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The peptide hormones ghrelin and leptin play major roles in the regulation of appetite
and food intake. However, the precise effects of these hormones on sensory processing
remain a subject of debate, particularly with food related stimuli and its small body
of evidence. Here, we test for relationships between ghrelin and leptin levels against
olfactory performance with multiple food-related odours. Specifically, a total of 94
Caucasian males were tested for their supra-threshold sensitivity (i.e., d′), intensity, and
valence perception to three odour compounds (i.e., vanilla, potato, and dairy odours).
These sensory data were then analysed against peripheral ghrelin and leptin levels, both
assessed in plasma samples. Participants’ body adiposity measures were also obtained.
Results lent strong support to one of our original hypotheses, with ghrelin levels being
positively correlated to the supra-threshold sensitivity of the dairy odour, (r = 0.241,
p = 0.020), and intensity ratings to most of the food odours tested [dairy (r = 0.216,
p = 0.037) and vanilla (r = 0.241, p = 0.020)]. By contrast, peripheral leptin levels were
not significantly linked to any of the olfactory measures (p > 0.05). These relationships
remained similar after controlling for variabilities of adiposity measures. The present
study brings novel insights by identifying positive links between supra-threshold olfactory
perception and ghrelin. This new knowledge is highly relevant for future research linking
olfactory shifts to hormonal dysregulation and obesity.
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INTRODUCTION

Understanding the aetiology of obesity remains an important research direction (1). Over-
responsiveness to food cues is considered a key contributor to obesity in the current food
environment (2, 3). Research over the last two decades has shown that maladaptive eating behaviour
is often accompanied by major alterations in peptide hormones, such as ghrelin and leptin (4, 5).
However, mechanisms underpinning these observed relationships remain unclear. Recent research
has postulated that sensory processing plays an important role in mediating hormonal effects on
eating (6–8). The current study adds to the emerging body of research by testing for links between
peripheral leptin and ghrelin levels and olfactory perception of food-related stimuli.

Previous research has consistently observed links between obesity and resistance to leptin
and ghrelin [e.g., (9, 10)]. Notably, peripheral ghrelin and leptin have been increasingly used as
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biomarkers for obesity (9, 11). Individuals with obesity were
shown to have reduced ghrelin (1/3–1/2 time lower) (11, 12),
and increased leptin levels (2–8 times higher), compared to
normal-weight controls (13–15). In addition to links to obesity,
neurological evidence suggests that both ghrelin and leptin
can modulate neural responsiveness to food rewards (4, 5,
16). Specifically, ghrelin is an orexigenic agent (i.e., promoting
food intake) (17, 18) and leptin is an anorexigenic agent (i.e.,
inhibiting food intake) (19, 20). Based on these previous findings,
it is intuitive to propose that changes of ghrelin and leptin
alter food-related neurological and behavioural responses, and
correspondingly influence one’s body weight overtime (5, 21–
23). However, the precise mechanism underpinning these effects
remains unclear. Recent research suggests that sensory processing
may play a key role in mediating ghrelin and leptin effects on
eating [cf. (24)], although such findings remain controversial.

Across the five special senses, olfaction is the least understood,
despite its vital function in flavour perception and food
acceptance (25). Olfactory processing emerges from first-order
neurons at the olfactory mucosa (OM) toward the olfactory
bulb (OB) (25). The OB then conveys olfactory information
to the olfactory cortex (26–28), which includes the piriform
cortex, anterior olfactory nucleus, lateral entorhinal cortex,
periamygdaloid cortex and the cortical nucleus of the amygdala
(26, 29–31). Further higher order projections from the olfactory
cortex to the orbitofrontal cortex, amygdala, and hippocampus
encode for executive, emotional, motivational, and memory-
related processes associated with human olfaction (32). Thus,
higher-order processing confers its specificity to the stimulus
perceived and reveal odour features, including odour intensity
and valence (29). This temporal cascade of olfactory processes
is shown to start with odour detection and discrimination,
followed by the identification of odour quality (e.g., the smell of
a rose) and ends with the hedonic perception of this stimulus
(33). Altogether, these complex neuroanatomical pathways
govern different aspects of an individual’s olfactory perception,
from detection sensitivity to hedonic valence, highlighting a
fundamental difference between these sensory measures.

Ghrelin and leptin can traverse the blood-brain barrier and
reach several cerebral areas that are directly involved with
feeding behaviour [e.g., hypothalamus: (34–36); mesolimbic
reward system: (37)], as well as other sensory-related regions
that are indirectly linked to eating (38–40). Recent research
further indicated that ghrelin and leptin were particularly
involved in olfactory transduction (41). Specifically, ghrelin
receptors are found in olfactory structures such as the
glomeruli, mitral cells, and granule cells located in the OB
(39). More recent research indicated that ghrelin is able to
modulate olfactory information transmission from the mitral
cells to the amygdala and hypothalamus (42). Similarly,
leptin and its associated receptor have been found in the
OM (43), olfactory epithelium (44) and OB (45). More
functional evidence indicated that leptin was involved in
olfactory-related mechanisms such as the mucus production
(41, 46). Furthermore, ghrelin and leptin signalling, and
olfactory transduction were shown to be co-modulated in
shared cerebral structures that are closely related to feeding

(35, 42). These observed links point to the possibility that ghrelin
and leptin influence eating behaviour via shaping individual
olfactory perception.

A few studies have tested for links between olfactory
perception and peripheral ghrelin levels, with findings remaining
controversial. Specifically, a subset of these studies attempted to
test for links between peripheral ghrelin and detection threshold
to neutral odours (e.g., n-butanol) (47–50). However, most of
these studies failed to detect any significant relationship (47–
49). Only a recent study found a significant positive correlation
between peripheral ghrelin levels and detection threshold scores
to n-butanol (50). Importantly, the study from Uygun et al.
(50) was performed only on women with obesity while other
studies considered all weight groups for analysis, which may have
contributed to these differential results. Although no study tested
for links between peripheral ghrelin and olfactory sensitivity
to food odours, a few studies showed that systemic ghrelin
infusions significantly increased individual sniffing magnitude in
response to food odours (39) and generated a greater response
to food odour conditioning task (48). In line with these findings,
peripheral ghrelin levels were shown to be significantly associated
with valence ratings (VR) of food odours (e.g., black pepper
oil) (48, 49). Such inter-study inconsistencies may indicate the
important role of the nature of odorants in the relationship
between peripheral ghrelin and olfaction.

With regards to the link between leptin and olfactory acuity,
animal studies have consistently observed a negative relationship
[e.g., (51)], while human studies revealed mixed findings.
Specifically, several rodent studies observed that leptin-deficient
animals exhibited a heightened sensitivity to food-related odours,
compared to matched controls (44, 52, 53). Such findings were
later explained as leptin reduces neural activity in the olfactory
epithelium and OB (45, 54–56). Accordingly, a recent human
study highlighted a negative correlation between OB volume and
peripheral leptin levels (57). On the other hand, studies with
human subjects regarding olfactory sensitivity revealed either
positive (49, 58) or negative correlations with peripheral leptin
levels (58, 59). Karlsson et al. (58) further pointed out differential
results being dependent on the sex of participants with peripheral
leptin levels and olfactory sensitivity being negatively linked in
females and positively linked in males. Notably, these studies
mainly focussed on identification, detection and discrimination
of a neutral olfactory compound, n-butanol. The study from
Trellakis et al. (49) was the only experiment on human subjects
incorporating food odours, and their results revealed a significant
correlation between pleasantness to black pepper oil smell and
peripheral levels of leptin. Given that numerous animal studies
using food odours observed a consistent negative relationship
between leptin and olfaction, the use of food odours to assess
olfactory functions in humans may reveal a consistent link with
peripheral leptin levels.

The present paper aims to test for links of peripheral
ghrelin and leptin levels to olfactory functions. Due to the
close relationship between olfactory supra-threshold functions
and eating behaviour [e.g., (60)], the present study compares
peripheral hormone levels to supra-threshold sensitivities,
intensity ratings (IR), and VR to three food-related odours.
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Building upon previous literature, we hypothesised that
individuals with elevated levels of peripheral ghrelin show
heightened olfactory supra-threshold sensitivity and IR, but
reduced VR of food odours. By contrast, we hypothesised that
individuals with high levels of peripheral leptin levels show
weakened olfactory supra-threshold sensitivity and IR, but
heightened VR for food odours.

MATERIALS AND METHODS

Participants
A total of 94 Caucasian males [25.2 ± 5.7 years of age; body
mass index (BMI): 26.7 ± 4.9 kg·m−2] undertook this study.
Given the high degree of inter-individual differences in olfactory
perception due to sex, only males were recruited and included
in the present study [cf. (61)]. Sample size was determined using
G∗Power 3.1.9.7 Software, with calculations being based on the
effect sizes reported in previous studies testing for links between
peripheral hormone levels and olfactory performances [e.g., (49,
50)]. The analysis produced a sample size of 84 to achieve an
80% power and an α-level of 0.05, based on bivariate normal
model of correlations (effect size r = 0.300). We decided to
recruit an additional 10 participants to allow for at least 10%
of predicted rate of participants’ withdrawal. All participants
were non-smokers, and were free from sensory dysfunctions,
chronic medical conditions, or food allergies. Participants were
required to abstain from food or non-water beverage after 10
p.m. of the night prior to each laboratory session and the
phlebotomy appointment. In addition, participants were asked
not to wear any cologne or scented cosmetic on the day of
the testing. All participants gave informed written consents.
The study was approved by the University of Otago Ethics
Committee for Human Participation – health panel (Reference:
H18/111). Each participant received a monetary compensation
upon completion of the study.

Study Overview
Each participant attended six 30-min experimental sessions over
consecutive weekdays, from 7.00 to 9.30 a.m., and a separate
phlebotomy test for blood sample collection. All experimental
sessions were carried out in standard individual sensory booths,
at 20◦C and under red light, in the Sensory Neuroscience
Laboratory at the University of Otago, New Zealand. The
six experimental sessions included replicated assessments of
individual supra-threshold sensitivities, intensity, and valence
perception of three food-related odours. Testing orders were
randomised across participants using a Latin Square design (62).
Participants’ weight and height were measured in laboratory for
calculating anthropometric measures. On a separate morning
after the completion of sensory tests, participants were asked
to attend a phlebotomy appointment for collection of a
fasting blood sample.

Stimuli
Information of the olfactory stimuli used in this study are
described in Table 1. These odorants were selected due to
their close relevance to common snack foods in New Zealand

(63, 64). Each odorant was made into solutions of 11
concentrations following an additive logarithmic steps, with
the middle concentration being the reference sample. The five
lower concentration levels referred to the decremental series, and
the five higher concentration levels to the incremental series.
Serial dilution method was used to make these solutions, with
filtered water (0.5 µm) being the solvent. According to previous
reports and pilot tests, the selected concentration range of the
olfactory compounds should be above the recognition thresholds
associated with the odorant (60, 65, 66). During the sensory tests,
all olfactory samples were presented at a volume of 5 mL in
50 mL glass bottles (73 mm height, 42 mm diameter, Arthur
Holmes, New Zealand).

Olfactory Supra-Threshold Sensitivity
Measures
Each odorant was tested twice over two 30-min sessions
on separate days. The supra-threshold sensitivity test was
constructed based on the method of constant stimuli, with a
two-alternative forced choice (2-AFC) presentation. In a single
2-AFC task, the participant was presented with one reference
sample and one testing sample (from either the incremental
or decremental series), following a pre-determined randomised
order. The participants were required to sniff the two samples
for two seconds each and then indicate the “most intense
sample.” Each testing session contains 50 2-AFC comparisons,
comprising five replicated testing of each concentration level.
Across the two sessions, for each odorant, each concentration
level was compared to the reference sample for 10 replicates.
Participants were given non-flavoured crackers and a glass of
water for inter-trial palate cleansing. Olfactory supra-threshold
sensitivity tests were performed on Compusense Cloud software
(Guelph, ON, Canada).

Olfactory Intensity and Valence Ratings
Intensity and hedonic general Labelled Magnitude Scale (gLMS)
were used to measure intensity and valence perception to each
testing odorant. The intensity gLMS is a 100-point scale, marked
with semi-logarithmically spaced descriptors (no sensation = 0,
weak = 6, moderate = 17, strong = 35, very strong = 53, strongest
imaginable sensation of any kind = 100) (67). The hedonic
gLMS is a double scale ranging from −100 to 100, where −100
represents the strongest imaginable dislike, and 100 represents the
strongest imaginable like (68). Other interval labels are similar to
the intensity gLMS. Both scales are widely accepted and were
shown to be adapted to scale olfactory sensations (67–69). On
the first day of the six laboratory sessions, participants were
instructed on how to use these scales (69). For each odorant,
intensity and valence were rated against the reference sample (see
Table 1). These ratings were performed on Compusense Cloud
software (Guelph, ON, Canada).

Measurements of Hormones
Blood samples were collected between 7.30 and 10 a.m. following
overnight fasting. Samples were then centrifuged in a refrigerated
centrifuge (4◦C) for 10 min at 1,000 × g within 30 min of
blood collection. The plasma was pipetted and transferred in K2
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TABLE 1 | Summary of olfactory stimuli characteristics including description, compound, suppliers, purity, and reference concentrations.

Odorant code Odour descriptor Chemical name CAS number Purity Supplier Reference
(Concentration/log

value)

Dilution log step

O1 Vanilla 4-Hydroxy-3-
methoxybenzaldehyde

Vanillin

121–33–5 > 99% Vanesse, Camlin
Fine Sciences, India

0.39 g·L−1

/–0.40
0.221

O2 Potato 3-(Methylthio)
Propionaldehyde

Methional

3268–49–3 > 96% Sigma–Aldrich
United States

1.86 × 10−4 mL·L−1

/–3.73
0.146

O3 Dairy 4h-Pyran-4-One,
3-Hydroxy-2-Methyl-

118–71–8 – Firmenich,
Switzerland

0.08 mL·L−1

/–1.10
0.221

3(2h)-Furanone, 4-
Hydroxy-2,5-Dimethyl-
Maltol/Furaneol mixture

3658–77–3

EDTA tubes and stored at −80◦C until analysis. Leptin and acyl
ghrelin (active ghrelin) were both measured in duplicate using a
commercially available multiplex kit (Milliplex Map kit, Human
Metabolic Hormone Magnetic Bead Panel HMHEMAG-34K;
Millipore Corp., St. Louis, MO, United States). Milliplex map kits
are specific to the Luminex Magpix Analyzer and are analytically
validated for sensitivity, specificity, and reproducibility. These
kits offer a great sensitivity for active ghrelin and leptin
with respective detection thresholds of 14 pg/mL (intra-assay
CV < 10%, inter-assay CV < 15%) and 41 pg/mL (intra-
assay CV < 10%, inter-assay CV < 15%). Additionally, when a
sample contained a lower concentration than the lowest detection
threshold, standard curves were extrapolated to determine the
sample concentration. The measurements of the 94 blood
samples required three Milliplex map kits in total. The protocol
was performed over two consecutive days, and the exact same
procedure was followed for each kit.

Anthropometric Measurements
Participants’ weight and height were measured using a standard
scale and stadiometer to the nearest 0.1 unit. Participants
were asked to stay in standing position wearing light clothing
without shoes. Participants’ BMI were classified as normal weight
for a value between 18.5 and 24.9 kg·m−2, overweight from
25 to 29.9 kg·m−2, and obese over 30 kg·m−2. Additionally,
body fat percentage was also measured using skinfold thickness
measurements on four body sites (biceps, triceps, subscapular
area, and suprailiac area) as a complementary measure of BMI.

Sensitivity Calculations
Individual supra-threshold sensitivities were calculated based on
the results obtained from 2-AFC tasks. Specifically, Hit rates
(H; correctly recognising the higher concentration positioned on
the left side) and False Alarm rates (F; mistakenly recognising
the lower concentration positioned on the left side as the
higher concentration) were calculated for decremental and
incremental series separately. A decremental d′ value – d′

(Decremental,Reference) – as well as an incremental d′ value –
d′ (Reference,Incremental) – were calculated using the equation
from Macmillan and Creelman (70), for each sensory stimulus

and each individual. The individual value of d′ resulted from
the addition of d′(D,R) and d′ (R,I) for each participant and
each sensory stimulus. Additionally, extreme values of d′ were
corrected using the 1/(2N) rule (71). In line with the rule, extreme
proportions of H and F reaching a value of 1 or 0 were replaced
with 1–1/(2N) and 1/(2N), respectively, with N being the number
of trials used in the experimental design. The calculations of d′

(D,R), d′ (R,I), and d′ were performed on Excel (Microsoft office,
2018, United States).

Statistical Analyses
Pearson’s correlations were firstly calculated to assess the
relationships between continuous values of BMI and peripheral
levels of ghrelin and leptin. Pearson’s correlations were
also calculated between sensory measures of supra-threshold
sensitivity (d′), IR and VR for each olfactory compound.
Subsequently, Pearson’s and partial correlations were calculated
between olfactory functions (d′, IR, and VR) and peripheral
ghrelin levels, with and without BMI as a covariate. Similar
analyses were then performed to assess the correlations
between olfactory functions (d′, IR, and VR) and peripheral
leptin levels. For all correlation analyses, the strength of the
correlation observed was reported as weak, moderate, and
strong for an absolute value of the correlation coefficient
in the ranges of 0–0.4, 0.4–0.7, and 0.7–1, respectively (72).
All statistical analyses used an α level of 0.05 for detecting
significant differences, and analyses were performed on SPSS
Statistics (V26 – IBM Corp., Armonk, NY, United States)
and GraphPad Prism 8.0 (GraphPad Software, San Diego,
CA, United States).

RESULTS

Summary of Testing Measures
The present study included a total of 94 Caucasian male
participants with an average age of 25.81 ± 5.74 years old, body
fat percentage of 19.99± 5.69% and BMI of 26.78± 4.93 kg·m−2

(Figure 1). Table 2 summarises the mean values and standard
deviations of leptin and ghrelin concentrations in periphery, as
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FIGURE 1 | Whisker plot illustrating individuals’ BMI across three BMI groups classified as normal weight, overweight, and obese.

TABLE 2 | Summary of Mean ± SD values of hormonal measures and olfactory functions across BMI groups with results from One-way ANOVAs assessing the effect of
BMI groups on each testing variables.

Normal weight Overweight Obese ANOVA Total

N 38 37 19 F-statistics;
p-value

94

Ghrelin (pg·mL−1) 20.17 ± 18.33 13.07 ± 6.76 9.51 ± 2.62 F(2,91) = 5.51;
p = 0.005

15.22 ± 13.08

Leptin (pg·mL−1) 788.76 ± 800.37 2011.63 ± 1754.01 8968.26 ± 6442.86 F(2,91) = 46.35;
p < 0.001

2923.40 ± 4374.69

Olfactory supra-threshold sensitivity

d′O1 2.51 ± 0.68 2.42 ± 0.97 2.40 ± 0.98 F(2,91) = 0.15;
p = 0.859

2.45 ± 0.86

d′O2 1.41 ± 0.67 1.49 ± 0.90 1.44 ± 0.55 F(2,91) = 0.09;
p = 0.912

1.45 ± 0.74

d′O3 1.42 ± 0.88 1.24 ± 0.61 1.08 ± 0.61 F(2,91) = 1.46;
p = 0.236

1.28 ± 0.74

Olfactory intensity ratings

IRO1 26.16 ± 13.74 24.05 ± 11.39 29.39 ± 14.03 F(2,91) = 1.08;
p = 0.344

25.98 ± 12.93

IRO2 36.65 ± 15.67 32.08 ± 14.22 35.37 ± 18.18 F(2,91) = 0.83;
p = 0.441

34.60 ± 15.63

IRO3 26.15 ± 14.02 19.81 ± 11.90 22.50 ± 12.62 F(2,91) = 2.25;
p = 0.111

22.92 ± 13.12

Olfactory valence ratings

VR O1 30.80 ± 19.57 26.57 ± 19.43 32.56 ± 16.02 F(2,91) = 0.78;
p = 0.459

29.49 ± 18.82

VR O2 −14.86 ± 25.35 −15.18 ± 26.50 −15.75 ± 29.33 F(2,91) = 0.01;
p = 0.993

−15.16 ± 26.35

VR O3 −4.24 ± 17.80 −1.91 ± 17.82 0.39 ± 15.36 F(2,91) = 0.47;
p = 0.623

−2.39 ± 17.25

O1: vanilla odour, O2: potato odour, O3: dairy odour, d′: supra-threshold sensitivity (0–4), IR: intensity rating (0–100), VR: valence rating (−100 to 100).

well as olfactory performances for three food-related odorants
(O1, O2, and O3) across BMI groups.

A total of eleven separate One-way ANOVAs examining
the effect of BMI groups on each testing variables were
performed. Results revealed significant main effects of BMI
groups on peripheral ghrelin and leptin levels (Table 2).
Post hoc tests, based on simple effects tests with Bonferroni
corrections revealed that normal-weight individuals had a

significantly higher level of ghrelin than overweight individuals
(p = 0.048) and individuals with obesity (p = 0.009, see
mean values in Table 2). Additionally, individuals with
obesity had higher levels of leptin in periphery than normal
weight (p < 0.001) and overweight individuals (p < 0.001,
see mean values in Table 2). On the other hand, there
was no significant main effect of BMI groups on olfactory
measures (Table 2).
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Associations Between Peripheral Ghrelin
and Leptin Levels and Body Mass Index
Pearson’s correlations were calculated to assess the relationship
between continuous values of BMI and peripheral levels of
ghrelin and leptin. Results revealed a significant negative
correlation between peripheral ghrelin concentration and BMI
(r = −0.302; p = 0.003) and a positive and strong significant
correlation between leptin and BMI (r = 0.755; p < 0.001). Similar
analyses were performed between body fat percentage measures
and peripheral levels of ghrelin and leptin, which revealed
comparable results (see details in Supplementary Table 1).

Associations Between Olfactory
Measures and Body Mass Index
A series of Pearson’s correlations were calculated to assess for
associations between continuous values of BMI and olfactory
sensory measures including supra-threshold sensitivity (d′), IR
and VR for three food-related odorants. Results revealed that
BMI and suprathreshold sensitivity for O3 (dairy smell) were
significantly negatively correlated (r = −0.217; p = 0.036). In
contrast, sensitivities to other odorants (O1 and O2) as well as
all IR and VR were not significantly correlated to BMI (p > 0.05,
see details in in Supplementary Table 2). Similar analyses
were performed between body fat percentage and olfactory
measures, which revealed comparable results (see details in
Supplementary Table 2).

Links Between Olfactory Sensory
Measures
Pearson’s correlations were calculated between sensory measures
of supra-threshold sensitivity (d′), IR and VR for each olfactory
compounds tested. For all three odorants, sensitivity scores were
not shown to be significantly correlated to any of the rating
measures (IR and VR) (Figure 2). Regarding O1, a significantly
positive and strong correlation was observed between both
rating measures IRO1 and VRO1 (r = 0.65, p < 0.001, see
Figure 2A). Then, when looking at the olfactory compound O2,
a significantly negative correlation was noted between IRO2 and
VRO2 (r = −0.35, p < 0.001, see Figure 2B). In contrast, IR and
VR were not significantly correlated for the olfactory compound
O3 (see Figure 2C).

Relationships Between Peripheral
Ghrelin Levels and Olfactory Functions
Pearson’s correlations were calculated between ghrelin
concentrations and olfactory supra-threshold sensitivities,
olfactory IR, and olfactory VR, for all three food-related odorants
O1, O2, and O3 (Figure 3). These analyses revealed two
significantly positive correlations, both involving the olfactory
compound O3. Specifically, peripheral ghrelin levels were shown
to be significantly positively correlated to d′O3 (r = 0.289,
p = 0.005, Figure 3A) and IRO3 (r = 0.217, p = 0.035, Figure 3B).
On the other hand, no correlation was observed between
olfactory VR for any of the odorant tested and peripheral ghrelin
levels (Figure 3C).

Subsequently, partial correlations were calculated between
peripheral ghrelin levels and olfactory performances, accounting
for BMI. Results from partial correlations also revealed
that ghrelin concentrations were significantly and positively
correlated to different measures of olfactory function, with
a specific emphasis on IR. Specifically, positive correlations
were observed between peripheral levels of ghrelin and IRO1
(r = 0.241, p = 0.020) and IRO3 (r = 0.216, p = 0.037), and a trend
toward statistical significance was observed with IRO2 (r = 0.188,
p = 0.071). Furthermore, a significant positive relationship
was still observed between peripheral ghrelin levels and d′O3
after adjusting for BMI (r = 0.241, p = 0.020). Finally, while
ghrelin levels were not significantly correlated to olfactory VR,
a tendency toward significance was noted with VRO1 (r = 0.198,
p = 0.058).

Relationships Between Peripheral Leptin
Levels and Olfactory Functions
Pearson’s correlations were calculated between peripheral leptin
levels and olfactory supra-threshold sensitivities, olfactory IR,
and olfactory VR, for all three food-related odorants O1, O2,
and O3 (Figure 4). Regarding results on sensitivity measures, a
trend toward statistical significance was noted between d′O3 and
peripheral leptin concentrations (r = −0.192, p = 0.064), but not
with other odorants O1 and O2 (Figure 4A). Additionally, results
did not reveal any significant correlation between peripheral
leptin and olfactory IR (Figure 4B), nor VR (Figure 4C).

Subsequently, partial correlations were calculated between
peripheral leptin levels and olfactory performances, accounting
for BMI. Results from partial correlations revealed similar
outcomes as the ones from Pearson’s correlations, with no
significant correlation between peripheral leptin levels and any
of the olfactory functions tested (p > 0.05, Figure 3). Notably,
the tendency toward significance between d′O3 and peripheral
leptin concentrations was no longer observed after adjusting the
correlation for BMI (r =−0.044, p = 0.673).

DISCUSSION

The present study investigated the links between fasting
individual olfactory functions and peripheral concentrations of
ghrelin and leptin, two hormones highly involved in eating
behaviour and previously used as biomarkers for obesity. Results
from our study support the role of ghrelin in modulating
individual olfactory sensitivity and intensity perception of
specific food odours (i.e., dairy and vanilla odours), whereas no
significant relationships were observed for leptin.

Firstly, the present study confirmed previously reported
links between adiposity and hormonal balance, with individuals
with obesity having lower levels of ghrelin (12, 15) and
higher levels of leptin compared to normal-weight individuals
(73, 74). Additionally, the present study also demonstrated
that different sensory measures represent distinct phases of
perception, with no evidence for correlations between olfactory
sensitivity and ratings, in line with previous observations of
gustation [e.g., (75)].
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FIGURE 2 | Pearson’s correlations across three types of olfactory measures: supra-threshold sensitivity (d′), intensity ratings (IR) and valence ratings (VR) for the
odorants O1 (A), O2 (B), and O3 (C). The upper part of each figure illustrates the strength of the correlation via an elliptical shape, and the lower part shows the
correlation coefficient value for each pair of sensory measures compared. Positive correlations are represented in a red gradient and negative correlation in a green
gradient. O1: vanilla odour, O2: potato odour, O3: dairy odour. Significant results are represented by *.

FIGURE 3 | Correlation plots between peripheral ghrelin levels and olfactory supra-threshold sensitivity (A), olfactory intensity ratings (B), and olfactory valence
ratings (C) of the odorants O1 (vanilla odour), O2 (potato odour), and O3 (dairy odour). All graphical plots illustrate results obtained from Pearson’s correlations
(non-adjusted). Significant results are represented by ∗.

The present analyses showed a positive link between fasting
peripheral ghrelin levels and supra-threshold sensitivities with
the dairy odour, with additional positive relationships based
on IR of the dairy and vanilla odour. The observed positive
relationships to two of these odours were in line with a recent
study of Uygun et al. (50), in which peripheral levels of
ghrelin was correlated to odour detection scores. By contrast, no
relationship was found between ghrelin and olfactory measures
of the potato odour, regardless of controlling for BMI. The
inconsistent results across olfactory compounds imply an odour-
specific relationship of ghrelin effects. Similarly, Trellakis et al.
(49) investigated the link between ghrelin levels and olfactory
VR of six odours, and observed only one significant correlation
(with black pepper oil). Moreover, studies using a neutral odour
of n-butanol failed to observe a ghrelin-olfaction link (47–49),
while other studies using food-related odours did (39, 48). These
previously observed inconsistencies may be attributed to choices
of neutral versus food-related odours. The current findings

further highlight discrepant results across different food odours
(e.g., vanilla versus potato odours).

It is important to note that the observed ghrelin-olfaction
links were subject to the sensory measure. Specifically, significant
results were found with supra-threshold sensitivity and intensity
rating (to specific odours). However, none of the analyses based
on odour valence showed significance (although correlation for
the vanilla odour was close to significance after BMI being
controlled). Ghrelin links to odour valance had been tested
in two separate studies, with findings remaining controversial
(48, 49). For instance, Trellakis et al. (49) found that ghrelin
was significantly correlated with valence to an odour of black
pepper oil, but did not find evidence for relationships based
on odour discrimination nor identification. Recent research has
found that different types of sensory functions, such as intensity
and valence perception, involve distinct brain regions (29).
Specifically, evidence has shown that odour intensity perception
activates the amygdala, while valence emerges from activations
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FIGURE 4 | Correlation plots between peripheral leptin levels and olfactory supra-threshold sensitivity (A), olfactory intensity ratings (B), and olfactory valence ratings
(C) of the odorants O1 (vanilla odour), O2 (potato odour), and O3 (dairy odour). All graphical plots illustrate results obtained from Pearson’s correlations
(non-adjusted). Significant results are represented by ∗.

of the orbitofrontal cortex (76). Moreover, Russo et al. (42)
demonstrated that ghrelin injections were able to modulate rat’s
sense of smell, by altering olfactory transduction from the mitral
cells to the amygdala – a cortical area thought to be important
for intensity perception. In this context, our study offers new
behavioural data on close links between ghrelin and odour
intensity perception in humans. Additionally, these findings
point to the importance of considering specific sensory functions
when evaluating links to ghrelin levels.

In general, the present study failed to detect strong
associations between leptin levels and olfactory measures, which
was in line with findings from Uygun et al. (50). In contrast,
numerous previous investigations have reported either positive
(49, 58) or negative associations between leptin levels and
olfactory sensitivities (51, 54, 55, 58, 59). In addition, one study
reported negative correlations between leptin and odour valence
(49). Previously, obesity has been linked to increased leptin
levels and declined olfactory functions [cf. (7, 77)]. Building
upon these findings, we originally proposed that leptin should be
negatively correlated to odour sensitivity. Notably in our results,
correlation between leptin and sensitivity to the dairy odour was
close to significance (p = 0.06) but increased drastically with
correlations controlling for BMIs (p = 0.67). Such change in
correlation coefficients suggests that the link between leptin and
odour sensitivity was prominently mediated by individual BMIs.
In this tripartite relationship, BMI plays a more substantial role
in linking leptin and olfactory sensitivities. While future studies
are needed to confirm this proposal, our data appear to suggests
that leptin and olfactory performance are not directly linked.

The current findings point to the important role of olfactory
processing in mediating ghrelin influences on food intake (78).
Elevated peripheral ghrelin levels have been previously observed
in individuals experiencing food reward anticipation, which is
characterised by an increased cerebral activity in reward-related
areas, such as the orbitofrontal cortex (79, 80). Furthermore,
evidence suggests that peripheral ghrelin concentration following

consumption of energy-dense food maintains at a high level
in sated healthy-weight individuals, in contrary to the expected
post prandial ghrelin profile (5, 22). Our study has found that
individuals with fasting elevated peripheral ghrelin levels show
heightened olfactory supra-threshold sensitivity and intensity
perception for specific food odours, which may facilitate food-
seeking behaviour. This finding may be related to neural
evidence for convergence of ghrelin and sensory functions,
as evidence indicates that sensory food cues and systemic
ghrelin administration activate the same subset of hypothalamic
neurons (81). These connexions directly imply a co-action of
ghrelin signalling and olfactory perception, resulting in increased
appetite and food intake. Notably, recent research indicated
that plasma ghrelin only targets specific brain regions, including
the hypothalamus, the mesolimbic pathway, as well as the OB
[cf. (82)]. The latter brain area, which is directly involved in
olfactory coding processes (25, 27), was shown to be one of
the regions with the highest uptake of systemically injected
ghrelin (83). Inversely, a recent study from Riera et al. (84)
suggested that olfactory activity directly modulates fat mass and
hormonal alteration associated with obesity. Therefore, findings
from both previous research and the present study support
the concept of bidirectional relationship between olfactory
perception and metabolic regulation through ghrelin signalling.
Overall, these findings bring new insights into understanding
individual susceptibility to overeating and obesity.

A limitation of the present study was that no serine protease
inhibitor was added to the K2 EDTA blood samples before
measuring acyl ghrelin concentrations. The addition of serine
protease inhibitor is typically used to limit the degradation of
acyl ghrelin due to deacylation (85, 86). A common serine
protease inhibitor is aprotinin, which has been widely used
as a standardized procedure to prevent from acyl ghrelin
degradation in previous research (87). The absence of a protease
inhibitor in the present experiment may explain the rather low
concentrations of acyl ghrelin reported in this study. However,
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Blatnik and Soderstrom (86) observed no significant difference in
the degree of acyl ghrelin degradation, when plasma samples were
stored in K2 EDTA tubes only or in K2 EDTA tubes containing
aprotinin, with both storage leading to an approximate loss of
50% of acyl ghrelin. Therefore, concentrations of acyl ghrelin
presented in this study should be interpreted with a certain
degree of caution.

CONCLUSION

Overall, the present study investigated links between individual
olfactory functions and two major peptide hormones. The
findings point to the important role of ghrelin in influencing
olfactory performances. Specifically, strong relationships were
observed between peripheral ghrelin levels and olfactory
functions, in particular intensity perception, of specific food
odours. Furthermore, peripheral leptin levels were not linked
to any of the tested olfactory performances. Results from the
present study brings new data supporting the role of olfaction in
mediating hormonal effects on eating.
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