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Naringenin, a flavanone, has been reported for a wide range of pharmacological activities.

However, there are few reports on the absorption, transport and antioxidant effects

of naringenin. The study was to explore the uptake, transport and antioxidant effects

of naringenin in vitro. Cell transmembrane resistance, lucifer yellow transmission rate,

and alkaline phosphatase activity were used to evaluate the successful construction

of cell model. The results showed that the absorption and transport of naringenin by

Caco-2 cells were time- and concentration-dependent. Different temperatures (37 and

4◦C) had a significant effect on the uptake and transport of naringenin. Verapamil, potent

inhibitor of P-glycoprotein, significantly inhibit naringenin transport in Caco-2 cells. The

results revealed that naringenin was a moderately absorbed biological macromolecule

and can penetrate Caco-2 cells, mainly mediated by the active transport pathway

involved in P-glycoprotein. At the same time, naringenin pretreatment could significantly

increase the viability of H2O2-induced Caco-2 cells. Twenty four differential metabolites

were identified based on cellular metabolite analysis, mainly including alanine, aspartate

and glutamate metabolism, histidine metabolism, taurine and hypotaurine metabolism,

pyruvate metabolism, purine metabolism, arginine biosynthesis, citrate cycle, riboflavin

metabolism, and D-glutamine and D-glutamate metabolism. We concluded that the

transport of naringenin by Caco-2 cells is mainly involved in active transport mediated

by P-glycoprotein and naringenin may play an important role in oxidative stress-induced

intestinal diseases.

Keywords: naringenin, uptake, transport, anti-oxidation, metabolomics

INTRODUCTION

The gut is the primary site for nutrient absorption in all animals and humans (1). Many single
traditional Chinese medicine (TCM), extracts of TCM, and some TCMmonomers enter the blood
through the intestinal tract after oral administration (2–4). Many parameters affect the intestinal
absorption of substances and their bioavailability, such as transit and absorption time (5). The cell
models in vitro have many advantages, such as good reproducibility, low cost, and short cycle.
Therefore, research models in vitro are often used for drug transport and absorption studies. More
and more cell models are used to explore the transport and absorption of flavonoids (6–8). Among
them, Caco-2 cell model has a good correlation with in vivo research. It is also possible to explore
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the transit time and absorption capacity of the drug ingested
from the AP side and the BL side. The transport and absorption
mechanism of drug molecules via the intestines of humans
will be further explored (9, 10). By calculating the Papp
value, the absorption information at the cellular level can be
determined (11).

Naringenin is a flavonoid compound that mainly found
in grapes and oranges (12–14). Studies have shown that
naringenin has anti-inflammatory, anti-oxidant, anti-diabetic,
anti-cardiovascular disease, and anti-fibrosis pharmacological
activities (15–20). Zhao.et al found that naringenin protects
human umbilical vein endothelial cells from oxidative damage
induced by palmitate via reducing autophagy flux (21). Li et al.
also found that naringenin can stimulate skeletal muscle cells
to take up glucose and increase insulin sensitivity via AMPK
signaling pathway (14).

In this study, the model of Caco-2 cells was constructed. The
transport, uptake, and antioxidant effects of naringenin in the
monolayer culture model were investigated. This study provided
evidence for the absorption, transport and antioxidant effects of
naringenin in the gut.

MATERIALS AND METHODS

Chemicals
Caco-2 cells were obtained from American Type Culture
Collection (ATCC, Manassas, VA, USA). TranswellTM cell
culture dish (12mm membrane diameter) were obtained from
Corning Costar Corp. (Cambridge, MA). Fetal bovine serum,
MEM glucose medium, and cell culture flask were from Gibco
(Grand Island, NY, USA). CCK-8 kit was obtained fromBeyotime
(Shanghai, China). Lucifer yellow (LY) was from Solarbio
(Beijing, China). Alkaline Phosphatase Kit was from Mlbio
(Shanghai, China). Gradeacetonitrile and formic acid (>99%, for
LC-MS) were obtained from Thermo fisher scientific (Waltham,
MA, USA).

Cell Culture
Caco-2 cells were routinely maintained in 20% fetal bovine
serum, 1% gluta-max, 1% sodium pyruvate, 1% non-
essential amino acids, 77% modified eagle medium media
supplemented at 37◦C under humidified atmospheric conditions
containing 5% CO2.

Cell Viability
Cell viability was determined via CCK-8 assay (22).

Establishment of Caco-2 Cells Model
The Caco-2 cell model was established as previously published
(23). Different concentrations of naringenin (9.375, 18.75, 37.5,
75 and 150µM) had no effect on the activity of cells for 24 h
(Figure 1). As shown in Figure 2A, when the Caco-2 cells were
cultured for 21 days, the Caco-2 cells were tightly connected
without gaps. From Figure 2B, the TEER value reached 602
Ω•cm2 on the 21st day. The results indicated that the monolayer
membrane of Caco-2 cells had good integrity.

FIGURE 1 | Effects of different concentrations of naringenin on cell viability.

*p < 0.05 compared with control group.

Lucifer Yellow Transmission Rate Experiment
After treatments, lucifer yellow transmission rate was
assessed using the corresponding commercial kit according
to the manufacturer’s protocols (24). From Figure 2C, the
linear regression equation of lucifer yellow absorbance was
y = 0.0556x+0.0427 (R2 = 0.9997). The permeation rate of
lucifer yellow with cells was determined as 0.42 (±0.15) × 10−6

cm•s−1, the well without cells was 3.9 (±0.01)× 10−5 cm/s. The
results showed that Caco-2 cells were fully differentiated and
morphologically intact after being cultured for 21 days.

Alkaline Phosphatase Activity Assay
Alkaline phosphatase kit was used to detect the enzyme activity
of AP and BL side (23). It could be seen from Figure 2D that
the alkaline phosphatase activity of the AP side was significantly
higher than that on the BL side. This model could be used
as an in vitro cellular model for subsequent transport and
uptake experiments.

Analytical Methods
Sample Extraction
In total 200 µL methanol was added to the 200 µL sample
and centrifuged at 14,000 g for 10min. The supernatant was
collected and evaporated to dryness, reconstituted in methanol,
and analyzed by HPLC.

Liquid Chromatography Analysis
Naringenin chromatographic analysis was performed on a Sursil
ODS-B column (250 × 4.6mm, 5mm particle size). The mobile
phase consisted of an acid solution containing a 0.2% phosphoric
acid and methanol (40:60, v/v) at a flow rate of 0.4 mL/min.
Naringenin elution was recorded at a constant wavelength
of 282 nm.
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FIGURE 2 | Establishment of Caco-2 cell model. (A) Morphology of Caco-2 cells observed in 10th day. Scale bar = 200µm. (B) TEER of Caco-2 cells with time. (C)

The standard curve of lucifer yellow. (D) Alkaline phosphatase activities. *p < 0.05 compared with BL side.

Transport Assay of Caco-2 Cells
Different concentrations of naringenin solutions (9.375, 18.75,
37.5, 75 and 150µM) were added on the Caco-2 cells. In total 100
µL of sample solution was collected from the BL side at different
times (15, 30, 45, 60, 90, and 120min) and then 100 µL of HBSS
was added.

Caco-2 Cells Uptake Experiment
Different concentrations of naringenin solution (9.375, 18.75,
37.5, 75, and 150µM) were added on the Caco-2 cells. The cells
were collected at different time periods (15, 30, 45, 60, 90, and
120min), respectively.

Metabonomic Analysis
Cellular Metabolite Extraction
After incubation, the Caco-2 cells were collected. In total 80%
ice methanol was added to the Caco-2 cells, incubated at low
temperature for 5min, and the Caco-2 cells were scraped from
the cell culture plate. Samples were lysed by three freeze-
thaw cycles and pelleted by centrifugation at 14,000 × g for

10min at 4◦C. Twenty µl of supernatant from each sample was
taken and mixed well to prepare quality control (QC) samples.
The samples were then filtrated through 0.2µm filters into
sample vials.

UHPLC-QE Orbitrap/MS/MS Conditions
LC-MS/MS analyses were performed using a HPLC system with
a HSS T3 column coupled to Q Exactive (Orbitrap MS, Thermo).
The mobile phase A was 0.1% formic acid in water and the
mobile phase B was acetonitrile. The elution gradient was set
as follows: 0min, 2% B; 1min, 2% B; 18min, 100% B; 22min,
100% B; 25min, 2% B. The flow rate was 0.3 mL/min. The
injection volume was 2 µL. The QE mass spectrometer was
used for its ability to acquire MS/MS spectra on an information-
dependent basis (IDA) during an LC/MS experiment. ESI source
conditions were set as following: Aux gas flow rate as 16 Arb,
Full ms resolution as 70,000, Collision energy as 25 eV in NCE
model, MS/MS resolution as 17,500, and spray voltage as −3.0
kV (negative) or 3.6 kV (positive), respectively.
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Qualitative Analysis of Metabolites
The raw data were converted into “Analysis Base File” (ABF)
format files by ABF Converter software. The peak detection,
deconvolution and peak alignment in data processing were
performed using the MSDIAL 2.2.62 software. The data obtained
are imported into SIMCA (version 14.1). We performed
PCA and OPLS-DA on the data in SIMCA The Human
Metabolome Database (HMDB) was used to search for accurate
mass values of differential metabolites. Cluster analysis and
pathway analysis of differential metabolites were performed using
MetaboAnalyst 5.0.

Statistical Analysis
SAS 9.2 (SAS Institute Inc., NC, USA) was used for statistical
analysis. All data are presented as means ± SD. Statistical
significance was considered at p < 0.05.

RESULTS

Transport Experiment Results
The Transport Results of Naringenin in Caco-2 Cells

at Different Times
Under the condition of 37◦C, the naringenin transport volume
on both sides of Caco-2 cells gradually increased with the increase
of time, and the transport volume reached the maximum at
120min but did not reach the saturation state (Figure 3A).

The Transport Results of Naringenin in Caco-2 Cells

at Different Temperatures
37 and 4◦C were selected to study the effect of temperature on
the transport of naringenin. The results showed that compared
to 37◦C, the transport volume in Caco-2 cells was significantly
reduced at 4◦C. This indicated that temperature has a significant
effect on its transport capacity (Figure 3B).

Transport of Naringenin on Caco-2 Cells
Under the condition of 37◦C, the results showed that the
transport amount of naringenin in Caco-2 cells gradually
increased with the increase of the concentration (Figures 4A,B).
The naringenin transport rate on the BL-AP side was 10.09%,
and the naringenin transport rate on the AP-BL side was 4.89%,
and the BL-AP side was significantly higher than the AP-BL
side (Figure 4C).

Papp of Transport of Naringenin
On the AP-BL side, the Papp values of naringenin at different
concentrations increased with time and concentration during
transport (Figures 5A,B). During the transportation of different
concentrations of naringenin on the AP-BL side, the Papp value
of 150µM was the maximum value at 30min. Interestingly, on
the BL-AP side, the Papp values of different concentration groups
gradually decreased with time. Similarly, the Papp values of the
same concentration and different time groups also decreased
gradually. The results indicated that theremay be active transport
of naringenin in Caco-2 cells.

Uptake Result
The Absorption of Naringenin by Caco-2 Cells at

Different Times
Under the condition of 37◦C, naringenin was constant in Caco-2
monolayer cells (Figure 6A). The results suggested that Caco-2
cells have a time-dependent uptake of naringenin.

The Absorption of Naringenin by Caco-2 at Different

Temperatures
As shown in Figure 6B, compared with 37◦C, the intake of
naringenin at 4◦C was significantly reduced. It was possible that
low temperature affects the fluidity of cell membranes. As shown
in Figure 6C under the condition of 37◦C and 120min, the
uptake rate of naringenin by Caco-2 monolayer cells decreased

FIGURE 3 | Effects of different times and different temperature on the transport of naringenin. (A) The effects of AP-BL and BL-AP on the transport of naringenin

(75µM) at different times. (B) Effects of different temperatures on naringenin transport. *p < 0.05 compared with 37◦C.
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FIGURE 4 | The transport of naringenin with different concentrations (9.375–150µM). (A) The amount of naringenin transported from the AP side to the BL side. (B)

The amount of naringenin transported from the BL side to the AP side. (C) The transport rate of naringenin Caco-2 cells. *p < 0.05 compared with BL side.

FIGURE 5 | The Papp of each concentrations (9.375–150µM) of naringenin during 120min. (A) From AP side to BL side. (B) From BL side to AP side.

FIGURE 6 | The uptake of naringenin with different concentrations (9.375–150µM) of cells during 120min. (A) The effect cells on the uptake of naringenin (75µM) at

different times. (B) The effect of temperature on uptake of naringenin. (C) The uptake rate of naringenin of Caco-2 cells. *p < 0.05 compared with 4◦C.

with the increase of the concentration, and finally tended to
be saturated.

The Impact of Verapamil on Naringenin
Tansport and Uptake
To demonstrate the potential role of P-glycoprotein in the
transport and uptake of naringenin across the Caco-2 cell

monolayer, verapamil and ABCB1 shRNA were used to interfere
with the transport and uptake of naringenin by Caco-2 (25, 26).
After the application in the apical chamber prior to naringenin
administration, Verapamil significantly lowered the transport
of naringenin (Figures 7A,B). Compared with the inhibitor
(100µM Verapamil) group, Caco-2’s intake of naringenin was
significantly reduced in the control group (Figure 7C). The

Frontiers in Nutrition | www.frontiersin.org 5 May 2022 | Volume 9 | Article 894117

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.frontiersin.org/journals/nutrition#articles


Zhang et al. Transport, Anti-oxidation of Naringenin

FIGURE 7 | The effect of Verapamil (MVER) on naringenin transport and uptake is in Coca-2 cells. (A) The transport of different concentrations of naringenin in

120min. (B) The Papp of each concentrations of naringenin during 120min. (C) The intake of different concentrations of naringenin in 120min. *p < 0.05 compared

with Naringenin+Verapamil group.

FIGURE 8 | Naringenin protects the cell viability of H2O2-stimulated Caco-2. (A) H2O2 decreased the cell viability of Caco-2 cells in a dose-dependent manner. (B)

Naringenin enhanced the cell viability of H2O2-induced Caco-2 cells. *p < 0.05 and **p < 0.05 compared with control group; #p < 0.05 compared with H2O2 group.

results showed that the transport of naringenin by Caco-2 cells
depended on P-glycoprotein.

Naringenin Protects the Cell Viability of
H2O2-Stimulated Caco-2 Cells
Naringenin (9.375, 18.75, 37.5, 75, and 150µM) had no
significant effect on the activity of Caco-2 cells at 24 h in Figure 1.
As shown in Figure 8A, the cell viability significantly decreased.
The cell viability was reduced at 48.6% when 500µM H2O2

was added for 3 h in the medium compared with the control
group (Figure 8A). As shown in Figure 1B, when Caco-2 cells
were pre-treated with different concentrations of naringenin
for 24 h and then incubated with with 500µM H2O2 for

3 h, naringenin showed a dose-dependent recovery of the cell
viability. Therefore, 150µM of naringenin was used in the
subsequent experiments (Figure 8B).

Metabolomics Analysis of Naringenin
Effect on H2O2-Induced Caco-2 Cells
Metabolomics Analysis of Caco-2 Cells
In this study, unsupervised PCA was performed on four groups
of data (control group, H2O2 group, naringenin group, and QC
group). The four groups showed clear separation in both positive
and negative ion modes in the PCA plots (Figures 9A,B,G,H).
The OPLS-DA model was constructed to further investigate
and analyze the separation of the H2O2 group and other
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FIGURE 9 | Metabolomics analysis of the effect of naringenin on H2O2-induced oxidative injury in Coca-2 cell. (A,G) PCA score plots. (B,H) The loading plot. (C,I)

OPLS-DA score plots. (D,J) Permutation test of the OPLS-DA model. (E,K) OPLS-DA score plots. (F,L) Permutation test of the OPLS-DA model.

groups (control group and naringenin group). The results
showed a clear separation of the H2O2 group from the other
groups in the positive or negative mode in the OPLS-DA
score plot (Figures 9C,E,I,K). The values of R2X, R2Y, and Q2
indicated that the model was stable and had good predictive
power (Figures 9D,F,J,L).

Twenty four metabolites were identified as differential
metabolites in Table 1, including sulfonic acid, pantothenic
acid, methyltyrosine, acetyl-L-aspartic, glucuronic acid,
cysteic acid, taurine, L-Histidine, L-glutamic acid, lactic
acid, oxoproline, inosine, hypoxanthine, histidine, guanosine,
guanine, pantothenic acid, citramalic acid. After pre-treatment
with naringenin, the levels of these differential metabolites were
normalized due to up- or down-regulation.

Metabolic Pathway Analysis
Differential metabolites were imported into MetaboAnalyst 5.0
for relevant metabolic pathway analysis and KEGG enrichment
analysis. There are 19 main metabolic pathways: purine
metabolism, malate-aspartate shuttle, glutathione metabolism,
glycerol phosphate shutle, aspartate metabolism, taurine and
hypotaurine metabolism, methylhistidine metabolism, alanine
metabolism, warburg effect, mitochondrial electron transport
chain, amino sugar metabolism, beta-alanine metabolism, lactose
synthesis, gluconeogenesis, arginine and proline metabolism,
de novo triacylglycerol biosynthesis, cysteine metabolism,
histidine metabolism, lysine degradation (Figure 10). The
influence of the path is mainly concentrated in alanine, aspartate
and glutamate metabolism, histidine metabolism, taurine
and hypotaurine metabolism, pyruvate metabolism, purine
metabolism, arginine biosynthesis, citrate cycle, riboflavin
metabolism, and D-glutamine and D-glutamate metabolism.
H2O2-induced Caco-2 cells are mainly reflected in redox
reactions, amino acid synthesis and metabolism, and energy

metabolism (Figure 11). The results indicated that H2O2-
induced oxidative damage could cause metabolic disturbances
in Caco-2 cells, and naringenin pretreatment could effectively
regulate this imbalance.

DISCUSSION

After oral administration of flavonoids in plant foods, their
biological effects may be much weaker than in vitro studies
(27, 28). In the past 20 years, this conclusion has been
accepted by researchers. The pharmacokinetic characteristics
have also been elucidated, including absorption, metabolism,
disposal and elimination (29). In addition, studies have shown
that flavonoids can only be absorbed by the body after the
glycoside portion has been removed (30, 31). However, the
transport and uptake of naringenin in this study could be
observed in the Caco-2 cell model. The study showed that the
transport of naringenin can be mediated by P-glycoprotein.
However, some studies also have shown that the transport
of naringenin does not depend on P-glycoprotein, but on
the entry of MRP1 carriers into cells (32). In this study,
naringenin absorption was polarized with PappBA superior to
PappAB, and naringenin is transported by active efflux protein
carriers. Verapamil could significantly inhibit the transport
of naringenin, and it showed that naringenin transport was
most likely dependent on P-glycoprotein. Previous research had
shown that naringenin can inhibit P-glycoproteinmediated efflux
of vincristine in the blood-brain barrier (33, 34). Moreover,
naringenin inhibit drug efflux by directly interacting with various
sites of P-glycoprotein (35, 36).

The results of this experiment indicated that the Papp of
naringenin in the Caco-2 cell monolayer was between 1.0 ×

10−6 to 1.0 × 10−5 cm•s−1. This result can well predict
the absorption mechanism of naringenin in the gut. If the
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TABLE 1 | Differential metabolites in Caco-2 cell.

No RT VIP Formual Metabolites SM m/z Fold change

C/H N/H

1 1.881573 2.18 C5H4N4O2 Xanthine ESI+ 151.0254 0.32 1.91*

2 1.832831 3.31 C3H9O6P Glycerol 3-phosphate ESI+ 171.0078 1.88 2.17*

3 8.151354 1.36 C17H20N4O6 Riboflavin ESI+ 375.1308 1.11 2.17*

4 2.945925 1.23 C5H7NO3 Pyroglutamic acid ESI+ 128.0343 0.89 0.25*

5 1.696262 2.19 C20H16O9 Pyrogallin ESI+ 203.0369 1.09 3.27*

6 4.815042 2.21 C4H11O4P Phosphoric acid ESI+ 96.96839 0.88 2.56*

7 3.336667 1.09 C8H18O7S Sulfonic acid ESI+ 273.0383 0.41 1.16*

8 3.337222 2.11 C9H17NO5 Pantothenic acid ESI+ 218.1032 0.55 2.17*

9 14.40785 2.97 C9H11NO2 Methyltyrosine ESI+ 194.0817 0.45 1.66*

10 3.324992 5.21 C14H14N2O5 Acetyl-L-aspartic acid ESI+ 174.0397 2.18 0.86*

11 1.38885 3.21 C6H10O7 Glucuronic acid ESI+ 193.0349 0.65 1.92*

12 10.86779 1.99 C3H7NO5S Cysteic acid ESI+ 167.9959 0.58 1.85*

13 3.515183 1.09 NH2CH2CH2SO3H Taurine ESI+ 124.0062 1.92 0.57*

14 1.36195 2.51 C6H9N3O2 L-Histidine ESI+ 154.0616 0.77 1.68*

15 3.1647 2.51 C5H9NO4 L-Glutamic acid ESI+ 146.0449 0.68 0.18*

16 1.214575 3.88 C3H6O3 Lactic acid ESI+ 89.02312 0.27 1.72*

17 1.634986 1.71 C5H7NO3 Oxoproline ESI+ 128.0344 0.82 2.13*

18 1.53901 1.41 C10H12N4O5 Inosine ESI+ 267.0735 0.78 1.89*

19 1.538802 3.77 C5H4N4O Hypoxanthine ESI- 135.0304 0.77 1.81*

20 1.319585 5.06 C6H9N3O2 Histidine ESI- 154.0615 0.77 2.78*

21 1.888793 1.17 C10H13N5O5 Guanosine ESI- 282.0847 3.27 0.98*

22 1.633602 2.86 C5H5N5O Guanine ESI- 150.0412 0.67 2.66*

23 2.889838 3.90 C9H17NO5 Pantothenic acid ESI- 218.1031 1.27 2.97*

24 1.885903 2.18 C5H8O5 Citramalic acid ESI- 147.0291 0.78 1.89*

The * symbol indicates the value of p < 0.05 compared with the H2O2 group.

FIGURE 10 | The results of enrichment and path impact of differential metabolites in Caco-2 cell.
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FIGURE 11 | Overview of altered concentrations of metabolites and related metabolic pathways.

macromolecule requires a paracellular pathway, the gap between
cells can be opened (37). In this study, TEER did not decrease
significantly, indicating that naringenin rarely crosses Caco-2
cells via paracellular pathways.

Flavonoids are a large group of plant-derived compounds,
including quercetin and naringenin (38, 39). Quercetin and
naringenin have similar physical and chemical properties.
They are weakly acidic and have low water solubility. There
have been many studies on the transport and absorption of
quercetin. Studies have shown that quercetin glycosides might
be actively absorbed in the human intestine via unspecified
hexose transporters (40). The results confirmed the transport of
naringenin in modeled Caco-2 cells and support the involvement
of P-glycoprotein in this process.

A metabolomic approach based on LC-MS technology is a
useful technique for evaluating the production of metabolites
in cells under oxidative stress. Studies have shown that
there are many metabolites of naringenin including apigenin,
hesperetin, hippuric acid, 4-hydroxybenzoic acid and 3-(4′-
hydroxyphenyl) propionic acid. These polyphenolic compounds
play important roles in antioxidant, anti-inflammatory and anti-
apoptotic roles (41, 42). In this study, we identified some

metabolites of naringenin, such as apigenin and hesperetin.
Apigenin has anti-inflammatory, antioxidant and anticancer
properties. As a natural compound, apigenin may be an ideal
and safe antitumor agent. Studies have shown that apigenin
has good antitumor activity both in vitro and in vivo (43, 44).
Hesperetin, a member of the flavonoid flavonoids, has been
extensively studied for its anticancer, antioxidant, and anti-
inflammatory properties. Hesperetin blocks neuroinflammation
in microglia by regulating the expression of proteins associated
with oxidative stress, inflammatory responses and apoptosis.
In the present study, compared with control group, 24
differential metabolites were identified in Caco-2 cells pretreated
with naringenin in the absence of H2O2 compared to the
control group. These differential metabolites are involved in
amino acid synthesis and metabolism, redox reactions, energy
metabolism and cofactor metabolism. The levels of xanthine
and hypoxanthine were significantly increased in the H2O2

group. The increased purines (xanthine and hypoxanthine)
are often used as markers of oxidative stress. However, in
this case, it is also possible that they represent loss of ATP
as part of tissue loss and turnover (45, 46). The production
of lactate and the reversible conversion of dihydroxyacetone
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phosphate to glycerol 3-phosphate catalyzed by glycerol-
3-phosphate dehydrogenase involve the redox reactions of
NADH and NAD+ (47, 48). After pretreating Caco-2 cells
with naringenin, the levels of riboflavin were also markedly
increased. As a natural antioxidant, riboflavin protects the
body from oxidative stress (49). The levels of pyroglutamic
acid and glutamic acid were significantly increased in the
H2O2 group. Naringenin significantly reduced the elevation of
sulfonic acid levels in Caco-2 cells. Studies have shown that
under conditions of oxidative stress, H2O2 causes irreversible
sulfinic and sulfonic acid modifications, which often lead
to inactivation of antioxidant enzymes (50). Research has
shown that rats deficient in pantothenic acid exhibit duodenitis
and duodenal ulcers (51). N-acetyl-L-aspartic acid, cysteine
and taurine are also good antioxidants (52). Hypoxanthine
have been defined as biomarkers of hypoxia, hypoxemia,
and ischemic brain injury (53, 54). Inosine is a natural
analog of adenosine and binds adenosine receptors A3 (55,
56), thus decelerating inflammation. Histidine is an essential
amino acid, and histidine supplementation inhibits inflammatory
processes (57). Naringenin significantly increased histidine
content in Caco-2 cells. Furthermore, in vitro experiments,
histidine supplementation reduced the expression of IL-6 and
TNF-α in adipocytes (58). Cellular metabolomics suggested
that the underlying mechanism of naringenin’s anti-oxidative
stress effect may be related to increased anti-oxidative stress
activity and decreased inflammatory response by improving
metabolic changes.

CONCLUSION

Naringenin can penetrate Caco-2 cells, mainly mediated by
the active transport pathway involved in P-glycoprotein. By
carefully examining the cellular absorption, and transport
efficiency of naringenin and their antioxidant effect together,
we can reasonably conclude that naringenin may play a
more important role in preventing oxidative stress-induced
intestinal diseases.
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