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Modern industrial practices have transformed the human diet over the last century,

increasing the consumption of processed foods. Dietary imbalance of macro- and

micro-nutrients and excessive caloric intake represent significant risk factors for various

inflammatory disorders. Increased ingestion of food additives, residual contaminants from

agricultural practices, food processing, and packaging can also contribute deleteriously

to disease development. One common hallmark of inflammatory disorders, such as

autoimmunity and allergies, is the defect in anti-inflammatory regulatory T cell (Treg)

development and/or function. Treg represent a highly heterogeneous population of

immunosuppressive immune cells contributing to peripheral tolerance. Tregs either

develop in the thymus from autoreactive thymocytes, or in the periphery, from naïve

CD4+ T cells, in response to environmental antigens and cues. Accumulating evidence

demonstrates that various dietary factors can directly regulate Treg development. These

dietary factors can also indirectly modulate Treg differentiation by altering the gut

microbiota composition and thus the production of bacterial metabolites. This review

provides an overview of Treg ontogeny, both thymic and peripherally differentiated, and

highlights how diet and gut microbiota can regulate Treg development and function.

Keywords: regulatory T cell, tolerance, nutrition, nutritional immunology, gut microbiota, thymopoiesis

INTRODUCTION

Breakdown of immune tolerance is a feature of many non-communicable diseases. Regulatory
T cells (Tregs) are a subset of anti-inflammatory CD4+ T cells defined by their expression of
the transcription factor FoxP3 (1). Treg mediate immune tolerance, and their deficiency, or a
defect in their function, leads to anomalous immune responses to innocuous food and commensal
bacteria-derived antigens, as well as to self-antigens (2, 3). Consequently, this results in various
inflammatory disorders, including autoimmunity and allergies. These diseases are commonly
associated with a western lifestyle. Diet appears to be one of the most influential environmental
factors regulating Treg biology.Macronutrients, micronutrients, caloric content, and food additives
were all shown to influence the ontogeny and function of Treg (4, 5). Diet also alters the
gut microbiota, subsequently regulating Treg biology (6). Treg have either a central origin and
differentiate in the thymus during the T cell selection process, referred to as thymic-derived
Treg (tTreg), or a peripheral origin where they differentiate from naïve T cells in response to
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environmental antigens and cues such as dietary or bacterial
metabolites, referred to as peripheral Tregs (pTregs) (7). tTreg
and pTreg vary in their ontogeny, are regulated differently, and
serve different functions, ensuring their complementary roles
in immune tolerance and homeostasis. For example, pTregs
are better suppressors of allergic airway diseases than tTregs
of the same specificity (8), while tTregs are more efficient at
suppressing experimental autoimmune encephalomyelitis (9).
The difference in response likely relates to their differential
expression of regulatory markers such as CTLA-4, PD-1,
and their different capacity for cytokine production. This
review will discuss the intrinsic and extrinsic factors that
regulate Treg differentiation, highlighting the multiple avenues
to promote and maintain Treg through dietary intervention.
A glossary of key terms used in this review is presented
in Table 1.

TABLE 1 | Glossary of key terms.

CD4 CD4 is a co-receptor expressed by CD4+ T cells. Following engagement of the T cell receptor/CD4 complex, naïve CD4+ T cells

differentiate into various CD4 helper T cells, including regulatory T cells involved in suppressing immune responses and

inflammation. Other helper T cells, such as Th17 cells, typically mediate proinflammatory immune response.

CD28 CD28 is a co-stimulatory receptor expressed by T cells. Activation of CD28 by its ligand CD80 or CD86 is necessary to provide

the co-stimulation required for effective T cell receptor signaling and activation of T cells.

CD80/86 Both CD80 and CD86 are ligands for CD28 and is expressed mostly by antigen-presenting cells. Both CD80 and CD86 can also

bind to CTLA-4, which instead attenuates the T cell receptor signaling response.

CD25 High-affinity receptor for IL-2. CD25 is highly expressed by Treg and its activation by IL-2 is crucial for the maintenance and

survival of Treg.

CD103 Also known as Integrin alpha-E, CD103 is a receptor involved in cell homing and adhesion via its binding to its ligand E-cadherin.

CD103 is expressed by specialized subset of mucosal dendritic cells (known as CD103+ dendritic cells) that promotes the

differentiation of regulatory T cells.

CD69 CD69 expression is upregulated following the activation of T cells. CD69 expression promotes Treg differentiation and also

enhances their suppressive by promoting IL-2 and TGF-β production (10)

CD14 CD14 is expressed mostly by macrophages and act as a co-receptor for the detection of bacterial lipopolysaccharide (LPS)

alongside Toll-like receptor 4 (TLR4) and MD-2.

T cell receptor (TCR) T cell receptor are expressed by all T cells and recognize specific antigen (typically peptides) presented by antigen-presenting

cells on major histocompatibility complex (MHC) molecules. Engagement of TCR with peptide-MHC molecule leads to the

activation of the T cell.

Thymocytes T cell lineage committed progenitors that develops into mature naïve CD4+ or CD8+ T cells following negative and positive

selection in the thymus.

Antigen-presenting cells (APC) Antigen-presenting cells present antigens loaded on MHC molecules for presentation to naïve T cells and are thus involved in the

initiation of an adaptive immune response.

Dendritic cells (DC) Dendritic cells are a major subset of professional antigen-presenting cells

Medullary thymic epithelial cells

(mTEC)

Medullary thymic epithelial cells are the major subset of antigen presenting cell in the thymus. mTEC play a key role in the

negative selection of thymocytes, which ensures that thymocyte expressing TCR against self-antigens are removed.

TGF-β A key cytokine involved in promoting Treg development, by promoting the expression of the transcription factor FoxP3. FoxP3 is

a master regulator of Treg differentiation and function.

IL-10 A key cytokine produced by regulatory T cell involved in immune suppression. IL-10 can also be produced by other cell types to

promote Treg differentiation.

Pathogen associated molecular

pattern (PAMP)

Pathogen associated molecular pattern are conserved microbial motifs that are recognized by pattern recognition receptors

such as toll-like receptors (TLR). A common PAMP is lipopolysaccharide (LPS), which is expressed by gram-negative bacteria.

Extracellular vesicles (EV) Extracellular vesicles are nano-sized particles released by all cell types via the budding of the plasma membrane. They can cargo

nucleic acid, proteins and metabolites. Bacterial-derived EV has been shown to interact with host cells, activating TLR to

promote Treg differentiation.

Short-chain fatty acids (SCFA) Short-chain fatty acids are the major metabolite produced by gut bacteria during the fermentation of dietary fiber. SCFA are

sensed by the host, and they can directly promote Treg differentiation.

TREG DEVELOPMENT

Thymic Treg Differentiation
Overview
The thymus is a specialized primary lymphoid organ and is the
site of thymopoiesis, a process by which mature and functional
T cells are generated. The earliest T cell progenitors are bone
marrow-derived hemopoietic stem cells (HSC) that migrate to
the thymus through their expression of chemokine receptors
CCR9 and CCR7, as well as P-selectin ligand (11). The first
step of thymopoiesis is characterized by the generation of the
early T lineage progenitors, the earliest T cell lineage-committed
HSCs. These progenitors differentiate into CD4−CD8− double-
negative and then to CD4+CD8+ double-positive thymocytes,
which undergo several developmental checkpoints called positive
and negative selection, which occur in different anatomic parts
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of the thymus (7). These processes ensure the strict selection of
thymocytes with functional T-cell receptors (TCR). These TCR
bind effectively self-major histocompatibility complex (MHC)
but are hyporesponsive to self-antigens. Positive selection occurs
within the thymic cortex, where CD4+CD8+ double-positive
thymocytes interacting effectively with self-MHC molecules
expressed by cortical thymic epithelial cells survive. These
cells further differentiate into single positive CD4+CD8− or
CD8+CD4− thymocytes. These single positive thymocytes then
migrate to the medulla, where they undergo the negative
selection, a process eliminating autoreactive thymocytes with
high affinity to self-antigens. Self-antigens are presented by
various antigen-presenting cells (APCs), particularly medullary
thymic epithelial cells (mTECs). Strong TCR signaling to
self-antigens leads to clonal deletion by apoptosis, while a
small percentage survive to become Tregs. The mechanisms
behind the commitment of autoreactive CD4+ T cell toward
Tregs differentiation rather than clonal deletion is not fully
understood but likely involves multiple factors, including affinity
of TCR binding to self-antigen/MHCII complex, duration of
TCR signaling, and the phenotype of the APCs presenting
the antigens (discussed later) (7). Regardless, TCR interactions
with self-antigen appear to be the dominant signal for tTreg
induction. It was elegantly demonstrated by utilizing T cells
with transgenic TCR of varying affinities to OVA peptide that
mice with higher-affinity TCR-bearing T cells have a larger tTreg
pool (12). Other factors, such as costimulation and cytokines,
support their development and maturation. Engagement of the
co-stimulatory molecule CD28 to CD80/CD86 ligand expressed
on APCs augmented the TCR signaling pathway to promote
tTreg differentiation (13) and survival (14). The presence of
CD28 on T cells was correlated with increased diversity of
the TCR repertoire of the tTreg pool, possibly by promoting
tTreg differentiation from thymocytes expressing infrequent
TCRs (14). The pro-survival cytokine IL-2, which signals
through CD25 in an autocrine manner (15), was required
for early tTreg survival and expansion and later maturation
(16). A deficiency of IL-2 could be compensated by other
pro-survival cytokines such as IL-7 and/or IL-15 expressed by
mTECs (17, 18).

Antigen-Presenting Cells in the Thymus and Their

Role in tTreg Induction
mTECs are the main cell subset involved in antigen presentation
in the thymus, a process regulated by the transcription factor
autoimmune regulator (AIRE). AIRE, along with Fez family
zinc finger protein 2 (FEZF2), regulates the expression of
tissue-specific antigens (TSAs) for presentation to thymocytes.
Together, they coordinate ∼60% of the TSAs expressed by
mTECs (19). FEZF2 and AIRE control the expression of a
mostly distinct set of TSA genes, although almost 40% of TSAs
among mTECs were regulated through unknown mechanisms
independent of AIRE and FEZF2 (19). This suggests that other
transcription factors or potential extrathymic factors regulate the
tTreg repertoire.

Apart from mTECs, other APCs can contribute to tTreg
differentiation by presenting a distinct repertoire of antigens (20),

suggesting that mTEC and other APC have a complementary
role in establishing optimal tolerance (21, 22). These APCs
include dendritic cells (DCs), plasmacytoid DCs (pDCs),
and B cells, which have varying abilities to promote tTreg
generation, as reviewed previously (23). Intrathymic-derived
CD8α+ conventional type I DCs present thymic-derived antigens
acquired by membrane transfer from mTEC (24) but are
dispensable for tTreg induction (22). On the other hand,
extrathymically-derived SIRPα+ conventional type 2 DC, which
can capture peripheral antigens for presentation to thymocyte,
were critical for tTreg development (25). Other peripheral APCs
can also capture peripheral antigens and egress to the thymus,
including PDCA-1+ pDC (25) and gut-derived CX3CR1+ DCs
(26). While gut-derived CX3CR1+ DCs have been shown to
present microbiota-derived antigens and promote the generation
and expansion of microbiota-specific thymic T cells, they did not
appear to affect tTreg development (27). Similarly, thymic pDC
are weak Treg inducers in vitro (26) and are unlikely to play a
role in vivo (26). Altogether, mTECs are the main tTreg inducers,
yet more research is needed to confirm the role of other APCs in
tTreg development.

Dynamic of tTreg Development at Different Stages of

Life
The biology of T cell development fluctuates throughout life. For
example, early fetal early thymic progenitors (ETP) are biased
toward T cell differentiation (E12–E15), while later waves of
ETP (after E16) have myeloid differentiation potential that more
closely represented postnatal ETP (28). CD4+ T cells generated
in the fetal thymus also produce more cytokines and are skewed
toward Th2 differentiation, while adult thymic-derived CD4+

T cells produce fewer cytokines and are skewed toward Th1
cytokine production (29).

Differences in the aging thymic environment also affect
tTreg development, with thymic progenitors having a reduced
propensity toward Treg differentiation with increasing age
(30). This is likely an evolutionary mechanism to maintain
a tolerogenic environment during pregnancy and exposure to
environmental antigens during early life. The neonatal tTreg pool
is also characterized by a greater TCR repertoire diversity and
increased expression of FoxP3 and suppressive molecules, such
as CTLA-4, compared to adult Tregs (31, 32). The more diverse
neonatal tTreg TCR repertoire likely results from the ability of
perinatal mTECs to present a more extensive repertoire of TSAs
(33). These age-dependent differences suggest a developmental
window for the selection of tTregs with specific clonotypes. One
example is the development of Padi4-specific tTregs, which was
restricted to the neonatal period (34). The inability of the adult
thymus to generate Padi4-specific tTregs appears to relate to the
presentation of the Padi4 peptide by non-mTEC APCs instead of
mTECs, which promotes instead clonal deletion. mTECs are the
major tTreg inducer in the neonatal thymus, as other APCs (such
as pDC and conventional DC) do not efficiently seed the thymus
until later in life (35). Other cells maintain the same function
throughout life, such as colonic-derived pDCs. These pDCs are
regulated by the neonatal gut microbiota and migrate to the
thymus to support PLZF+ innate-like T cell differentiation, with
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the effect persisting into adulthood (36). These PLZF+ innate-
like T cells contribute to the differentiation of thymic Treg with
an activated/memory-like phenotype (37).

Peripheral Treg Differentiation
While tTreg and pTreg are characterized by their expression
of FoxP3 and their immunosuppressive functions, they differ
in their ontogeny. pTreg can arise from naïve CD4+ T cells
dependently or independently of peripheral APC. Contrary to
tTreg, pTreg differentiation mainly relies on environmental cues,
particularly the cytokine tumor growth factor-β (TGF-β) that
promotes the upregulation of FoxP3 (38). The commitment
to the Treg lineage also depends to a lesser extent on TCR
signaling and engagement of co-stimulatory molecules such
as CTLA-4 (39). TGF-β promotes the differentiation of Tregs
via phosphorylation of Smad3, which then translocates to
the nucleus and acts as a transcription factor regulating the
expression of Foxp3 (40). Non-cytokine factors can also direct
FoxP3 expression and promote de novo pTreg differentiation via
epigenetic regulation of the Foxp3 locus. FoxP3 expression is
controlled by three major regulatory regions within the FoxP3
locus: the conserved non-coding DNA sequence (CNS) elements
CNS1, CNS2, and CNS3. Demethylation of the CNS regions is
observed in both tTregs and pTregs, with CNS1 appearing to be
critical for pTreg but not tTreg differentiation (41, 42). Similarly,
acetylation of histone H3 both at the promoter and CNS regions
of the Foxp3 locus promoted pTreg differentiation (43).

Numerous immune and non-immune cells can provide the
environmental cues necessary for pTreg differentiation. Among
the immune cells, CD103+ DCs, macrophages, regulatory B cells
(Bregs), and Treg support pTreg differentiation through their
release of TGF-β. Antigen-specific pTregs are induced by TGF-β
and retinoic acid produced by gut mucosal CD103+ DC and lung
resident macrophages, protecting from food allergies, asthmatic
lung inflammation, and airway hyperreactivity, respectively (44).
Bregs produce both TGF-β and IL-10 to induce pTregs (45),
ensuring allograft tolerance (46). Activated Tregs can also
promote the differentiation of Tregs from naïve CD4+ T cells
through their surface expression of TGF-β, which activates
contact-dependent TGF-β signaling (47). CD103+ DC, gut
epithelial and stromal cells are also a source of TGF-β and
retinoic acid, supporting pTreg differentiation to maintain oral
tolerance (48–50).

IMPACT OF DIET ON TREG
DEVELOPMENT

Diet is a major environmental factor influencing health. A
balanced diet consists of 45–65% carbohydrates, 20–35% fat,
and 15–25% protein by energy content and sufficient intakes of
micronutrients, such as minerals and vitamins. While the role
of diet on metabolic health is well-established, an increasing
number of studies reveal its impact on the immune system,
particularly on Treg differentiation and function. Diet may
directly or indirectly affect Treg through changes in the
gut microbiota (51). A summary of how different dietary

components promote the differentiation of Treg is presented in
Figure 1.

Influence of Diet on tTreg Ontogeny
The role of diet in tTreg induction is not well-established.
Nonetheless, two factors related to diet promote tTregs: short-
chain fatty acids (SCFA), a by-product of the fermentation of
complex carbohydrates by gut bacteria, and dietary cholesterol.
The role of SCFA on tTreg ontogeny will be discussed in the
gut microbiota section below. Cholesterol, derived from animal
products, is prevalent in the Western diet, and supplementation
of a standard murine chow with 0.15% cholesterol enhanced
TCR responsiveness in CD4+ T cells and increased Treg
frequency and suppressive capacity in both central and peripheral
compartments (52). The mechanisms behind these effects
remain elusive.

On the other hand, dietary salt has been shown to
reduce the expansion of thymic tTregs and decrease their
suppressive function when mice were fed on a high-salt diet.
Dietary salt changed extracellular osmotic pressure, altering cell
tonicity by activating the tonicity-responsive enhancer-binding
protein and p38 signaling pathway. These changes resulted in
the upregulation of serum/glucocorticoid-regulated kinase 1,
promoting IFNγ and RORγt expression. As a result, tTregs were
repolarized toward Th1 and Th17 lineage. Serum/glucocorticoid-
regulated kinase 1 also phosphorylates and inhibits FOXO1
and FOXO3, decreasing FoxP3 expression and thus tTreg
differentiation (53). Interestingly, these effects are specific to
murine tTreg and not pTreg, with further investigation needed
to clarify whether these effects apply to humans.

Influence of Diet on pTreg Ontogeny
Macronutrients and pTreg

Role of Dietary Fats
Dietary fats, such as cholesterol and omega-3 fatty acids, and
fat metabolic intermediates, such as α-lipoic acid, increase pTreg
populations. The impact of fatty acids and cholesterol on pTreg
induction is mostly via metabolic effects, with fatty acid oxidation
promoting Treg differentiation. Oral administration of α-lipoic
acid in obese mice restored visceral Treg numbers by enhancing
naïve T cell oxidative capacity and fatty acid oxidation (54).
Similar results were observed in humans, in obese women who
received α-lipoic acid supplementation (54). Likewise, in mice
treated on a diet containing 0.25% cholesterol and 15% cocoa
butter, the accumulation of cholesterol in Treg increased fatty
acid oxidation, leading to an increased splenic Treg population
(55). Cholesterol also promotes Treg development by activating
mammalian target of rapamycin (mTOR) complex 2 and PPARδ

signaling (55). Fatty acids may also indirectly induce pTreg
differentiation with for example ω-3 docosahexaenoic acid
induced production of lipoxin A4 by neutrophils, which increases
pTregs (56, 57).

The type and the amount of dietary fat consumed can
modulate the pTreg compartment. pTreg are decreased in tissues
such as the spleen and white adipose tissues in both high-fat diet
(HFD) induced obesity (58) and non-alcoholic steatohepatitis
(59) animal models, as well as in a humanized mouse model
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FIGURE 1 | Impact of dietary components on Treg development. Dietary components have varying effect on Treg development, with dietary fats inducing Treg by

modulating metabolic activity or through the activation of nuclear receptors (NRs) such as PPARδ. Dietary protein generally support Treg development, with L-citrulline

enhancing the histone deacetylase (HDAC) Sirt1 to promote Treg development. Dietary carbohydrates, including feruloylated oligosaccharides and glucose act on

conventional dendritic cell (cDC) and CD103+ DC, boosting their production TGF-β and retinoic acid (RA), respectively, to promote Treg. Vitamin (Vit) A is a substrate

for RA production required for Treg induction while vitamin B7 and D finetune mTOR-related metabolic signals or bind to NRs to support Treg induction. Dietary trace

elements like selenium (Se) and zinc (Zn) are supportive toward Treg development with unknown mechanisms. The food additives TiO2 and salt, and the contaminant

biphenol A (BPA) exhibit mixed/complex regulatory patterns toward Treg development while pesticides like chlorpyrifos suppressed Treg development. Dietary

components promoting Treg development are colored in green, the ones impeding in blue, and the ones with mixed effect in yellow.

(60). This was paralleled with low-grade inflammation and
metabolic alteration. Similarly, HFD-induced myocardial fibrosis
and atherosclerosis in mice were characterized by decreased
Tregs in the heart (61) and aorta (62). Dietary fat may also
affect pTreg function, as mice fed an HFD containing 35%
hydrogenated vegetable oil had decreased IL-10 (60). Whether
these Treg number and activity changes are directly due to HFD
or are secondary to metabolic alteration is unclear. Changes in
the oxidative environment linked to metabolic alteration may
directly contribute to decreased Treg. In an HFD-induced non-
alcoholic steatohepatitis model, the rise of hepatic oxidative stress
and reactive oxygen species triggered Treg apoptosis, increasing
liver inflammation (63).

Conversely, isocaloric ketogenic diets consisting of high fat
(70–80%) and low carbohydrate (5–10%) content increase naïve
T cell fatty acid oxidation, promoting Treg differentiation and
IL-10 production (64). To our knowledge, only one study has

investigated the impact of a ketogenic diet over 3 weeks on
Treg induction in humans (64). Data in mice are inconsistent
depending on the model with either an increase in Tregs in a
carcinomatous peritonitis model (65) or a decrease in a diabetic
obese mouse (66). This difference may be due to the altered
metabolic status of the mice.

Role of Dietary Proteins
Dietary proteins are the primary source of food antigens, a key
component of pTreg development. Before weaning, the maternal
breastmilk proteins constitute the majority of luminal antigens
contributing to colonic pTregs generation. Colonic Treg from
such origin plays an important role in tolerance maintenance and
allergy suppression by dampening the Th2 responses (67, 68).
Unlike Tregs in the colon, Tregs in the small intestine lamina
propria are induced during weaning when exposure to solid food
commences. This population is sparse before weaning, implying

Frontiers in Nutrition | www.frontiersin.org 5 April 2022 | Volume 9 | Article 878382

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.frontiersin.org/journals/nutrition#articles


Tan et al. Regulation of Treg by Diet

breastmilk has a limited contribution to their development.
There is, however, a significant boost in their induction upon
weaning with a regular chow diet, both in germ-free (GF) or
specific-pathogen-free (SPF) mice. Conversely, weaning with
an antigen-free diet (deficient in dietary protein antigens) fails
to replenish small intestine pTreg. Similar observations have
been reported in zebrafish, where pre-exposure to food antigens
promoted an intestinal Treg phenotype while lack of prior food
antigen exposure did not (69).

Studies centered on the impact of dietary protein on pTreg
have primarily focused on specific proteins or amino acids.
Cow milk proteins have been implicated in pTreg development,
although changes are dependent on the type of protein. Four
generations of mice were fed from birth with a nutritionally
balanced milk-based diet containing either A1 or A2 beta-
casein components.While there were no changes in conventional
FoxP3+CD25+ Tregs, the A2-fed cohort had increased non-
conventional FoxP3+CD25− Tregs in the spleen (70). Regarding
the impact of specific amino acids on Treg development,
glutamine supplementation has been the most investigated. A
diet in which 25% of casein was replaced by glutamine increased
circulating pTregs in both sepsis (71) and DSS-induced colitis
mouse model (72), though the mechanism was unresolved.
Other amino acids such as collagen and L-citrulline also
increased pTreg differentiation in vitro and in vivo, respectively
(73). The effect of L-citrulline on naïve T cells was linked
to the upregulation of the deacetylase Sirtuin 1 (Sirt1) and
downregulation of Smad7, an inhibitor of TGF-β signaling. These
changes enhanced Foxp3 transcription and IL-10 production,
thus Treg differentiation (73).

Role of Dietary Carbohydrates
Carbohydrates such as feruloylated oligosaccharides and glucose
can increase pTreg differentiation (74, 75). Oral administration of
200 or 400 mg/kg/day of feruloylated oligosaccharides increased
colonic Tregs in a DSS-induced colitis mouse model, likely
through the increased production of TGF-β from DCs (75).
The in vitro addition of glucose to isolated small intestine-
derived DCs increased RALDH2 activity, leading to higher
retinoic acid production and enhanced ability to promote Treg
differentiation (74).

Micronutrients and pTreg

Zinc and Selenium
Micronutrients such as zinc and selenium modulate pTreg
generation. A zinc-deficient diet significantly decreased splenic
pTreg without altering their suppressive function in a mouse
model of dermatitis (76). Conversely, a diet enriched in zinc
increased pTreg numbers in weaned piglets and adult pigs
(77, 78). The mechanism(s) behind zinc’s effect on Treg
remains elusive, as is whether this effect applies to human
Treg. Selenium supplementation in drinking water protected
mice from autoimmune thyroiditis (79) and DSS-induced
colitis (80) by inducing splenic and colonic lamina propria
pTreg, respectively. During DSS-induced colitis, selenium also
increased IL-10 production in CD4+ T cells, reducing colonic
inflammation. The role of selenium in human Treg biology
is under-investigated. Only one study demonstrates that daily

selenium supplementation (200 µg/day) for 3 months had no
impact on a subset of non-Hodgkin lymphoma patients (81).

Vitamins
Deficiency in vitamins D, B7, and A, has been shown to
reduce both the proportion and functionality of pTreg. Vitamin
D deficiency reduced splenic Tregs in healthy mice (82) and
decreased Treg in sino-nasal tissue during chronic rhinosinusitis
(83). Similarly, vitamin B7 deficiency reduced the expression
of FoxP3 in murine inguinal lymph nodes and inhibited Treg
differentiation in vitro. These effects involved mTOR activation,
which inhibited FoxP3 expression in CD4+ T cells while
promoting IFNγ and IL-17 (84). Vitamin A is a crucial factor
promoting Treg development via its conversion into retinoic
acid by the enzyme RALDH2 expressed in CD103+ DC. The
absence of vitamin A impairs Treg generation and suppressive
function (6).

Food Additives
Food additives are prevalent in modern diets and added to
processed food for various reasons, such as increasing shelf-life
and improving texture. The whitening agent titanium dioxide
(TiO2) is one of the most common food additives (85, 86), and
its reported effects on pTreg appear inconsistent. While water
supplementation with TiO2 (10 mg/kg body weight/day) for 7
days reduced Tregs in Peyer’s patches in rats (87), the addition
of TiO2 into food had no impact (88). In mice, the addition of
TiO2 to drinking water for 3–4 weeks at either a physiological (10
mg/kg body weight) or high-dose (50 mg/kg/body weight) had
no impact on Treg (85). Emulsifiers are used to improve food
texture and have been shown to exacerbate obesity and colitis in
mice via effects on the gut microbiota (89). Despite the reported
pro-inflammatory effect of emulsifiers carboxymethylcellulose or
polysorbate-80, their impact on Treg is unknown.

Salt has been used as a preservative for millennia, and its
impact on pTreg varies in humans and mice and depends
on individuals’ health status. In a pilot study of 5 healthy
men, 2 week-treatment on a high-salt diet did not alter pTreg
numbers (90), while in healthy mice, a high-salt diet reduced
bone marrow Treg and impaired their function, as they had
decreased ability to produce IL-10 (91). Dietary salt consumption
was negatively correlated with circulatory CD69+ Treg and
NKG2D+ Treg in rheumatoid arthritis and systemic lupus
erythematosus, respectively (92). Decreased salt consumption
restored the circulating pTreg pool in these patients (93). On the
other hand, high-salt feeding had a negligible effect on pTreg in
the spleen, draining lymph nodes and mesenteric lymph nodes
in a mouse model of multiple sclerosis (94). Sodium benzoate,
another commonly used food preservative, has been shown
to induce pTreg by increasing TGF-β via STAT6 dependent
mechanisms, protecting mice from experimental autoimmune
encephalomyelitis (95).

Food Contaminants
Modern agricultural practices expose food to unwanted
contaminants such as pesticides. In mice, intake of 7 mg/kg
chlorpyrifos, a widely used organophosphate pesticide, decreased
the circulatory Treg pool and suppressed Treg-related gene
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expression in the spleen (96). While pesticide exposure has
extensive links to specific diseases such as cancer (97), their
impact on the immune system is understudied. Plastic food
packaging is also a significant source of food contamination,
particularly packaging containing the synthetic organic chemical
bisphenol A (BPA). However, the role of BPA on Treg is
inconclusive, with one study finding that mouse exposure
to BPA at different developmental stages decreased splenic
Tregs in males (98, 99) and another study finding the opposite
(100). While not strictly a contaminant, plant cells like any
cells, can also produce extracellular vesicles (EV) either under
basal conditions or in response to threats. These plant-derived
particles have been shown to modulate mammalian cell
phenotypes, including immune cells. For instance, plant-derived
exosome-like nanoparticles derived from ginger and carrot
induced IL-10 production in RAW264.7 macrophage cell line
(101) but whether this effect applies to T cells is unknown.
Similarly, whether plant-derived EV likely present in food
products are immunomodulatory in vivo and affect Treg
development remain elusive. Plant-derived EV can modulate
bacterial growth (102), and thus, as a result, may alter the gut
microbiota composition. As discussed below, changes in gut
microbiota may lead to Treg development.

Caloric Restriction
Caloric restriction (CR) has been shown to promote
pTreg, protecting mice from experimental autoimmune
encephalomyelitis (103, 104) and ischemic stroke (105). By
limiting T cell energy availability, CR raises the intracellular ratio
of adenosine monophosphate (AMP): adenosine triphosphate.
This activates AMP-activated protein kinase, which inhibits
mTOR promoting Treg differentiation. CR downregulate
acetyl-coenzyme A carboxylase 1, decreasing de novo fatty acid
synthesis and biasing naïve T cell differentiation toward Treg
rather than Th17 (105). CR also elevates ketone bodies, but
this does not contribute to pTreg differentiation, as murine
supplementation with ketone ester (a ketone body raising agent)
did not affect splenic and intestinal Tregs (106).

GUT MICROBIOTA AND TREG
DEVELOPMENT

Bacteria, viruses, archaea, and fungi colonize the human
gastrointestinal tract from birth. Collectively, this community is
known as the gut microbiota and has diverse effects on the host.
The gut microbiota can influence host metabolic, physiological,
and immunological functions and mediate these effects via direct
(i.e., membrane components) or indirect (i.e., production of
metabolites) mechanisms (107). The overall impact of bacteria-
derived metabolites or antigenic components is summarized in
Figure 2.

The intestinal compartment is particularly enriched in Tregs,
representing approximately 30% of colonic lamina propria CD4+

T cells (108). Most studies indicate that colonic Tregs are
generated de novo through contact with the microbiota (109,
110), with only one study reporting colonic Tregs are thymic-
derived (111). Indeed, compared to SPF mice, GF mice have
reduced numbers of colonic Tregs (109). Antigenic stimuli from

the gut microbiota generate and activate RORγt+ Tregs, a
critical subset of colonic Tregs, which are integral to intestinal
homeostasis (110). RORγt+ Tregs, which comprise 65% of
colonic Tregs, require microbial antigens and are absent in
GF conditions (112, 113). RORγt+ Tregs expand during the
weaning period when there is an influx of food and microbial
antigens. These cells suppress both Th1 and Th2 responses
and maintain homeostasis with commensal microbiota (112).
A variety of microbes can induce colonic RORγt+ Tregs in
GF mice, including bacteria from Clostridia (109), Bacteroides
(113), and to a lesser extent, Segmented Filamentous Bacteria
(113). As discussed later, other bacterial strains, listed in Table 2,
have been reported to influence Treg development through
various mechanisms.

Although many studies examine singular mechanisms for
Treg induction, it is unlikely that bacteria conform to any one
mode of action. For example, 46 strains from the genusClostridia,
derived from Clusters IV and XIVa, induced colonic Tregs in
GF mice (109). This was attributed to increased secretion of
TGF-β and indoleamine 2,3-dioxygenase (a catabolic enzyme
for tryptophan) by colonic intestinal epithelial cells, which
induced FoxP3+ Tregs independently of pattern recognition
receptor (PRR) signaling. Treg levels were preserved at least
4 months post-induction, and this increased Treg phenotype
was vertically and horizontally transmissible to other GF mice
along with microbiota composition, indicating that the Clostridia
clades could stably induce Tregs. The mechanism behind
Clostridia Treg-induction appears multifactorial, dependent
on metabolites (SCFA and indole) (136), bacterial antigens,
and Treg-promoting cytokines, particularly TGF-β1 in both
mouse and human epithelial cell lines (136). The authors also
identified Clostridia-specific T cells, suggesting specific antigens
contributed to Treg induction (136). Monocolonization of GF
mice with single strains ofClostridia, however, was unable to fully
recapitulate the Treg-inducing capability of the 17-strain mix,
indicating the microbiota cooperatively promoted Tregs through
independent mechanisms. Members of Clostridia predominantly
ferment dietary fiber or indigestible carbohydrates (particularly
polysaccharides) as an energy source; however, some Clostridium
species preferentially utilize amino acids/protein as a nutrient
source [reviewed in (137)]. Supplementation with different fibers
promotes different Clostridia clusters, in distinct GI tract sites,
with piglets fed on a diet supplemented with either alfalfa
or cellulose for 3 weeks had increased cluster XIVa in the
distal and proximal colon, respectively (138). Overall, bacterial
species induce Tregs through multiple mechanisms, which can
be dramatically affected by diet.

GUT BACTERIAL METABOLITES AND
PTREG DEVELOPMENT

Metabolites
Short-Chain Fatty Acids
SCFAs are by-products of bacterial fermentation of dietary fiber.
The three predominant SCFAs, acetate, butyrate, and propionate,
ameliorate inflammatory diseases by regulating Treg function
and frequency (139–141). SCFAs possess intrinsic histone
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FIGURE 2 | Impact of gut bacteria on regulatory T cell development and function. Microbiota-derived metabolites can regulate Treg development and function via

distinct mechanisms. Indoles and secondary bile acids (BAs) can bind to nuclear receptors (NRs) to promote Foxp3 expression and Treg induction. Short-chain fatty

acids (SCFAs) can activate G protein-coupled receptors (GPCRs) to promote Treg directly via inhibition of histone deacetylase (HDAC) activity, or indirectly, by

enhancing retinal dehydrogenases (RALDH) and retinoic acid (RA) production by CD103+ DCs and epithelial cells. Alternatively, SCFA are directly taken up by cells,

including regulatory B cells (Bregs) and conventional DCs (cDCs) to promote expression of Treg-inducing cytokines TGF-β and IL-10. SCFA uptake by T cells can also

directly promote Treg induction by increasing mitochondrial activity. Bacterial pathogen associated molecular patterns (PAMPs) can also promote Treg via activation of

toll-like receptors (TLR). Bacteroides fragilis-derived polysaccharide A (PSA) promote Treg via TLR signalling on DCs, promoting IL-10 production, as well as

Treg-intrinsic TLR2 signals. Extracellular vesicles (EVs) are PAMPs that can bind to TLR and C-lectin expressed by gut DCs and epithelial cells, triggering the release of

Treg-inducing cytokines IL-10 and TGF-β.

deacetylase (HDAC) inhibitory properties and directly promote
Foxp3 gene expression. They induce pTreg differentiation
through the acetylation of histones H3 and H4 within the Foxp3
locus (42, 43, 139–142). Deficiency in GPR43, a receptor for
acetate and propionate, counteracted the effect of propionate on
the acetylation of histone H3K9 (139). As a result, propionate
treatment in GPR43 knockout mice did not increase Treg
(139). However, other studies have reported no defect in Treg
development in bothGpr43−/− andGpr41−/− mice (142). SCFAs
can also promote Treg differentiation via HDAC-independent
mechanisms by altering Treg metabolism. Propionate treatment
inmultiple sclerosis patients enhanced Treg oxygen consumption
rate, altered theirmitochondrial morphology, and their improved
suppressive functions. These patients had increased proportion
of circulating Tregs, which ameliorated disease progression (143).

SCFAs can indirectly upregulate Tregs through their actions
on other immune cells. Activation of GPR109A by butyrate in
DCs and macrophages increased Aldh1a1 and Il10 expression,
improving their ability to induce Treg differentiation and
function (144). Moreover, acetate and butyrate treatment in a
murine food allergy model increased the number and activity

of CD103+ DCs, which enhanced the generation of antigen-
specific Tregs and protected against severe anaphylaxis (6). Bregs
also promote Tregs via their secretion of TGF-β (145) and IL-
10 (146). Acetate can directly induce Bregs via stimulation of the
tricarboxylic acid cycle and post-translational acetylation (147,
148). Current literature, however, is fraught with inconsistencies;
Daïen et al. (148) found acetate promoted Bregs while butyrate
was inhibitory, whereas Zou et al. (147) observed the opposite.

Interestingly, acetate could not induce Tregs in vitro when
combined with TGF-β (42) but did upregulate IL-10 production
and FoxP3 expression under Th1/Th17-polarizing conditions
(142). In mice, acetate upregulated Foxp3 only after induction
of allergic airway disease (140). T cell transfer from non-
obese diabetic mice fed an acetate-enriched diet could not
protect their peers from induction of disease, unlike T cells
transferred from their counterparts fed a butyrate-enriched diet
(141). Similarly, propionate-mediated amelioration of colitis and
candidiasis protection is required prior to FoxP3 induction
(139, 149). Therefore, the protective effects of each SCFA may
require unique prerequisites which must be considered during
experimental design.
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TABLE 2 | Impact of bacteria on Treg phenotype.

Bacteria Model Impact on Tregs Mechanism of Treg induction Effect on immune system/

disease

References

Helicobacter pylori (likely

mediated by CagA+ strains)

↑ Splenic Tregs DC-derived TGF-β Presence in microbiota associated

with decreased asthma, allergic

disease, Inflammatory bowel disease

(114–118)

↑ FoxP3+ Treg induction in vitro Bone marrow-derived DC

secretion of IL-10 via TLR2

↑ gastritis and inflammation during H.

pylori infection in Tlr2−/− mice

↑ CD25+ T regulatory cell Breg secretion of IL-10 via

TLR2 activation

↓ Gastric pathology in vivo

↑ Pulmonary Tregs DCs ↓ airway inflammation in neonatal and

adult mice

↓ Mesenteric lymph node Tregs

in Il-18−/− mice

Induction of IL-18

producing DCs

Transfer of CD25+ cells from Il18−/−

or Il18r−/− mice lacked suppressive

activity during airway allergic disease

model

7 strain mix:

Lactobacillus acidophilus

CBT LA1, Lactobacillus

rhamnosus CBT LR5,

Lactobacillus plantarum

CBT LP3, Bifidobacterium

bifidum CBT BF3,

Bifidobacterium breve CBT

BR3, Lactococcus lactis

CBT SL6, Streptococcus

thermophilus CBT ST3

SPF ↑ CD25−FoxP3+ Tregs in

MLNs, Foxp3 mRNA in skin

↓ serum IgE, Th2 cytokines,

dermatitis symptoms

(119)

5 strain mix (IRT5):

Lactobacillus acidophilus,

Lactobacillus casei,

Lactobacillus reuteri,

Bifidobacterium bifidium,

Streptococcus thermophilus

SPF ↑ CD4+Foxp3+ Tregs in MLNs

of healthy mice

Tolerogenic CD103c− CD11c+

DCs expressing IL-10, TGF-β,

Cox-2, Indoleamine-pyrrole

2,3-dioxygenase

↓ disease scores in Inflammatory

bowel disease, atopic dermatitis,

rheumatoid arthritis models, ↓ Th1,

Th2, Th17 responses in T and B cells

in vitro

(120)

Lactobacillus paracasei

KBL382

SPF ↑ CD25+ Foxp3 Tregs in MLNs Altered cecal microbiota profile,

↑ SCFAs and lactate, succinate,

and fumarate

↓ serum IgE, atopic dermatitis

symptoms

(121)

Bacteroides

thetaiotaomicron VPI 5482

and 29148

SPF ↑ CD4+Foxp3+ cells,

CD4+ ICOS+ T cells,

CD4+ ICOS+ Foxp3+ regulatory

T cells, and IL-10-expressing

CD4+Foxp3+ cells in spleen,

MLN, and cervical lymph nodes

Possibly ↑ SCFA ↓ OVA-specific IgE airway

inflammation

(122, 123)

RORγt+ Treg homeostasis in

the gut

Bile acid Protection from colitis

8 defined species of Altered

Schaedler Flora

GF ↑ Helios− Treg, activated

CD103+ Treg, de novo

generation of colonic Tregs of

C57BL/6, BALB/c, Swiss,

Webster, NMRI mice

TLR signalling through MyD88

and Ticam-1, independent of

IL-10R signalling

Select monocolonisation unable to

recapitulate effects of full Altered

Schaedler Flora

(124)

Akkermansia muciniphila

BAA-835, 139

SPF ↑ FoxP3+ Tregs in MLNs

↑MOG-specific FoxP3+ Tregs,

total splenic Tregs, FoxP3+

Tregs in visceral adipose tissue

↑ cecal SCFA concentration

↑TGF-β and ↓IL-6, IL-1β from

MLN DCs ↑ ileal goblet cells

which likely encourages

tolerogenic DCs, ↓ IL-6, IL-1β in

visceral adipose tissue

Normalised gut microbiota, ↑

recovery from DSS-colitis

↓ disease score in MS model

improved metabolic profile in

HFD-induced obesity

(125, 126)

Bifidobacterium infantis

35624

SPF ↑ CD25+ Tregs in Peyer’s

Patch, CD25+ FoxP3+ splenic

Tregs

Possibly ↓CD80 expression by

DCs in Peyer’s Patches

and spleen ↑

↓ NF-κB activity, protection from S.

typhimurium

(127, 128)

Human ↑ FoxP3+ expression in

peripheral blood CD4+ cells

after oral feeding human

volunteers for 8 weeks

IL-10 secretion, RALDH2,

Indoleamine-pyrrole

2,3-dioxygenase expression in

DC subsets in vitro via

PRR activation

(Continued)
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TABLE 2 | Continued

Bacteria Model Impact on Tregs Mechanism of Treg induction Effect on immune system/

disease

References

Bifidobacterium longum AH

1206

GF, SPF ↑ FoxP3+ Tregs in Peyer’s

Patch and spleen of infant, adult

and GF models

Possibly altered genes of

retinoic acid metabolism in

Peyer’s Patches

↓ serum OVA-IgE, airway

inflammation

(129)

Bacteroides fragilis

NCTC934

SPF ↑ RORγt+ colonic Tregs Bile acid metabolism Bile acid supplementation protected

from colitis

(130–132)

Bacteroides fragilis 9343 GF ↑ IL-10+FoxP3+ colonic Tregs;

enhanced CD4+ conversion to

FoxP3+ in vitro

PSA induces tolerogenic DCs

via TLR2

PSA protects from colitis; protects

from MS model

Lactobacillus fermentum

KBL374, KBL375

SPF ↑CD25+Foxp3+Tregs in MLNs ↑ IL-10 colonic expression,

Akkermansia expansion, altered

cytokine expression

Protection from DSS colitis,

normalised microbiota composition

(133–135)

↑ CD25+Foxp3+ Tregs in MLN,

Foxp3+ expression in skin

↑ IL-10 in skin, SCFA

concentration in cecum

↓ serum IgE, atopic dermatitis,

altered cecal microbiota

Indole
Indole and indole-derivatives are derived from the diet or
through bacterial metabolism of the amino acid tryptophan,
and these molecules have diverse effects in hosts (150). Diet-
derived indoles upregulate Foxp3 and Il10 gene expression via
the activation of Aryl hydrocarbon receptors (AhR) (151–153).
Moreover, indole-3-carboxaldehyde, derived from commensal
bacteria or cruciferous vegetables, increased Il10 transcripts in
mice colon (154) and consequently increased the frequency
and function of Tregs. Few studies, however, have examined
microbially-derived indole and their derivatives on Treg
function. Interestingly, butyrate indirectly ameliorated arthritis
by promoting tryptophan-digesting bacteria, thereby increasing
colonic levels of hydroxyindole-3-acetic acid, increasing Breg
function via AhR (155). This highlights the complex interplay
between bacterial metabolites and the difficulties of studying
these biological products.

Bile Acids
Primary bile acids (BA) are synthesized by the liver, stored
in the gallbladder, and secreted into the gut lumen, where
they facilitate lipid digestion (156, 157). Most BAs are
reabsorbed in the ileum, but 5% escape into the colon, where
they undergo biotransformation by the gut microbiota. This
involves deconjugation and transformation into secondary BAs,
comprising mostly deoxycholic acid (DCA) and lithocholic acid
(LCA) in humans (158). BAs have been shown to activate
farnesoid X receptor (FXR), vitamin D receptor (VDR), and G
protein-coupled bile acid receptor 1 (TGR5) (157, 159). Along
with the activation of these receptors, BA metabolites may also
upregulate Tregs via epigenetic and metabolic modulations.

3β-hydroxydeoxycholic acid (isoDCA) promotes pTreg
differentiation by downregulating the pro-inflammatory profile
of DCs (160). It was proposed that isoDCA may function
via antagonism of FXR, which contradicts the consensus of
BAs as FXR agonists (161). However, the authors did not
show direct inhibition of FXR activity by isoDCA. In contrast,
Song et al. found that both VDR and FXR deficiency depleted

colonic RORγt+ Treg frequency, with VDR being the principal
receptor required for BAs to maintain colonic RORγt+ Treg
homeostasis (159). Accordingly, VDR deficiency was associated
with increased disease severity in murine models of colitis;
however, whether this was mediated by BAs or Vitamin D
was not examined (159). In contrast, the secondary BA,
isoalloLCA, could enhance pTreg differentiation by increasing
H3K27 acetylation within the CNS3 region of the Foxp3 locus
(162) or by binding to the nuclear hormone receptor NR4A1
(122). Interestingly, enhancement of mitochondrial reactive
oxygen species was necessary for isoalloLCA promotion of
Tregs (162).

Overall, the BA-mediated induction of Tregs utilizes various
mechanisms seemingly unique to each BA. Although studying
the effects of individual BAs is common, this is not reflective of
the diverse pool of BAs present in hosts. Indeed, Song et al. found
supplementation with defined mixes of primary or secondary
BAs rescued colonic Treg frequencies while singular BAs did
not (159), suggesting that BA induction of Tregs likely requires
synergistic activities. Unfortunately, choosing a consistent and
defined pool of BAs is difficult, as differences in host diet and
microbiota lead to significant individual variation in the BA
pool (163).

Fatty Acids
Dietary fatty acids, including polyunsaturated fatty acids such
as omega 3 and omega 6 can be processed by gut bacteria to a
variety of metabolites. In particular, members of Bifidobacteria
can produce conjugated linoleic acid (CLA), which increased
murine Treg through PPARγ activation in a murine model of
DSS-induced colorectal cancer (164). Dietary supplementation
with CLA improved DSS colitis in mice by upregulating colonic
IL-10, although Tregs were not directly examined (165). Linoleic
acid metabolites can also inhibit Treg development with 12,13-
diHOME decreasing pulmonary Tregs via the activation of
PPARγ in DC, which in turn decreased their IL-10 secretion in
an allergic airway model (166).
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Direct Physical Interaction or Indirect
Bacterial Extracellular Vesicles
The activation of host PRRs by microbial ligands present on
the bacterial surface, collectively known as pathogen-associated
molecular patterns (PAMPs), is a common mechanism of Treg
induction. Bacterial PAMPs, such as the membrane components
lipopolysaccharide (LPS) and lipoteichoic acid (LTA), can
activate TLR4 and TLR2, respectively. The TLR2/MyD88
signaling pathway has been particularly well-studied in the
context of Treg induction with a reduction of tTregs and pTregs
in TLR2 deficient mice (167) Treg numbers were unaffected in
TLR4 deficient mice (168). The most well-known commensal
activation of the TLR2 pathway is by the capsular polysaccharide
A (PSA) present on Bacteroides fragilis, inducing colonic FoxP3+

Tregs (130). Purified PSA promoted Treg differentiation via the
activation of tolerogenic DCs (169). Whether other bacteria such
as Akkermansia muciniphila or the defined commensal flora
(known as the Altered Schaedler Flora) induce Treg via direct
or indirect effects (124, 125) and through PRR activation is
still unclear.

Microbial antigens can also regulate Treg biology via Treg-
intrinsic signaling. Treg express TLRs, which enables their
direct sensing of PAMPs. TLR engagement on Treg regulate
their suppressive capacity, likely in a species-specific manner
(170). TLR5 activation on human CD25+ Treg increased
FoxP3 expression and suppressive activity in vitro (171). TLR2
activation on CD4+ T cells by B. fragilis PSA NCTC9342
induced Treg and augment their suppressive capacity in the
absence of APCs (169). These effects are specific for PSA as the
synthetic TLR2 ligand Pam3CSK4 did not affect Treg function.
Another study identified that hundreds of phylogenetically
diverse intestinal bacteria could produce PSA-like capsular
polysaccharides (172), and lysates of these strains induced IL-10
secretion and increased CD25+FoxP3+ cells in vitro in human
peripheral blood mononuclear cells (172). The list of commensal
bacteria able to regulate host immunity is thus far from extensive.

Gut bacterial extracellular vesicles (EV) are nanosized
membrane vesicles released constitutively by gram-positive and
gram-negative bacteria. EV can cross the intestinal barrier under
homeostatic conditions (173, 174) and disseminate to distal
organs, including the liver, heart, spleen, kidney, and brain (175).
The outer surface of EVs is enriched in bacterial membrane
components such as LPS, LTA, peptidoglycan, and various
lipoproteins. EV package inside a variety of cargo, including
lipids, proteins, carbohydrates, and nucleic acid (174).

Gut bacterial EV can indirectly induce pTreg via DCs.
B. fragilis NCTC9343 EVs induced Treg through TLR2-
dependent mechanisms on tolerogenic DCs (131) as well as
Bifidobacterium bifidum LMG13195 EVs by inducing DCs
maturation in vitro (176). In vivo, a 3 day administration of
Lactobacillus rhamnosus JB-1 EVs to mice increased proportions
of IL-10+ DC and functionally suppressive FoxP3+ Treg in
Peyer’s patches and mesenteric lymph nodes (177). Induction
of tolerogenic IL-10+ DC was dependent on multiple PRRs
activation, including TLR2, TLR9, and the C-lectin type
receptors Dectin-1 and SignR1, indicating EVs can activate
multiple PRRs. L. rhamnosus JB-1 EVs were also enriched in

heat shock proteins (HSPs) (177), a highly conserved protein
family across species. HSP are critical regulators of Treg via
TLR2 (178) with HSPs from E. coli (179), Mycobacterium
tuberculosis (180, 181), H. pylori (182), as well as from helminths
(183) promoting Treg in vitro. Treg specific for bacterial
HSP can also recognize host HSP, which are released during
inflammation. These Treg can as a result attenuate inflammatory
disorders such as experimental arthritis (184). Furthermore,
HSP-specific T cells with suppressive capacity expressed a variety
Treg-associated markers such as GITR, CTLA-4, and LAG-
3 (184).

Together, these studies demonstrate that EVs promote Treg
through various mechanisms including via PAMPs and HSP.
Other mechanisms, including small RNAs, which are important
in interkingdom communication may also be involved (185).

Gut Bacterial DNA
Bacterial DNA contains a high frequency of unmethylated CpG
dinucleotides (CpG), a ligand for TLR9. CpG content differs
widely across bacteria (186) resulting in their different ability to
stimulate TLR9, with the higher the frequency of unmethylated
CpG nucleotides in bacterial DNA, the highest the activation of
TLR9 (187). Bacterial CpG is a potent inducer of IL-10+ Breg
in vitro in humans (188) and mice (189) via TLR9. In allergy,
CpG-TLR9 activation on DC and B cells initiates a Th1 and
Treg response that restores immune balance (190). As such,
synthetic CpG oligodeoxynucleotides (ODN) have been used
therapeutically in the treatment of asthma and allergy (191, 192).

Nucleic acid from gut bacteria is an essential source of
TLR9 ligands critical for gut homeostasis, as apical TLR9
signaling in intestinal epithelial cells limits pro-inflammatory
signals, and Tlr9−/− mice are more susceptible to colitis (193).
Oral administration of synthetic ODN (ID35) derived from
L. rhamnosus attenuated colitis (194), and a synthetic ODN
derived from Streptococcus thermophilus NCDO 573 (commonly
found in fermented milk products) increased IL-10 expression
and proportion of CD4+CD25+ Treg in murine splenocytes
(195). In humans, TLR9 agonists are used as anti-inflammatory
therapy for ulcerative colitis (196) andODN-primed human pDC
induced functionally suppressive CD4+CD25+ Tregs (197).

While unmethylated CpG nucleotides canonically activate
TLR9,methylated bacterial DNAhas recently emerged as another
immunomodulatory factor. DNA isolated from a commensal
strain of Bifidobacteria longum subsp. infantis S12 strongly
induced CD25highFoxP3+ Tregs in vitro in a dose-dependent
manner, whereas DNA isolated from Lactobacillus rhamnosus
GG or E. coli strain B had significantly weaker Treg-promoting
potential (198). This was attributed to a methylated CpG motif
unique to the Bifidobacteria strain. Accordingly, a methylated
CpG DNA octamer was more effective than an unmethylated
octamer at converting FoxP3+ cells from CD4+ cells in vitro
(199). GC-rich motifs are immunosuppressive motifs identified
in commensal bacteria (195, 200). Administration of synthetic
GC-rich suppressive sequences in mice induced Tregs and
protected from DSS-colitis (200).

Overall, the gut microbiota is a rich source of nucleic acids
either packaged in EVs or released as extracellular DNA. These
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nucleic acids have the potential to regulate intestinal Tregs, via
TLR9, as well as other mechanisms yet to be identified.

GUT MICROBIOTA AND TTREG

While the impact of the gut microbiota on the differentiation
of pTreg is well-established, its impact on tTreg is unclear.
GF mice have defects in lymphoid and mucosal tissues yet
their thymus cellularity and development is typically reported
as normal (201). The gut microbiota has recently shown to
influence the T cell repertoire by bacterial antigen-specific T
cells in the thymus. Bacterial antigens are presented by CX3CR

+
1

DC that migrates from the colon to the thymus. This effect was
limited to naïve T cells as tTreg were not impacted (27). While
this work shows that gut bacterial antigens can be trafficked to
the thymus via migratory DC, it is unknown whether bacterial
components can reach the thymus via other mechanisms. tTreg
are affected by PAMPs as TLR2 deficient mice had decreased
tTreg and pTreg (167) and TLR9 activation in mTEC promotes
the recruitment of CD14+ monocyte-derived DCs to the thymus,
affecting the negative selection process and tTreg generation
(202). Furthermore, bacterial metabolites may also influence
tTreg as butyrate has been shown to increase AIRE expression
in mTEC ex vivo and promoted tTreg in a fetal thymic organ
culture model in a GPR41-dependent manner (203). Similarly,
acetate increase AIRE expression in mTEC without affecting
tTreg numbers (204). There are evidence showing that bacterial
antigens, PAMPs and metabolites reach the thymus where
they may affect tTreg development. However, the mechanisms
involved, as well as the consequence of gut microbiota alteration
on tTreg development remain elusive.

CONCLUSIONS AND PERSPECTIVES

There are multiple means by which Treg differentiation can be
regulated by both diet and the gut microbiota. These includes
epigenetic changes, alteration to T cell metabolism, and the
engagement of host receptors, such as TLRs and AhR. Diet
can influence other immune subsets and regulate physiological
processes, such as bile acid biology, to regulate Treg biology.
The concerted contribution of these pathways may be required
for optimal Treg induction and the maintenance of immune

tolerance. All aspects of diets (macronutrients, micronutrients,
and additives) have been shown to regulate Treg biology to
varying extent, suggesting that Treg development is highly
responsive to the nutritional status of the host. Indeed, defects in
Treg development associated with the adoption of a western diet
may underlie the increasing incidence of inflammatory diseases
such as autoimmunity, allergies, and inflammatory bowel disease
in western countries. Accordingly, dietary intervention or
symbiotic (combination of pre- and probiotics) may prove
to be a viable strategy in restoring Treg numbers to prevent
or treat diseases. It is not clear, however, if any one type
of dietary intervention would be effective in restoring Tregs
across different disease contexts. T cell development and Treg
ontogeny also exhibit high plasticity throughout life, and whether
a dietary intervention would be effective at promoting Treg
throughout the different life stages remains to be investigated.
Maternal nutrition and maternal gut microbiota can also shape
the neonatal immune system (205), suggesting that dietary
modulation of Treg biology likely begins as early as fetal
development. Addressing these questions would allow us to
better understand how interventions can be personalized for
therapeutic purposes.
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