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Coronavirus disease 2019 (COVID-19) is a contagious disease caused by severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) that caused millions of deaths and
lacks treatment. Although several studies have focused on the major component of
green tea, epigallocatechin 3-gallate (EGCG), which is efficient in preventing COVID-
19, systemic analyses of the anti-COVID-19 potential of green tea remain insufficient.
Here, we co-analyzed the target genes of tea ingredients and COVID-19 signature
genes and found that epigallocatechin 3-acetalbehyde was capable of reversing the
major molecular processes of COVID-19 (MAPK and NF-kB activation). These findings
were further supported by Western blotting (WB), immunofluorescence, and quantitative
polymerase chain reaction (QPCR) in LPS-stimulated macrophages. Moreover, using
molecular docking analysis, we identified three tea ingredients ((-)-catechin gallate, D-
(+)-cellobiose, and EGCG) that may interact with the vital SARS-CoV-2 protein, 5R84,
compared with the qualified 5R84 ligand WGS. Thus, our results indicated that tea
ingredients have the potential to treat COVID-19 by suppressing the COVID-19 signature
genes and interacting with the vital SARS-CoV-2 protein.

Keywords: COVID-19, molecular docking, network pharmacology, tea ingredients, macrophage, key targets

INTRODUCTION

Coronavirus disease 2019 (COVID-19) is a disease with main manifestations involving the
lungs and is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
(1). SARS-CoV-2 is rapidly spreading around the world, and the number of confirmed
cases and infection-related deaths are increasing every day (2). The severity of COVID-
19 is associated with increased inflammatory and chemokine factors; these factors also
predict COVID-19 mortality (3). Although the pathogenesis of COVID-19 is not fully
understood, the virus and host immune system play key roles in its development (4).
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From Delta to Omicron, the new coronavirus is constantly
mutating, the global epidemic is at a high level, and the number
of infections continues to increase (5). While COVID-19 vaccines
can greatly prevent the spread of the virus, they cannot treat
patients infected with the virus (6). To treat patients with
new coronavirus pneumonia, scientists have made considerable
efforts in drug research and development; however, to date, there
are still very few drugs that can treat COVID-19 (7). Although
some neutralizing antibodies and small molecule inhibitors are
being developed, there is uncertainty about their safety and
efficacy (8). Therefore, we urgently need to explore new strategies
to treat COVID-109.

Tea is popular all over the world as a food drink; in
fact, tea has been used as an herbal medicine to prevent
and treat various diseases (9). Tea and its characteristic
polyphenols—catechins—have been shown to be active in
preventing obesity, diabetes, cardiovascular disease, cancer,
and other diseases (10-12). Tea ingredients have also been
shown to have anti-viral activity as well as protective activity
against diseases caused by oxidative stress and inflammation;
many of these ingredients may help alleviate and treat
COVID-19 (13, 14). Although several studies have focused
on epigallocatechin gallate (EGCG), the major component
of green tea, which has been shown to be effective in
preventing COVID-19 (15), we focused on systematic research
of the therapeutic potential of tea components for COVID-19,
including inhibition of COVID-19 signature gene transcription
and direct interactions with specific COVID-19 proteins.
Systematic research about tea and COVID-19 currently remains
insufficient. Systematic analyses of the anti-COVID-19 potential
of green tea and other teas remains insufficient. In this study,
we mainly used bioinformatics and computational network-
based pharmacology to explore and determine the efficacy and
possible therapeutic mechanisms of tea for the treatment of
COVID-19 to reveal the potential uses of tea in the treatment
of COVID-19. Using a network pharmacology strategy, we
report the pharmacological targets and molecular pathways of
tea ingredients. Therefore, in this bioinformatics report, we
aimed to reveal the component-target-pathway network and
pharmacological mechanisms of tea ingredients in the prevention
and treatment of COVID-19.

MATERIALS AND METHODS

Identification of the Target Genes of Tea in
the Treatment of COVID-19

Using effective tools such as Traditional Chinese Medicine
Systems Pharmacology (TCMSP), Swiss Target Prediction, and
SuperPred, the target genes of tea were screened from existing
databases (16, 17). Other genes related to the occurrence of
COVID-19 were obtained using the DisGeNET and GeneCards
databases (18). In addition, these putative tea and COVID-
19 genes were mapped using the UniProt tool prior to
correction. After functional enrichment analysis using FunRich
software, all anti-COVID-19 targets of tea were screened
and identified.

Protein-Protein Interaction (PPI) of

Candidate Genes

After obtaining the targets of tea and COVID-19, the STRING
database was used to further determine and construct a
functional protein association network according to a specific
algorithm (19, 20). In addition, based on the merged targets of
tea and COVID-19, a protein-protein interaction (PPI) network
was constructed using Cytoscape software (21, 22). Therefore, the
key targets of tea in the treatment of COVID-19 were revealed,
visualized, and determined with the topology parameters of the
network analyzer tool (23, 24).

Enrichment Analyses and Kyoto
Encyclopedia of Genes and Genomes

(KEGG) Pathway of Intersection Targets

R language packages, such as ClusterProfiler, org.Hs.eg.Db,
ReactomePA, and GOplot (3.6.1), have been used for enrichment
analysis and visualization of the biological processes and
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways
of intersection targets (25). In addition, gene annotation
information from org.Hs.eg.Db (26, 27), a p-value cutoff = 0.05,
and a g-value cutoff = 0.05 were used for enrichment before
plotting the corresponding bubble chart, histogram, and Circos
circle chart.

Molecular Docking Analysis

To screen and identify key targets for tea-based molecular
docking assays, a chemical-protein binding approach was used
(28, 29). After searching for a specific protein through the PDB
database, the 5R84 protein was selected for docking with the tea
compound. The three-dimensional structure of tea was drawn
using ChemBio3D Draw in Chem Bio Office 2010 software
before docking the molecular structure with AutoDock Vina
software (30). The plausibility of the docking parameter settings
was assessed by the root-mean-square deviation (RMSD) of the
ligand molecules. An RMSD <4 A is the threshold for ligand
molecular conformation.

Cell Culture

Murine macrophage RAW 264.7 cells were acquired from the
Type Culture Collection of the Chinese Academy of Sciences
(Shanghai, China). Cells were grown at 37°C under 5% CO,
in Dulbecco’s modified Eagle’s medium (DMEM) supplemented
with 10% (v/v) fetal bovine serum (FBS) and 1% penicillin
streptomycin (Gibco, USA) in humidified incubators (Thermo,
USA). Lipopolysaccharide (LPS, Escherichia coli 055: B5) and
EGCG were purchased from Sigma Chemical Co. (St. Louis,
USA). RAW 264.7 cells were treated with LPS, LPS+EGCG, or
EGCG (for the concentrations of LPS and EGCG see the figure
legend) for 24 h. For viability testing, the cells were starved for
24h without serum before challenge and seeded at a density
of 1 x 10° cells/mL in 96-well plates with four replications,
and cell viability was analyzed with a CCK-8 cell counting kit
(Vazyme, China).
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Quantitative Real-Time Polymerase Chain
Reaction (QPCR)

The total RNA was isolated from cells using an RNA extraction
kit (Vazyme, China). First-strand complementary DNA (cDNA)
was synthesized using an iScript cDNA Synthesis Kit (Vazyme,
China). Quantitative PCR was performed with SYBR green PCR
Master Mix (Vazyme, China) using a ViiA 7 Real-Time PCR
System (Applied Biosystems, CA). The primers are detailed in
Table 1. The following cycle parameters were used: 55°C for
2min, 95°C for 10 min, and 40 cycles of 95°C for 30s and 60°C
for 30 s. The relative expressions of the target genes against that of
the reference gene, glyceraldehyde-3-phosphate dehydrogenase
(GAPDH), were calculated using the 2722CT method. Cell
samples were evaluated in triplicate, and every experiment
was performed at least three times. The transcription levels of
inducible nitric oxide synthase (iNOS), tumor necrosis factor
alpha (TNF-a), interleukin (IL)-1f, IL-6, Arg-1, and GAPDH
were determined.

Protein Extraction and Western Blotting
(WB)

Total cellular proteins were extracted using
radioimmunoprecipitation assay buffer containing 1% sodium
dodecyl sulfate (SDS); 40 mg of total lysate was separated by
10% SDS-polyacrylamide gel electrophoresis (SDS-PAGE) gel
and transferred to a polyvinylidene fluoride membrane, blocked
with 5% bovine serum albumin in tris-buffered saline for 90 min,
and then incubated with the appropriate primary antibody
overnight at 4°C. Membranes were incubated with secondary
antibody for 90min at room temperature after washing and
then visualized using ECL Plus Western Blot Detection Reagent
(Millipore, USA). The protein expression levels of extracellular
signal-regulated kinase (ERK), p-ERK, c-Jun amino-terminal
kinase (JNK) and p-JNK, and p38 and p-p38 were determined by
Western blotting (WB). GAPDH was used as an internal control.

Enzyme Linked Immunosorbent Assay
(ELISA)

According to the manufacturer’s instructions, the cell
supernatant concentrations of IL-6, TNF-a, and IL-1f were
determined using ELISA kits (ExCell Bio, China).

TABLE 1 | Primers used for real-time quantitative PCR analysis.

Gene Forward primer Reverse primer

iINOS ACTCAGCCAAGCCCTCACCTAC TCCAATCTCTGCCTATCCGTCTCG
TNF-o  CAGGCGGTGCCTATGTCTC CGATCACCCCGAAGTTCAGTAG
IL-18 GCAACTGTTCCTGAACTCAACT  ATCTTTTGGGGTCCGTCAACT
IL-6 CCAAGAGGTGAGTGCTTCCC CTGTTGTTCAGACTCTCTCCCT
Arg-1 CATATCTGCCAAAGACATCGTG  GACATCAAAGCTCAGGTGAATC
GAPDH CATCCCAGAGCTGAACG CTGGTCCTCAGTGTAGCC

Immunofluorescence Assay

The expression of phospho-p65 was detected by
immunofluorescence assays using a fluorescence microscope.
RAW 264.7 cells were cultured directly on glass coverslips
in 6-well plates for 24h. After stimulation with LPS in the
presence or absence of EGCG, the cells were fixed with 4%
paraformaldehyde in PBS. The membrane was permeabilized
by treating the cells for 5min with 0.1% Triton X-100 in PBS.
After a brief washing in PBS, slides were blocked with 5% bovine
serum albumin for 1 h and then incubated with rabbit polyclonal
anti-human phopho-p65 antibody (dilution, 1:100) overnight
at 4°C at room temperature. The next day, the specimens were
rinsed with PBS three times. After washing, they were incubated
with the secondary antibodies (Alexa Fluor® 594, Thermo
Fisher Scientific, CA, USA) for 30 min and counterstained for
nuclei with DAPI (Beijing Solarbio Science & Technology,
Beijing, China) for 10 min. After a brief washing in PBS, slides
were sealed using ProLong® Gold antifade reagent (Molecular
Probes® by Life Technologies™, CA, USA). Fluorescence
micrographs were acquired with a fluorescence microscope
(Nikon ECLIPSE Ti-U, Nikon Co., Japan).

Data Analysis

Normally distributed data were analyzed using Student’s
t-test (for two-group comparisons) or analysis of variance
(for  multiple-group  comparisons). For non-normally
distributed values (as determined by the Kolmogorov-
Smirnov test), the Mann-Whitney’s rank-sum test was
used. All statistical tests were two-sided, and P <
0.05 was considered statistically significant. Data are
presented as the mean =+ standard error of the mean
(SEM) and presented using GraphPad Prism 5 software
(LaJolla, CA).

RESULTS

Identification the Ingredients and Target

Genes of Tea
We first downloaded the ingredients and target genes of tea
from the Traditional Chinese Medicine Integrated Database
(TCMID) database (31). Eleven annotated ingredients and 931
target genes were reported, among which EGCG was the major
ingredient and targeted 556 genes (Figures 1A,B). According
to Gene Ontology (GO) enrichment analysis, the target
genes of tea were involved in inflammation and chemokines
(positive regulation of cytokine production, positive regulation of
leukocyte migration, etc.), coagulation and cell death (neuronal
death, extrinsic apoptotic signaling pathways, etc.) (Figure 1C),
which were previously reported as the molecular characteristics
of COVID-19, indicating that the tea has the potential
to have anti-COVID-19 activity. The KEGG enrichment
analysis also demonstrated that tea has a strong antiviral
activity, with target genes that were functionally enriched
in COVID-19 and influenza A, and represses inflammation
(Figure 1D).

In addition
components

to EGCG, there are
such as  beta-phenylethyl

many additional
isothiocyanate,
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FIGURE 1 | The ingredients and target genes of tea. (A) The network of tea ingredients and target genes, the dot color represents the components, while green, red,
and blue represents the tea, tea ingredients, and target genes, respectively. (B) The target genes bar plot of each tea ingredient. (C) The GO enrichment map of tea
target genes organized enriched terms into a network with edges connecting overlapping genes and easier to identify hub module. (D) The KEGG enrichment bar plot

Freq

carotene, and citral, that also have anti-inflammatory and
anti-chemotactic effects for COVID-19. We intersected the
targets of other tea ingredients with the signature genes
of COVID-19 (Supplementary Figure 1) and found that
the targets of EGCG covered the most signature genes of
COVID-19. Furthermore, beta-phenylethyl isothiocyanate
and carotene also covered some signature genes. The
enrichment analysis of the corresponding intersected genes
(Supplementary Figure 2) showed that in addition to EGCG,
other tea ingredients can repress the corresponding pathological
processes involved in COVID-19. For instance, the targets
of beta-phenylethyl isothiocyanate are closely related to cell

chemotaxis in COVID-19. Citral inhibits inflammation and
NK-kB signaling in COVID-19. Finally, cartone is related
to coagulation and cytokine secretion. In summary, these
results imply that tea can suppress inflammation and prevent
coronavirus disease.

Molecular Characterization of COVID-19

Infection

We next employed the DisGeNET and KEGG databases to
characterize the molecular signature of COVID-19 infection.
There were 1,288 and 232 COVID-19 signature genes in
the DisGeNET and KEGG databases, respectively, among
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which 87 genes were shared (Figure2A). These genes were
functionally enriched in response to viruses, innate and adaptive
immune responses, inflammatory responses, and coagulation
(Figure 2B). Notably, the signature genes of COVID-19 infection
were also enriched in response to LPS, indicating a similar
molecular pattern between COVID-19 infection and sepsis
(Figure 2B). The similarity analysis of the enrichment results
of the DisGeNET and KEGG COVID-19 genes revealed that
cytokine and chemokine activity, endopeptidase activity, and
phosphatidylinositol 3-kinase (PI3K) activity were the major
processes of COVID-19 infection (Figure2C). Furthermore,
the enrichment of KEGG COVID-19 signature genes showed
a MAPK signaling pathway specificity (Figure 3C). As for
shared genes of the two databases, the PPI analysis implied
that they were highly biologically relevant; among these
genes, IL-6, TNEF, and IL-1B were relevant to the highest
degree (Figure 2D). In addition to cytokines, the Toll-like
receptor (TLR2, TLR3, TLR7, and TLR8) and inflammatory
signaling pathways (JAK-STAT, NF-kB, and MAPK signaling
pathways) were also important components in the PPI network
(Figure 2D). The functions of these genes included involvement
in the antiviral process (COVID-19, influenza A, etc.) and
responses to molecules of bacterial origin and inflammation
(Figures 2E,F).

Identification the Candidate Target Genes

of Tea and COVID-19

To further verify the anti-COVID-19 activity of tea ingredients,
we co-analyzed the target genes of tea with COVID-19 signature
genes. There were 249 and 50 shared targets genes of tea with
DisGeNET and KEGG COVID-19 gene signatures, respectively,
and 33 shared genes in all conditions (Figure 3A). The shared
GO enrichment items were focused on the response to bacteria
and viruses, inflammation (cytokines and chemokines), immune
responses, and coagulation; these cover the majority of signature
genes of COVID-19 that were enriched (Figures2B, 3B),
suggesting that the ingredients of tea might act as anti-COVID-
19 components. The comparison of the GO enrichment results
also showed that tea could target the critical pathological
processes involved in COVID-19 infection including cytokine
and chemokine activity, endopeptidase activity, and the MAPK
signaling pathway (Figure 3C). The comparison of the KEGG
enrichment results also showed a similar pattern that covered
the major inflammatory signaling pathways including the JAK-
STAT, NF-kB, and MAPK signaling pathways (Figure 3D).
Furthermore, the shared 33 genes in all three conditions were
functionally involved in inflammation and immune responses,
which are similar to the major pathological processes of COVID-
19, which involve the Toll-like receptor signaling pathway, IL-
17 signaling pathway, and cytokine and chemokine activity
(Figure 3E). Notably, the shared 33 genes were similar to the
high degree genes in PPI, such as IL-6, TNEF, and IL-1p, revealing
that they were centrally involved in the pathological status
of COVID-19 infection. Thus, the results demonstrated that
the target genes of tea covered the critical processes involved

in COVID-19 infection and might serve as anti-COVID-
19 components.

Molecular Docking Analysis of Tea
Ingredients With the COVID-19 Protein
5R84

Previous studies have reported that small molecules are able to
block the COVID-19 virus through interaction with vital virus
proteins, such as 5R84 (32). We next examined the interaction of
tea ingredients with the COVID-19 protein 5R84 by molecular
docking (33). Six of 11 tea ingredients were capable of interacting
with 5R84 and had lower free binding energies than the qualified
5R84 ligand WGS; these were (-)-catechin gallate, carotene, 1-
epigallocatechin, (-)-epicatechin-pentaacetate, D-(+)-cellobiose,
and epigallocatechin 3-gallate (Figure4A). Among these 6
ingredients, (-)-catechin gallate had the lowest binding free
energy (—8.8 kcal/mol) and formed 5 hydrogen bonds with the
ARG40, TYR54, GLU55, ASN-180, and ARG-188 residues of
5R84 (Figure 4B). The other 5 ingredients shared comparable
binding free energies (~-7.26 kcal/mol) and formed 0 to 5
hydrogen bonds with residues (Figure 4B). Notably, although
carotene had a low binding free energy, it could not form
hydrogen bonds with 5R84, implying that the interaction of
carotene with 5R84 was not stable. In summary, we identified
three tea ingredients ((-)-catechin gallate, D-(+)-cellobiose, and
epigallocatechin 3-gallate) that were sufficient to block COVID-
19 by interacting with 5R84 protein.

Epigallocatechin 3-Gallate (EGCG)
Reduced the Secretion of Inflammatory
Factors by Inhibiting MAPK/NF-«B
Signaling and Regulating Macrophage
Polarization in vitro

Based on the abovementioned biometric analysis results, it is
reasonable to hypothesize that EGCG is involved in inflammation
in COVID-19. To ascertain whether EGCG can protect the
body from inflammatory injury, we conducted a CCK8 assay.
The results revealed that cell viability began to decline when
the concentration of EGCG exceeded 50nM (Figure 5A).
Subsequently, we analyzed the effect of EGCG on macrophage
polarizations. The LPS (100 ng/mL)-induced mRNA expression
of M1 marker genes including iNOS, TNF-«, II-18, and IL-
6 was significantly reduced by EGCG (Figures 5B-E). On the
other hand, EGCG showed an increased effect on the level of
induction of the M2 marker gene Argl stimulated by LPS in
RAW264.7 cells (Figure 5F). Then, we collected RAW264.7 cell
supernatants after LPS stimulation in a culture system with or
without EGCG to measure the secretion of inflammatory factors
by ELISA. The results showed that EGCG significantly reduced
the production of IL-6, TNF-a, and IL-1B compared with the LPS
stimulation group (Figures 5G-I). Moreover, we also detected
the inflammatory factor IL-17A secreted by macrophages and the
expression of TLR4 and PI3K, which were previously screened
(Figure 3E); EGCG significantly suppressed the production of
IL-17A and the mRNA levels of TLR4 and PI3K compared with
the LPS stimulation group (Supplementary Figure 3). These
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FIGURE 2 | The gene signature of COVID-19. (A) The Venn plot of COVID-19 gene signature of DisGeNET and KEGG. (B) The shared COVID-19 gene signature GO
terms of DisGeNET and KEGG. (C) The comparison GO enrichment network of DisGeNET and KEGG, the number of circles in the bottom left corner represents the
gene number of each enriched term, the proportion of clusters in the pie chart is determined by the number of genes. (D) The PPI of shared genes of DisGeNET and
KEGG COVID-19 gene signature, the dot color represents the connectivity of each gene, while from yellow to red represents from low to high. (E) The top 10 KEGG
enriched terms of shared COVID-19 signature genes. (F) The genes and GO enriched terms network of shared COVID-19 signature genes, the red dots represent the
GO enriched terms while blue dots are the related genes.

results indicate that EGCG reduces the secretion of inflammatory
factors in vitro.

To further explore the mechanism by which EGCG alleviates
inflammatory damage to cells, we investigated the inflammation
pathway in vitro. We measured the activation of the MAPK
pathway. As shown in Figure 5], phosphorylation of p-ERK, p-
JNK, and p-p38 in macrophages was significantly increased after
LPS challenge; this effect was suppressed by EGCG in vitro as
determined by WB (Figure 5]). This demonstrates that EGCG
could effectively inhibit the MAPK pathway. Furthermore,
we investigated the suppressive effect of EGCG treatment
on the NF-kB signaling cascade in RAW264.7 macrophages.
Our investigations indicated that the phosphorylation of p65
was significantly increased after LPS challenge, and this was
suppressed by EGCG (Figure 5K). This finding confirms that
EGCG suppressed inflammation by inhibiting MAPK/NF-
kB signaling.

DISCUSSION

Tea is one of the three most consumed beverages in the world
and is known as the beverage of the twenty-first century, not only
because of the long history of tea culture but also because of its
nutritional value and health care functions (34, 35). Studies have
shown that tea contains numerous active ingredients, mainly tea
polyphenols, tea pigments, tea polysaccharides, y-aminobutyric
acid, tea saponins, alkaloids, vitamins, pyrroloquinoline quinone,
pantothenic acid, minerals, and other ingredients (36, 37). Tea
polyphenols are the most abundant soluble components in tea,
and they are also the most important substances in tea that
exert biological effects (35) that can reduce the incidence of
cardiovascular disease, decrease blood lipids, decrease body fat
formation, and change the intestinal flora ecology (35, 38).
Studies have shown that after drinking a cup of tea for half
an hour, the antioxidant capacity (ability to fight oxygen free
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radicals) in the blood increases by 41% to 48% and can last for
one and a half hours at a high level (39).

In our work, we first screened the main ingredient of
tea, EGCG, in databases, suggesting that EGCG may play
an important role in the treatment of COVID-19. EGCG
is the main component of green tea polyphenols and is a
catechin monomer isolated from tea (40). Studies have shown
that EGCG has several functions including significant anti-
oxidation, involvement in scavenging free radicals, reduction
of inflammation and allergic reactions, anti-mutagenic effects,
inhibition of tumor growth, and strong inhibitory effects on
dysentery, typhoid fever, Staphylococcus aureus, and other
bacteria (41-43). EGCG also has the functions of anti-
aging, lowering blood lipids, improving low-density lipoprotein,

inhibiting the growth of liver fat and cholesterol, preventing
atherosclerosis, and enhancing immunity (44-46). In addition,
EGCG can inhibit the proliferation of glomerular cell membranes
and improve renal function (47). Several studies have reported
the potential of EGCG to prevent COVID-19. For instance,
EGCG inhibits the angiotensin-converting enzyme 2 (ACE2)
receptor (the cellular receptor for SARS-CoV-2) and TMPRSS2,
which mediate viral entry into cells, by activating Nrf2
(48, 49). By inhibiting the main protease of SARS-CoV-2,
EGCG may inhibit viral reproduction (48). EGCG protects
against SARS-CoV-2-induced mitochondrial reactive oxygen
species (ROS) (promoting SARS-CoV-2 replication) and ROS
bursts caused by neutrophil extracellular traps through its
broad antioxidant activity (48, 50). EGCG can potentially
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inhibit the SARS-CoV-2 life cycle by inhibiting ER-resident
GRP78 activity and expression (51, 52). EGCG has also
been shown to protect against (1) cytokine storm-related
acute lung injury/acute respiratory distress syndrome (48,
53), (2) thrombosis through inhibition of tissue factor and
activation of platelets (54), (3) inactivation of redox-sensitive
HMGBI1-induced sepsis (55), and (4) pulmonary fibrosis
by increasing Nrf2 and inhibiting NF-kB (13). However,
these activities remain to be further confirmed in animals
and humans.

Studies have shown that macrophages play an important
role in COVID-19 (56). Cytokine storm syndrome (CSS) refers
to the continuous activation and expansion of lymphocytes
and macrophages caused by the infection of microorganisms,
and a variety of cytokines such as TNF-a, IL-1, IL-6, IL-12,
interferon (IFN)-o, IFN-f, IFN-y, monocyte chemoattractant
protein (MCP)-1, and IL-8 are rapidly produced in large

quantities (57). CSS is an excessive immune phenomenon of
the body to external stimuli and is an important cause of acute
respiratory distress syndrome and multiple organ failure (58).
Studies have shown that cytokine storms play a key role in
the transition to severe and critical illness in most coronavirus-
infected patients (59). In addition, one study found that there
is a highly pro-inflammatory macrophage microenvironment in
the lungs of severely ill patients with the new strain, which the
researchers said may help to elucidate the underlying mechanism
behind the immune response triggered by the new coronavirus
(60). Therefore, we focused on the role of EGCG in regulating
changes in macrophage function to improve COVID-19. The
inflammatory response in COVID-19 is much more complex
than that in LPS-induced RAW264.7 cells, and it is extremely
important to distinguish the inflammatory subtypes of different
diseases. However, the inflammatory response in COVID-19
still shares some common signatures with the inflammatory
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FIGURE 5 | EGCG suppressed secretion of inflammatory factors, macrophage polarization, and MAPK/NF-kB signaling in vitro. (A) RAW 264.7 cells were incubated
with EGCG (50 mM) for 24 h. Cell viability was determined by CCK8 assay (n = 5). (B=F) The mRNA levels of iINOS, TNF-«, II-18, IL-6, and Arg1 in the RAW 264.7
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FIGURE 5 | cells with LPS (100 ng/ml) and EGCG (50 nM) for 24 h were detected by g-PCR (n = 3). (G-I) The concentrations of IL-6, TNF-a, and IL-1p in RAW 264.7
cell supernatant after LPS and EGCG treatment for 24 h were determined by ELISA kits (n = 4). (J) The protein levels of ERK1/2, P-ERK1/2, JNK, P-JNK, P38, and
p-p38 in the RAW 264.7 cells treated with LPS (100 ng/ml) and EGCG (50 nM) for 24 h were detected by Western blotting. (K) The expressions of p-p65 (red) and
DAPI (blue) in RAW 264.7 cells were detected by using an immunofluorescence staining assay (scale bar: 50 um). ‘P < 0.1, "P < 0.01, "'P < 0.001, ***P <0.0001.

response in LPS-induced RAW264.7 cells, among which the
most typical are TLR4, NF-kB, and other signaling pathways and
their corresponding cytokines (including IL-6, TNE, IL-1B, etc.)
(Figure 2D). Through the LPS-stimulated macrophage model,
we attempted to demonstrate the possibility of EGCG molecules
indirectly inhibiting COVID-19 inflammation.

EGCG has been reported to alleviate acute lung injury,
regulate the polarization of macrophages to M2 (61), and inhibit
secretion of inflammatory factors, and its protective mechanism
may be related to the inhibition of the MAPK and NF-«kB
signaling pathway (62-64). In addition, EGCG derivatives
have anti-inflammatory activity in LPS-stimulated mouse
macrophages (65). Furthermore, EGCG-modified collagen
membranes have been shown to downregulate the expression
of inflammatory factors and promote M2 (CD163 and CD206)
macrophages (66). EGCG also stimulates LC3-II production
and autophagosome formation and inhibits LPS-induced
upregulation and extracellular release of HMGB1 (67). Our
results are consistent with those described above; however,
the origins of the abovementioned research and our study are
different. There is some heterogeneity in the inflammatory
responses of different diseases and different states of certain
diseases. Starting from the gene signature of COVID-19, we
co-analyzed the target genes of each component of tea in an
attempt to identify the potential of specific components of
tea for the treatment of COVID-19. The results showed that
the intersection of COVID-19 signature genes and tea target
genes was highly focused on the response to LPS stimulation
(Figure 3B). This phenomenon itself is an important discovery.
Among the different components of tea, EGCG is obviously
an important molecule regulating this process in COVID-19;
furthermore, it has the most target genes and is the major active
ingredient in tea. We then indirectly verified our findings in
LPS-stimulated macrophages in vitro to examine the suppression
effects of EGCG on the LPS-like responses in COVID-19. Finally,
our study is slightly different from the abovementioned literature
(61-67) in terms of molecular signaling pathways. Based on
the results of the bioinformatics analysis, we focused on the
most credible MAPK (ERK1/2-JNK-P38) signaling pathway. In
addition, EGCG reduced the secretion of inflammatory factors
and regulated macrophage polarization (from M1 to M2) in vitro.
These cell experiments verified the results of our bioinformatics
analysis; namely, the active ingredient of tea, ECGC, can directly
act on macrophages in the cytokine storm environment of
COVID-19, and inhibit the secretion of inflammatory factors
and the activation of the MAPK and NF-«B signaling pathways,
improving the prognosis of COVID-19.

Moreover, Douangamath et al. (68) performed a large-scale
electrophilic and non-covalent fragment screening of the major
proteases of SARS-CoV-2 by combined mass spectrometry

and X-ray and found that 5R84 is one of two cysteine viral
proteases essential for viral replication. We therefore examined
the interaction of tea components with the COVID-19 protein
5R84. Through molecular docking analysis, we identified three
tea ingredients ((-)-epicatechin-3-o-gallate, D-(+)-cellobiose,
and EGCG) that likely interact with the vital SARS-CoV-2
protein, 5R84, compared with the qualified 5R84 ligand WGS.
According to the description in PubChem (https://pubchem.
ncbi.nlm.nih.gov/compound/24802025#section=Household-
Products), D-(+)-cellobiose is indeed insoluble in water and
cannot be absorbed by the human body; thus, it is nearly
impossible to inhibit SARS-CoV-2 through absorption from the
gastrointestinal tract and into circulation. However, considering
the droplet transmission and fecal-oral transmission of SARS-
CoV-2, namely, that SARS-CoV-2 exists on the surfaces of
the respiratory tract and digestive tract, D-(+)-cellobiose
may directly interact with SARS-CoV-2 on the corresponding
surfaces. However, the roles of (-)-epicatechin-3-o0-gallate and
D-(+)-cellobiose in COVID-19 should be studied further in cell
and animal experiments.

In summary, our research systematically analyzed the active
ingredients of tea, namely, (-)-epicatechin-3-o-gallate, D-(+)-
cellobiose and EGCG, which have the potential to treat COVID-
19 by suppressing the target genes and signaling pathways of
COVID-19 and interacting with the vital SARS-CoV-2 protein.
In addition, we validated the above results in macrophages.
Our study analyzed the anti-COVID-19 effects of the active
ingredients of tea and provided new ideas for the prevention and
treatment of COVID-19.
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