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Clinical cases and animal experiments show that high-fat (HF) diet is involved in
inflammatory bowel disease (IBD), but the specific mechanism is not fully clear.
A close association between long-term HF-induced obesity and IBD has been well-
documented. However, there has been limited evaluation of the impact of short-term
HF feeding on the risk of intestinal inflammation, particularly on the risk of disrupted
metabolic homeostasis. In this study, we analyzed the metabolic profile and tested the
vulnerability of 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced colitis after short-term
HF feeding in mice. The results showed that compared with the control diet (CD),
the fatty acid (FA), amino acid (AA), and bile acid (BA) metabolisms of mice in the
HF group were significantly changed. HF-fed mice showed an increase in the content
of saturated and unsaturated FAs and a decrease in the content of tryptophan (Trp).
Furthermore, the disturbed spatial distribution of taurocholic acid (TCA) in the ileum and
colon was identified in the HF group using matrix-assisted laser desorption/ionization-
mass spectrometry imaging (MALDI-MSI). After HF priming, mice on TNBS induction
were subjected to more severe colonic ulceration and histological damage compared
with their CD counterparts. In addition, TNBS enema induced higher gene expressions
of mucosal pro-inflammatory cytokines under HF priming conditions. Overall, our results
show that HF may promote colitis by disturbing lipid, AA, and BA metabolic homeostasis
and inflammatory gene expressions.

Keywords: nutrition, metabolism, homeostasis, imaging mass microscope, inflammatory bowel disease

Abbreviations: BA, bile acid; BAs, bile acids; TNBS, 2,4,6-trinitrobenzenesulfonic acid; CD, control diet; CT, control diet
and TNBS administration; HE, high-fat diet; HT, high-fat diet and TNBS administration; MSI, mass spectrometry imaging;
NPA, N-1-naphthylphthalic acid; 9AA, 9-aminoacridine; DCA, deoxycholic acid; CDCA, chenodeoxycholic acid; UDCA,
ursodeoxycholic acid; TDCA, taurodeoxycholic acid; TCDCA, taurochenodeoxycholic acid; TUDCA, tauroursodeoxycholic
acid; LCA, lithocholic acid; TLCA, taurolithocholic acid; TCA, taurocholic acid; TMCA, tauromuricholic acid; GCA,
glycocholic acid; H&E, hematoxylin and eosin; AAs, amino acids; FAs, fatty acids; IBD, inflammatory bowel disease; MALDI,
matrix-assisted laser desorption/ionization; EPA, eicosapentaenoic acid; EAAs, essential amino acids.
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INTRODUCTION

It is well established that the diet and the microbiome can
contribute to the occurrence of metabolic diseases in part by
causing intestinal inflammation and increased permeability (1).
Our previous studies and others show that a long-term high-
fat (HF) diet causes nutritional imbalance, resulting in obesity,
insulin resistance, and other diseases (2-4). HF intake can cause
the disorder of lipid metabolism and induce systemic chronic
low-grade inflammation, and the colon may be the first organ
affected by inflammation caused by HF (5, 6). The intestinal
mucosa is the largest interface between the body itself and
the external environment, which has barrier functions such as
selective infiltration and absorption of nutrients and defense
against the invasion of microorganisms and inflammatory factors
in the intestine (7). The altered intestinal environment could
influence metabolic homeostasis, especially the metabolism of
amino acids (AAs), fatty acids (FAs), and bile acids (BAs) (8-10).

Although the exact etiology of inflammatory bowel disease
(IBD) is not fully understood, nutrition and dietary factors,
in particular HE have been recognized to play an important
role in the pathogenesis of IBD (11). IBD comprises Crohn’s
disease and ulcerative colitis, which are characterized by chronic
and relapsing inflammation of the gastrointestinal tract (12).
IBD has become a global disease with accelerating incidence in
newly industrialized countries whose societies have become more
westernized, and this increase has paralleled a “westernization”
of lifestyle (13). Many studies have described the relationship
between fat intake and IBD pathogeny. Several studies have
investigated the development of colitis in long-term HF-fed
animals (14, 15). Studies have shown that long-term HF
consumption will destroy the intestinal immune homeostasis
and induce inflammation in animal models, and epidemiological
studies have also shown that excessive HF intake is closely related
to the occurrence and relapse of IBD (16, 17). A high intake
of unsaturated fats may be associated with an increased risk of
ulcerative colitis (18). However, most of the previous studies have
ignored the effect of HF on the serum metabolites and intestines
before disease induction. Furthermore, the effects of short-term
HF feeding in colitis and the underlying molecular mechanisms
at the levels of metabolism profile need to be further explored. In
this context, a better understanding of the pathogenesis of short-
term HF-driven metabolic disorders may help to reduce the IBD
burden worldwide.

In this study, we proposed a 4-week HF priming to
evaluate the effects of short-term fat intake on the risk
of inflammatory diseases. Metabolomic and gene expression
investigation results indicate that BA, FA, and AA metabolisms
are significantly reprogrammed in the HF-fed group. In addition,
mass spectrometry microscopy discovered that HF-feeding
disturbs the spatial distribution of BAs and causes the decrease
of taurocholic acid (TCA) in the intestinal wall, which may
weaken the ability of the intestinal mucosal barrier to resist the
invasion of bacteria, toxins, and antigens under inflammatory
state. Moreover, under short-term HF priming conditions, 2,4,6-
trinitrobenzenesulfonic acid (TNBS) administration aggravates
the severity of colitis companied with dysregulated metabolism.

MATERIALS AND METHODS

Animals and Experimental Treatment

All animal procedures were approved by the Institutional Animal
Care and Use Committee (IACUC) at the China Medical
University. Notably, 6-8 weeks old male C57BL/6 mice (n = 10
per group) were purchased from Beijing HFK Biotechnology Co.,
Ltd. All experimental mice were housed in specific pathogen-free
environments under a controlled condition of normal circadian
circulation for 12 h at 20-22°C and 45 % 5% humidity, with free
access to food and water. Mice were fed an HF diet (TP23520,
Trophic Diet, China) or a control diet (CD, TP23524, Trophic
Diet, China) for 4 weeks. HF contained 60% available energy
as fat, 20% available energy as carbohydrate, and 20% available
energy as protein. CD contained 10% available energy as fat, 70%
available energy as carbohydrate, and 20% available energy as
protein. After 4 weeks of feeding, colitis was induced using the
reported TNBS (P2297-10 ml, sigma)-colitis model with some
modifications (19). In brief, mice were fed with HF or CD for
3 weeks and then pre-sensitized with 150 pl of 1% (wt/vol)
TNBS solution applied to the back skin for 8 days. Next, the
animals were fasted overnight and treated under anesthesia with
a 100 mg/kg mixture of 5% TNBS and 100% alcohol (1:1) via
intrarectal injection, and the control mice received 50% alcohol
treatment. Then, the mice were placed upside down for 5 min
after TNBS injection. Body weight, stool consistence, and rectal
bleeding were monitored daily. Animals were sacrificed on the
third day after TNBS treatment. During the experimental period,
the food intake of mice was recorded two times a week, and the
body weights were documented per week.

Sample Collection

Animals were sacrificed, and the blood was collected with
anticoagulant and then centrifuged at 1,000 x g for 10 min at
22-25°C for serum collection. Then, the liver, ileum, colon, and
colon content were carefully dissected and kept in liquid nitrogen
before storage at —80°C. Besides, parts of the colons and livers
were harvested for histological analysis.

Biochemical Analysis

The analysis of triglyceride (TG), total cholesterol (TC),
low-density lipoprotein cholesterol (LDL-c), high-density
lipoprotein cholesterol (HDL-c), aspartate aminotransferase
(AST), alanine aminotransferase (ALT), and total bile acid
(TBA) were quantified using commercial kits (Nanjing Jiancheng
Bioengineering Institute, Nanjing, China) in accordance with
manufacturer’s instructions.

Colon Histology Assay

After the mice were euthanized, the colons were quickly removed
and rolled up using the “swiss roll” method (20). Then, the colons
were fixed in 4% neutral formalin for 24 h and embedded in
paraffin. The embedded tissue blocks were cut into 4 pm sections
and stained with hematoxylin and eosin (H&E). The histological
injury was evaluated according to the existing standard (16, 21).
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FIGURE 1 | Effect of HF on the blood, liver, ileum, and colon lipid metabolism in mice. (A) Body weight changes in mice on CD or HF for 4 weeks. (B) Cholesterol
(TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-c), high-density lipoprotein cholesterol (HDL-c), alanine aminotransferase (ALT), and aspartate
aminotransferase (AST) contents in the serum of each group of mice. (C) Cholesterol (TC) and triglyceride (TG) contents in the liver of each group of mice; hepatic
mMRNA expression of genes involved in lipid metabolism and BA synthesis, and data were from seven pooled samples of each group. (D) lleum mRNA expression of
genes involved in lipid and carbohydrate metabolism in each group of mice (data were from seven pooled samples of each group). (E) Cholesterol (TC), triglyceride
(TG), and total bile acid (TBA) contents in the colon; colonic MRNA expression of genes involved in lipid metabolism in each group of mice (data were from seven
pooled samples of each group). n > 6. The data were shown as mean + SEM. *p < 0.05. CD, control diet group; HF, high-fat diet group.

RNA Extraction and qPCR

Total RNAs were extracted using TRIzol reagent (Invitrogen),
and then the extracted total RNAs were reverse-transcribed into
cDNA using the PrimeScript RT reagent kit (TaKaRa, Mountain
View, CA, United States) according to the manufacturer’s
instructions. The relative expression levels of genes were
calculated using the 2~ AACT formula (22), and GAPDH was
chosen as an internal control. The primers are listed in
Supplementary Table 1.

Metabolomics

Bile acids, FAs, and AAs were quantified as previously described
methods (23, 24). In brief, AAs and FAs were quantified by
HPLC coupled to tandem mass spectrometry (MS/MS) based on
deuterated purified standards. Serum AA and FA concentrations
were expressed in pumol/L and mmol/L, respectively.

Sample Preparation for Imaging Mass
Microscope

Frozen 10 wm of mouse intestinal sections were sliced at —20°C
with a cryomicrotome (Leica CM1950, Nussloch, Germany) and
then thaw-mounted onto electrically conductive glass slides.
Subsequently, a “two-step matrix application,” which combined
with sublimation and airbrushing, was used to coat the matrix
(9AA) for tissue sections.

Imaging Mass Spectrum Analysis Based
on Imaging Mass Microscope

iMScope was performed using a 1,000 Hz solid laser. A 40-pm
pitch of special resolution was used, and the data were acquired
in negative ionization. The m/z values were internally calibrated
with DHB. All the spectra were acquired using atmospheric
pressure matrix-assisted laser desorption/ionization (MALDI)
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(Shimadzu Corporation). The laser in the iMScope system was a
diode-pumped 355 nm Nd: YAG laser (Shimadzu Corporation,
Kyoto, Japan) and operated under the following parameters:
frequency, 1,000 Hz; laser intensity, 55.0; laser diameter, 3 pm.
The parameters of IT-TOF MS were set as follows: ion polarity,
negative; mass range, 250-550; sample voltage, 3.0 kV; detector
voltage, 1.90 kV. The imaging MS Solution Version 1.30 software
(Shimadzu, Tokyo, Japan) was used to control the instrument,
and the data acquisition, visualization, and quantification were
also performed using the same software.

Tissue Preparation for Histology After

Mass Spectrometry Imaging

The tissue sections were stained with H&E for examination
following the previous protocol (25). In brief, the matrix (9AA)
covered on the glass slides was removed with 70% ethanol, and
then the tissues were fixed with 100% ethanol. The tissues were
then stained with H&E. Finally, the H&E slides were sealed with
neutral gum and scanned using an iMScope TRIO (Shimadzu,
Japan) instrument.

Statistical Analysis

Data in bar graphs are expressed as mean £ SEM. The
unpaired two-tailed Students ¢-test and the two-tailed Wilcox
test were used to compare two groups of independent samples.
The Kruskal-Wallis ANOVA test was utilized to determine
significance in multiple groups. The SPSS Statistics version 25.0
software and the GraphPad Prism 8 software were used for
statistical analyses. All statistical tests with a p-value of <0.05
were considered statistically significant.

RESULTS

Lipid Metabolism-Related Parameters in
Serum, Liver, lleum, and Colon of Mice
Fed With High-Fat Diet

We have noticed that the impact of HF on the weight of mice
was detectable within the first week of dietary intake. Compared
with the CD, the HF statistically increased the body weight of
mice at the end of this dietary treatment (p < 0.05) (Figure 1A).
Abnormal levels of lipid metabolism-related parameters in the
serum, liver, ileum, and colon were observed among mice fed
with HF. As shown in Figure 1B, HF-fed mice had an increase
in serum TC and TG levels and a decrease in serum TBA levels
than CD-fed mice (p < 0.05), and no significant differences were
observed in the serum levels of LDL-c, HDL-¢c, ALT, and AST
between CD and HF groups. Meanwhile, there was no significant
difference in the TC and TG levels between CD and HF group
livers (Figure 1C). To understand the effect of HF on metabolism
at the genetic level, we examined the changes in several related
genes in CD and HF groups by qPCR. The expression levels
of genes associated with hepatic FA synthesis (Fasn, ScdI) were
downregulated in the HF group compared with those in the CD
group (p < 0.05) (Figure 1C), but the expression of key genes
involved in BA synthesis (Cyp7bl, Cyp8bl) was upregulated in

HEF fed livers (p < 0.05). Moreover, 4 weeks of HF feeding might
disturb carbohydrate and lipid metabolism in the mouse ileum,
which was indicated by the changes of key genes involved in
the above-mentioned pathways at mRNA levels (Figure 1D).
Interestingly, HF feeding prominently increased the contents of
TG in colonic mucosa and the content of TBA in colonic feces
compared with CD feeding (p < 0.05) (Figure 1E). In the colon,
the expression levels of Scd1 were downregulated in the HF group
compared with those in the CD group (p < 0.05) (Figure 1E).
Taken together, these results highly suggested that HF feeding
rendered the disturbance of metabolic homeostasis.

Dysbiosis of Serum Metabolic Patterns

in High-Fat Diet Feeding Mice

As shown in Figures 2A-C, regarding the effect of HF feeding
on serum FA and AA levels analyzed at week 4, the levels of
nine FA species were higher (p < 0.05), namely, C16, C18, C20,
C22, C18:2, C18:3, C20:2, C22:4, and C22:5, while the levels of
three FAs and one AA species were lower (p < 0.05), namely,
C16:1, eicosapentaenoic acid (EPA, namely, C20:5), C24:1, and
tryptophan (Trp), in HF as compared with CD mice. In addition,
the serum Scdl desaturation index (C16:1/C16) was decreased
significantly in the HF-fed mice (p < 0.05), and we further
noticed that the percentage of C20:5/C20 also decreased in
HF feeding mice (p < 0.05). Through Spearman correlation
between changed metabolites and biochemical indexes, as shown
in Figures 2D-H, overall serum LDL-c, TC, TG levels, colon
TG level, feces TBA level, and body weight were positively
correlated with nine FA species, namely, C18:2, C18:3, C22, C18,
Cl16, C20, C20:2, C22:4, and C22:5, besides they were negatively
correlated with TCA, C20:5, C20:5/C20, Cl16:1, C16:1/C16, Trp,
and C24:1. Moreover, for serum TBA level, positive correlation
with TCA, C20:5, C20:5/C20, Cl6:1, and C16:1/C16 and a
negative correlation with C18:2, C18:3, C22, C18, Cl16, C20,
C20:2, C22:4, and C22:5 were observed.

High-Fat Diet Decreases the Spatial
Distribution of Taurocholic Acid in the

lleum and Colon of Mice

Recently, we developed a method for identification and spatial
visualization of dysregulated BA metabolism in HF-fed mice by
mass spectrometry imaging (MSI) (26). The spatially resolved
profiling of the altered BA metabolism was detected in the HF
group with the most significant changes in TCA. In this study,
we focused on the detection of TCA due to its biological activity
on anti-inflammation (26, 27). As the MSI technique putative
identification is only based on the measured exact m/z value,
we used secondary mass spectrometry to distinguish isomers of
target compounds with the same molecular formula by MSI (e.g.,
m/z 514.2844 £ 0.05, putative identification as TCA/TMCA). The
mass spectra of the TCA standard are shown in Supplementary
Figure 1A, with a negative ion scan at m/z 514.284 as a [M-
H]™ peak. Secondary mass spectrometry analysis of the m/z
514.284 ion yielded m/z 353.247 and m/z 496.272 fragment
ions. These two fragment ion peaks can be regarded as the
characteristic ion peaks of TCA. We performed secondary mass
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FIGURE 2 | Dysbiosis of serum metabolic patterns in HF feeding mice. (A-C) Differential metabolites between CD and HF groups (n = 10). (D-H) Spearman
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spectrometry analysis on ileum and colon tissue sections (shown
in Supplementary Figures 1B,C) and also found characteristic
fragment ion peaks at m/z 353.247 and m/z 496.272. Therefore,
we confirmed that the material on the ileum and colon was
TCA. BAs were ionized in negative mode, and all ion images
were normalized to the 9AA matrix signal. Thus, we cut down
a 3-cm long terminal ileum and whole colon and rolled them
up in a “swiss roll” (20). The spatial distribution of TCA in
ileum and colon sections is shown in Figures 3A,C. The ion
intensity of TCA in ileum and colon tissue sections of HEF-
treated mice dramatically decreased when compared with the CD
group’s MS ion image. Figures 3B,D show the mass spectra of
TCA in the ileum and colon, respectively. These data indicated
that HF-treated mice suffered a more severe decrease of TCA in
colonic tissue, and we speculated that this is associated with HF
exacerbating colitis.

Changes of Metabolic Patterns in

Control Diet and High-Fat Diet Feeding
Mice After 2,4,6-Trinitrobenzenesulfonic
Acid Installation

Following TNBS installation, we found that the levels of alanine
(Ala), asparagine (Asn), glycine (Gly), isoleucine (Ile), leucine
(Leu), lysine (Lys), methionine (Met), serine (Ser), threonine
(Thr), tryptophan (Trp), valine (Val), tyrosine (Tyr), glutamine

(Gln), and proline (Pro) in serum were significantly lower
in the two TNBS groups than their counterparts (data not
shown). Notably, the distribution of significantly differential
serum metabolites in the respective comparisons of CT and
CD (the CT group represents CD-fed mice, which are treated
with TNBS) and HT and HF (the HT group represents HF-
fed mice, which are treated with TNBS) is shown in Figure 4A.
The metabolites represented by the red triangle in the upper
left corner are specific to the comparison between HT and HE,
including Leu, histidine (His), C18, C18:2, C18:3, C22:4, C22:5,
C24:1, and TUDCA, and these metabolites were significantly
changed in the HF group instead of the CD group after TNBS
enema (Figure 4A). Additionally, the metabolites represented by
the orange triangle in the upper right corner were both changed
when compared with CT and CD and HT and HE, which were
not identified in detail (Figure 4A). Furthermore, the unique
change of metabolites between the HT and HF groups rather
than the CD and CT groups is shown in Figures 4B,C. The
data showed that C24:1 was upregulated in the HF group after
TNBS treatment (p < 0.05), but the other metabolites were
downregulated (p < 0.05) (Figures 4B,C). As for the commonly
changed metabolites when we compared CT and CD and HT and
HE we have especially noticed that glutamic acid (Glu) and C20:5
showed a greater degree of change in HT and HF than in CT and
CD, but the Asn and C16:1 showed a greater degree of change in
CT and CD than HT and HF (Figure 4D). In addition, Glu, Asn,
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and C16:1 were decreased following TNBS installation, and C20:5
was increased (Figure 4E).

Alternation of Serum Metabolism
Between CT and HT Groups

Data from our targeted metabolomics suggested that HF affects
the AAs and FAs after TNBS treatment. As shown in Figure 5A,
compared with the CT group, phenylalanine (Phe) decreased
in the HT group (p < 0.05), whereas C16, C18, C18:2, and
C20:2 increased in the HT group (p < 0.05). Besides, liver LDL-
¢ level and serum ALT activity were positively correlated with
C18:2, and serum AST activity was negatively correlated with Phe
(Figures 5B,C).

High-Fat Diet Aggravated the Disease
Severity in 2,4,6-Trinitrobenzenesulfonic

Acid-Induced Colitis

As shown in Supplementary Figure 2A, male C57BL/6 mice were
primed with an HE, and CD primed mice were used as normal
control. Three weeks later, mice of the model group were pre-
sensitized with 1% (wt/vol) TNBS solution, and 8 days later, mice
were treated with 2.5% (wt/vol) TNBS solution via intrarectal
injection for 3 days to induce colitis. Several studies have shown
that mice fed an HF diet showed increased levels of inflammatory
cytokines (Tnfa and I16) in the ileum, colon, and surrounding
mesenteric fat, even before the development of obesity (28, 29).
In this study, we found that Cxcl10 was elevated in the colonic
tissue of mice fed an HF for 4 weeks (p < 0.05), and Tnfa, Socsl,
and Socs3 were not changed (Supplementary Figure 2D). It is
common knowledge that Cxc/10 mainly induces the chemotaxis
of monocytes and macrophages, participates in regulating the

migration, activation, and differentiation of a variety of immune
cells, and affects acquired immunity and inflammation response
(30). Therefore, the colon tissue in the HF group may have
low-grade inflammation, which may be a reason for the more
serious colitis after TNBS treatment compared with the CD
group. Following TNBS installation, HF-primed mice caused
much more severe colitis than mice of CD, as evidenced by a
significant decrease in the body weight and shortening of colon
length (p < 0.05) and significantly higher colonic ulceration
and histological damage (Figures 6A,D). Then, we measured
AST and ALT activities in serum. As shown in Figure 6B,
we have noticed that the HT group had higher AST and ALT
activities than the CT group (p < 0.05); moreover, no obvious
histological alterations in H&E staining were observed in the
liver of the HT group when compared with the CT group (data
not shown). It is known that ALT and AST can sensitively
reflect whether hepatocytes are damaged or not and the degree
of injury. Importantly, as shown in Figure 6C, HF-treated mice
expressed much higher levels of pro-inflammatory cytokines and
chemokines (including Tnfa and Cxcl10) in the colonic mucosa
compared with CD-treated mice following TNBS induction
(p < 0.05). Cytokines, such as Tnfa, are known to play key
roles in the induction of gut inflammation and tumorigenesis
(31). In addition, we further studied the effect of HF on TNBS-
induced colitis within 7 days. As shown in Figure 6D, CD-primed
mice developed weight loss following TNBS treatment, and the
loss reached the maximum on days 2-3 followed by a gradual
recovery, but it decreased again on days 5 until day 7. In contrast,
the weight loss of HF-primed mice was more severe and was
almost not recovered within 7 days (p < 0.05) (Figure 6D),
approximately 50% of HF-primed mice died within 7 days
after TNBS treatment (Figure 6D), and during this period, the
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mortality of CD-primed mice was only 25% after TNBS treatment
(Figure 6D). Following TNBS installation, the colons from the
surviving HF-primed mice remained short by day 7 compared
with CD-primed mice after TNBS treatment (Figure 6D), and
the colons were swollen with no visible fecal pellet formation in
both groups. Moreover, histological examination revealed severe
ulceration in the colon of the HT group (Figure 6D). These
data indicated that HF-primed mice suffered more severe colonic
inflammation than CD-primed mice. Taken together, HF-primed
mice showed dysregulated metabolic homeostasis, which might
promote the disease severity in TNBS-induced colitis.

DISCUSSION

The incidence of metabolic-related diseases has gradually
increased throughout the world, such as diabetes, hypertension,
and IBD, especially in emerging market countries with gradually
westernized eating habits, which is thought closely related to

the increase in HF intake (6, 32). Previous studies show that
due to the imbalance between energy intake and expenditure,
long-term HF could cause severe disorders of metabolism,
which highly increased susceptibility to the development of
metabolic diseases (33, 34). Meanwhile, accumulating evidence
shows that the involvement of HF increases in intestinal
levels of secondary BAs, characterized by the substantial
increase of DCA in the feces, might be highly relevant to
the pathogenesis of IBD (35, 36). HF consumption promotes
and exacerbates experimental colitis in dietary and genetic
mouse models of IBD (37). Taken together, dietary fats play
an important role in intestinal disease pathogenesis. However,
most of these studies examined the relationship between
westernized diets and the pathogenesis of metabolic-related
diseases and focused on secondary effects of HE such as
effects on gut microbes or BAs (38, 39). The current study
focuses on the specific effects of short-term HF feeding on
the levels of free FAs, AAs, and BAs in serum and the
resulting effects on colitis development. In this study, we
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discovered that 1 month of HF feeding disturbed FA and
AA metabolisms in serum and caused the reduction of the
spatial distribution of TCA in the ileum and colon wall of
mice, which may result in increasing the lipid peroxidation
and the weakening of the resistance of colon wall to pathogens
such as bacteria, thus aggravating epithelial barrier dysfunction
and colonic mucosal inflammation. Consistently, we found
that short-term HF-priming deteriorated TNBS-induced colitis,
proved by more violent mucosal inflammation and broader
colonic damage compared with CD-primed mice after TNBS
treatment. These data indicated that short-term HF priming
distributed metabolism, which led to increased susceptibility and
severity of IBD.

For only 4 weeks of HF-feeding in mice, not only the
blood lipid (TC and TG) increased but also TG accumulated
in the colon, which may lead to mitochondrial dysfunction,
oxidative stress, and other damage. In addition, the content of
total BAs in mice colonic feces increased significantly, which is
similar to previous reports that HF increased the production
of secondary BAs (40). Compared with other internal organs,
the liver is considered to be prone to fat accumulation (41),
but our results showed that short-term (4 weeks) HF feeding
did not cause significant fat accumulation in the liver. An
interesting feature of gene expression was the suppression of
enzymes involved in lipid synthesis, and these included Fasn
and Scdl. It is worth noting that similar phenomena were
observed in the ileum and colon. Scdl is considered one of the
key enzymes in lipid homeostasis and body weight regulation
(42). Our studies have shown that HF feeding decreased
mRNA level and desaturation index of Scdl. The decrease of
Scdl may cause lipid acylation disorder and change the lipid
composition of the cell membrane, resulting in serious lipid
toxicity (43).

Metabolomic investigations show that Trp was significantly
lower in the serum of mice on HF than in the control group.
Trp is one of the important essential AAs (EAAs). Research
shows that disorders in Trp metabolism results in lower levels
of bacterial-derived and beneficial metabolites, and some Trp
metabolites can provide protection against gastroenteric effects
and IBD (1, 44). For instance, Trp exerts a beneficial regulatory
function in mucosal growth or maintenance and alleviation
of intestinal inflammation by the 5-hydroxytryptophan (5-HT)
signaling pathway (45). Other studies also suggest that Trp
plays a role in the recovery of colitis and in the function of
intestinal homeostasis by caspase recruitment domain family
member 9 (Card9), calcium-sensing receptor (CaSR), and aryl
hydrocarbon receptor (AHR) ligands in the intestine (46-48).
Therefore, the significant decrease of serum Try in mice fed
an HF for 1 month may be a risk factor for TNBS-induced
colitis. Furthermore, saturated FAs are non-essential FAs, and
excessive intake will increase the content of blood lipids in
the body. Our results show that the increase of C16, C18,
C20, and C22 in serum is closely related to dyslipidemia
caused by HF. It should be noted that compared with the CD
group, essential FAs C18:2, C18:3, C20:2, C22:4, and C22:5
were significantly increased in the HF group. Although we
have known that polyunsaturated FAs positively affect insulin

sensitivity, cardiovascular, mental health, and development and
reduce hypertension and inflammation (49), the increase of
serum-free FAs will lead to systemic low-grade inflammation,
and the increase of HF-derived free FAs in the intestinal cavity
will lead to the increased production of pro-inflammatory
cytokines in the intestinal tract (50). These results indicated that
HF intake had a regulating effect on FA metabolisms. Thus,
we speculated that polyunsaturated FAs are a double-edged
sword, and their advantages and disadvantages depend on the
specific physiological conditions and reasonable physiological
concentration of the body. Further study on their particular
physiological significance is needed in the short-term HF feeding
model. Notably, palmitoleic acid (C16:1) and EPA decreased in
the HF group. Lipogenesis is mediated by Scd1, the rate-limiting
enzyme catalyzing the synthesis of monounsaturated FAs, and
the predominant substrates for Scdl are palmitic (C16) and
stearic acids (C18) which generate C16:1 and oleic acid (C18:1),
respectively (49). The reduction of C16:1 and increase of C16
and C18 are consistent with the decreased expression of ScdI in
the liver in our results. C16:1 is a monounsaturated FA and has
therapeutic effects on some chronic diseases such as metabolic
syndrome, diabetes, and inflammation (49). EPA is an important
polyunsaturated FA, also known as arachidonic acid and deep-
sea fish oil, which belongs to the w-3 series of polyunsaturated
FAs. It is an important and indispensable nutrient that cannot
be synthesized by the human body itself. EPA is known to
have a variety of health benefits including well-established
hypotriglyceridemic, antioxidant, and anti-inflammatory effects
(49). It could be of interest to human health and the prevention
of cardiovascular disease (51). Therefore, the decrease of C16:1
and EPA in the HF group may be conducive to the production of
metabolic diseases.

Following TNBS installation, the distribution of significantly
differential serum metabolites also changed. We did not find any
metabolites changed significantly which only occurred in the CD
and its colitis model. Importantly, the serum levels of Leu, His,
C18, C18:2, C18:3, C22:4, and C22:5 are decreased significantly
when we compared HT with HF instead of CT and CD, which
may be the result of the joint action of HF and TNBS. Studies
have shown that branched-chain AAs (e.g., Leu, Val, and Ile)
supplementation with protein-restricted diet improved intestinal
immune defense function by protecting villous morphology and
by increasing levels of intestinal immunoglobulins in weaned
piglets (52). His is a conditionally EAA and an important
anti-inflammatory factor in the intestinal epithelial cells, and
His supplement alleviates colitis of murine (53). Moreover, the
decrease of His increases relapsing risk in the emission of
ulcerative colitis patients, and it may be a non-invasive predictive
marker in intestinal inflammation (54). It must be noted that
the levels of Leu and His were significantly lower in the HT
group than in the HF group, which might indicate that the
intestinal immune defense function in the HT group is lower
than that in the CT group. Furthermore, compared with CD,
Glu decreased significantly in CT, but its change degree was less
than that of HF and HT. Collectively, these results highlight the
significant changes of some metabolites, and these changes may
exist only in the HF and its colitis model. In addition, changes
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in serum metabolism between the CT group and the HT group
were also observed. EAAs have significant effects on intestinal
inflammation (10). It has been reported that Phe manifests
beneficial effects in the treatment of IBD by inhibiting Tnfa
productions and enhancing immune responses (55). In addition,
the antioxidant and anti-inflammatory properties of Phe give Phe
with chromium a protective effect on indomethacin-induced IBD
in rats (56). Phe, as one of the EAAs for humans and animals,
was decreased significantly in the HT group compared with the
CT group in our study. This change may be caused by colitis in
an HF state, which suggests that HF might induce severer colitis
compared with CD following TNBS enema.

There exists a highly efficient BA preservation and recycling
system within the body, which is termed the enterohepatic
circulation (57). BAs, which are biosynthesized by the catabolism
of cholesterol in the liver, are involved in maintaining lipid,
glucose, and energy metabolism in the liver, intestine, and
adipose tissue (58). HF feeding did not disturb BA synthesis
regulators, such as FXR-SHP or FXR-FGF15 (data not shown),
but one of the key BA synthesis enzymes (Cyp8bI) was increased
in the liver of HF mice, suggesting that HF may change the
ratio of CA and CDCA synthesized by the liver, which leads
to disturbed BA metabolism. Through the microscopic MSI
analysis of the terminal ileum, we found that HF significantly
reduced the distribution of TCA in the ileum tissue section.
Interestingly, in the microscopic MSI of colon tissue, we
also noticed that HF reduced the distribution of TCA in
colon tissue. In view of previous studies have confirmed that
TCA has strong anti-inflammatory effects in the gut that
control gut bacteria overgrowth and protect intestinal barrier
function (26, 27), we speculated that the molecular basis
of HF aggravating TNBS-induced colitis is partly to reduce
TCA distribution in colonic tissue, so as to reduce the anti-
inflammatory ability of colonic mucosal that leads to gut
bacteria overgrowth and intestinal barrier dysfunction. The
main limitation is that the current study cannot determine
which specific changes induced by HF feeding lead to worse
IBD in a TNBS model. All the above-mentioned changes
in BA, metabolites, or gene expression are to some distance
associated with colitis susceptibility. As shown in Figure 5,
Phe and C18:2 are strongly associated with AST and ALT,
respectively, which indicated the potential role as indicators of
colitis formation. Further study will be determined to distinguish
the contribution of metabolic changes caused by change of diet to
colitis susceptibility.

CONCLUSION

In summary, our results clearly indicate the possibility of the
adverse effects of short-term HF on the metabolism of mice,
including metabolic changes in FAs, AAs, and BAs, which might
continue to have negative effects on health and promote the
occurrence and development of IBD. Therefore, dietary fat intake
is a factor that must be carefully considered, especially in the
IBD population. Our results also suggest that HF-primed mice
might be more likely to develop abnormal liver function or

even hepatitis after TNBS-induced colitis, which needs to be
further studied.
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Supplementary Figure 1 | (A) The mass spectrum and secondary mass
spectrometry of TCA standard. (B) Secondary mass spectrometry of ileum
(precursor ion m/z 514.284). (C) Secondary mass spectrometry of colon
(precursor ion m/z 514.284). Matrix: 9AA.

Supplementary Figure 2 | Phenotypes of mice fed a CD and HF for 4 weeks.
(A) Schematic diagram for colitis model in CD and HF feeding mice. Male
C57BL/6 mice were fed with a HF for 4 weeks, and control diet feeding mice were
used as normal control. Three weeks later, mice of model group were
presensitized with 1% (wt/vol) TNBS solution. Eight days after that, mice were
treated under anesthesia with 2.5% (wt/vol) TNBS solution via intrarectal injection
for 3 days to induce colitis. pre, before treatment. i.r., intrarectal delivery. The
control group fed with CD or HF was not treated with TNBS. (B) All mice were
sacrificed on day 3, and colons were collected to estimate mucosal damage by
detecting colon lengths; gross morphology of the colons on day 3. (C) The
representative histological sections were observed under microscopy
(magnification: 2.5x). (D) gPCR quantitation of pro-inflammatory cytokines and
chemokines in colonic mucosa on day 3. (E) The average daily food intake per
mouse during the period of CD or HF feeding. The food intake of mice was
recorded twice a week. n > 3. The data were shown as mean + SEM. *p < 0.05.
CD, control diet group; HF, high-fat diet group.
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