segmentation predictions. This approach
did not lead to any significant gains in the detection results. We
also attempted to create an ontology of the food classes, and
used the same to hierarchically filter out the outputs. Even if we
had strong expectations of result improvements, there were no
significant gains observed. We used the co-occurrence matrices
of all different food classes to identify similar food categories

(i.e., different types of tea, or different types of bread) and
then attempted to group together predictions from the same
category as the dominant category in the group, or as a randomly
selected category in the group. Separately, we also used the co-
occurrence matrices to filter out the final predictions. Both the
approaches did not yield any significant improvement in the
results. We attempted to remove non-overlapping predictions of
the same class, tried using the agreement between various models
to determine which detections to keep, and to remove or merge
detections which are completely contained in a separate detection
of the same class—without any significant gains in the detection
results in any of the approaches.

We also explored using class weights for the classification
loss, which surprisingly did not work. We believe that the main
difficulty in applying any sort of post-processing to the results is
the fact that the correct classifications often have very low scores.
The success in the segmentation task, and the difficulty in the
classification task indicates the need for much larger training
dataset sizes, especially in case of the class distributions across
273 categories.

4. RESULTS

4.1. Benchmark Results
Table 1 outlines the best mAP and mAR scores received from
the best submissions across the four rounds of the Food
Recognition Benchmark. In round 1, the problem formulation
focused on 40 food categories, the best submission received a
mAP of 0.573 and a mAR of 0.831. In round 2, the problem
formulation focused on 61 food classes, and the best submission
received a mAP of 0.633 and mAR of 0.886. In round 3, the
problem formulation focused on 273 classes, the best submission
received a mAP of 0.551 and a mAR of 0.884. In round 4, the
problem formulation stayed consistent with that of round 3,
and the best submission received a mAP of 0.568 and a mAR
of 0.767.

The mAP scores in round 2 (0.633) are higher than that of
round 4 (0.568). This is not a decrease in performance, as the
classification complexity significantly increased between round 2
and round 4. For the classification task in round 2, a model has
to choose between 61 food categories, while in round 4, a model
has to choose between 273 food categories—making the task
significantly harder. The problem formulation between round
3 and round 4 was kept consistent even if we had access to a
larger number of training annotations. The reason for that was
influenced by the analysis of the submissions received in the first
three rounds—where participants were focused on optimizing
the mAP scores. There were not any significant explorations
done by the participants in the direction of trading off the mAR
scores to increase the mAP scores. An immediate increase in the
available training annotations would have continued the same
trend, as it did across the previous rounds. But in this case,
participants were forced to explore the trade offs between mAR
and mAP in the final focused phase of the first iteration of the
Food Recognition Benchmark.

Additionally, Figure 8 shows the distribution of the mAP
scores from the submitted results across time, and across
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FIGURE 8 | Distribution of the mean Average Precision (mAP) scores from the submitted results across time, and across all the four rounds of the benchmark.

FIGURE 9 | Distribution of the mean Average Precision (mAP) scores and the mean Average Recall (mAR) scores across all the submissions made in the benchmark.

all the four rounds of the benchmark. Figure 9 shows the
distribution of the mAP scores and the mAR scores across
all the submissions made in the benchmark. It is to be
noted that the scores across round 1, round 2, and rounds
3 and 4 are not immediately comparable as they have
different number of food categories, which is an artifact of
any evolving benchmark. However, the scores in round 3 and
round 4 are comparable as they focus on the same problem
formulation.

4.2. Experiment Results
Table 2 outlines the mAP and mAR scores from the Mask
RCNN and HTC experiments across different experimental
configurations. The experiments were conducted on the Round
4 problem formulation and evaluated on the Round 4 test set.

In the first category of experiments, we explore the Mask
RCNN model with multiple backbones. For a Mask RCNN
model with a ResNet50 backbone, we report results separately
from experiments with the vanilla baseline model, with multi
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TABLE 2 | Mean Average Precision (mAP) and mean Average Recall (mAR) scores from the Mask RCNN and Hybrid Task Cascade(HTC) experiments across different

experimental configurations on the Round 4 problem formulation and test set.

Backbone Experiment Mean average precisionIoU>0.5 Mean average recallIoU>0.5

Mask RCNN

ResNet50

Baseline 0.473 0.707

MultiScale training 0.482 0.732

Weighted loss 0.479 0.713

Train time augmentation 0.487 0.741

Combined 0.506 0.809

ResNet101
Baseline 0.485 0.706

Combined 0.523 0.817

ResNeXt101
Baseline 0.474 0.710

Combined 0.535 0.825

Hybrid task cascade (HTC)

ResNet50
Baseline 0.484 0.800

Combined 0.525 0.861

ResNet101
Baseline 0.491 0.798

Combined 0.539 0.867

scale training, training with weighted loss, and training with
augmentations. While the results in each of the individual
experiments are comparable, with the baseline experiment
scoring a mAP score of 0.473 and a mAR score of 0.707; in
case of the combined experiment where we include all the above
mentioned aspects during the training, we get the best results for
Mask RCNNmodels with a mAP score of 0.506 and a mAR score
of 0.809. The performance gain in the combined experiments
is consistent across all experiment categories. In the rest of the
experiment categories we report the results from just the baseline
model and the combined experiments.

Across the MaskRCNN experiments, as expected, the best
results are obtained with a ResNeXt101 backbone with a mAP
score of 0.535 and a mAR score of 0.825; closely followed by the
ResNet101 backbone with a mAP score of 0.523 and a mAR score
of 0.817; and finally the ResNet50 backbone with a mAP score of
0.506 and a mAR score of 0.809.

The second category of experiments explore the HTCmodels,
which outperform the MaskRCNN models, with the ResNet50
backbone obtaining a mAP score of 0.525 and a mAR score of
0.861, and the ResNet101 backbone obtaining the best mAP score
of 0.539 and a mAR score of 0.867.

The experimental results reported are from the individual
experiments and do not include results from ensembles across
the individual models. The code for reproducing the experiments
reported in this manuscript are available at: https://gitlab.
aicrowd.com/aicrowd/research/myfoodrepo-experiments/.

5. CONCLUSION

We introduce a novel instance segmentation dataset for real
world images from 273 food classes. We reported here the
results of the first four rounds of the AIcrowd Food Recognition
Benchmark. The goal of the benchmark is to create open, stable
and reproducible food recognition algorithms for broad use. The
benchmark provided 24,119 publicly available images taken by
MyFoodRepo users and annotated by professional annotators

on the MyFoodRepo web platform. Submitted algorithms were
evaluated on private images sourced from the same app/platform.
The strength of the underlying dataset is that it has been collected
in the context of a personalized health cohort of generally healthy
subjects, and thus represents a visually unbiased sample of food
images (i.e., the images have not been selected to match any
visual criteria, as may be the case in datasets from websites or
social networks). The benchmark attracted 1,065 participants (as
of 17th April, 2021) from 71 countries, who made a total of
2,603 submissions.

The results are of direct applied use as the top-performing
algorithm is made available through an API. Since June 2021,
the MyFoodRepo app, from which the images of the benchmark
have been sourced, is using this API to annotate new images.
As described in the main text, these automatic annotations are
then verified—and corrected if necessary—by human annotators.
Because the human annotation step is the most time-consuming
part of the food annotation pipeline, improved models are
expected to reduce this bottleneck. Preliminary measurements
on the MyFoodRepo platform indicate that switching to the
top-performing model from this benchmark has resulted in a
significant reduction in annotation time (data not shown).

As the MyFoodRepo app continues to be used, and is planned
to be used in cohorts outside of Switzerland, future versions of
the benchmark are expected to be based on an ever growing
size and diversity of the dataset. In addition to classification
and segmentation, we hope to be able to also address the
problem of volume/weight estimation, a significant challenge in
food recognition.
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