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Anthocyanins (ACNs) are plant polyphenols that have received increased attention

recently mainly due to their potential health benefits and applications as functional

food ingredients. This has also created an interest in the development and validation

of several non-destructive techniques of ACN assessments in several food samples.

Non-destructive and conventional techniques play an important role in the assessment

of ACNs in agricultural and food products. Although conventional methods appear to

be more accurate and specific in their analysis, they are also associated with higher

costs, the destruction of samples, time-consuming, and require specialized laboratory

equipment. In this review article, we present the latest findings relating to the use of

several spectroscopic techniques (fluorescence, Raman, Nuclear magnetic resonance

spectroscopy, Fourier-transform infrared spectroscopy, and near-infrared spectroscopy),

hyperspectral imaging, chemometric-based machine learning, and artificial intelligence

applications for assessing the ACN content in agricultural and food products.

Furthermore, we also propose technical and future advancements of the established

techniques with the need for further developments and technique amalgamations.

Keywords: anthocyanin, chemometrics, non-destructive techniques, agricultural product, food products

INTRODUCTION

Anthocyanins (ACNs) are water-soluble phenolic compounds that are identified as pigments (red,
purple, and blue) of various plants and are traditionally used as natural food colorants. They are also
regarded as bioactive compounds with high antioxidant properties when consumed individually or
as part of a healthy diet (1–3). The richest sources of ACNs are identified in several different berries
(strawberries, blackcurrants, blackberries, blueberries, redcurrants, raspberries, and cranberries),
with levels ranging from 100 to 700 mg/100 g of fresh weight. Nevertheless, the highest level

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/journals/nutrition#editorial-board
https://www.frontiersin.org/journals/nutrition#editorial-board
https://www.frontiersin.org/journals/nutrition#editorial-board
https://www.frontiersin.org/journals/nutrition#editorial-board
https://doi.org/10.3389/fnut.2022.901342
http://crossmark.crossref.org/dialog/?doi=10.3389/fnut.2022.901342&domain=pdf&date_stamp=2022-07-19
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.frontiersin.org/journals/nutrition#articles
https://creativecommons.org/licenses/by/4.0/
mailto:food_oil@126.com
mailto:ibrah001@ncat.edu
https://doi.org/10.3389/fnut.2022.901342
https://www.frontiersin.org/articles/10.3389/fnut.2022.901342/full


Manzoor et al. Rapid Assessment of Anthocyanins

of ACNs is found in elderberries and chokeberries (4, 5).
Furthermore, ACNs are localized in different sections of the
fruits such as skin and flesh and, to date, there are over 700
structurally varied ACNs that have been identified. This number
is expected to increase in the future with improvements in
technological advancements and the identification of different
sources of ACNs (6).

The ACNs are the glycoside form of anthocyanidins, the
water-soluble form of vacuolar pigments, which has a sugar-free
form. The color of both groups of compounds is dependent
on environmental acidity. Anthocyanidins are known as
aglycones and are grouped into O-methylated anthocyanidins,
3-deoxyanthocyanidins, and 3-hydroxyanthocyanidins. The
most common anthocyanidins include pelargonidin, malvidin,
peonidin, petunidin, delphinidin, and cyanidin (7). Acylated
ACNs are also found in plants besides the “typical” ACNs and are
further classified into coumaroylated ACNs, caffeoylated ACNs,
acrylated ACNs, and malonylated ACNs.

The consumption of ACNs has been associated with several
beneficial health effects such as a reduced risk of developing
cardiovascular disease (CVD), improvements in cognition, and
a reduction in inflammation (5). These effects are proposed to
be due to the ACNs strong scavenging activity against reactive
oxygen and nitrogen-free radical species (5, 8, 9). Relatively
recent studies have identified that the consumption of different
food products rich in ACNs can potentially reduce the CVD
risk factors via the improvements in endothelial function and
reduction in inflammatory responses that are associated with
the consumption of typical Western dietary patterns (10).
Inflammatory markers in older adults that live with mild
cognitive impairment were reduced by the consumption of ACN-
rich fruit juice (11), and the consumption of fruits (blueberries)
high in ACNs exhibited beneficial cognitive outcomes with
improvements in short- and long-term memory and spatial
memory (12). These beneficial health outcomes were proposed
to be associated with the improvements in microbial diversity
of the gut-microbiota (13). The findings from observational
studies indicate that regular consumption of red wine (rich
in ACNs and polyphenols) seems to improve α-diversity,
in particular, Barnesiella spp which may be associated with
improved cholesterol metabolism and body composition (14).

With the global increase in demand for high-quality and
nutrient-dense foods (15), there is a strong focus on non-
invasive and rapid methods of detection with high sensitivity
and accuracy for several different phytochemicals (16–18).
Recently, several reviews have discussed the application of non-
destructive spectroscopic and spectral imaging techniques for
various agricultural applications such as exploring the maturity
and ripening of the fruits, lycopene content, quality assessment
of cheeses, potatoes, and detecting insect infestation in fruits and
vegetables (19–24). However, to the best of our knowledge, there
are no reviews that summarize the most recent evidence on the
use of rapid and non-destructive techniques for the assessment of
ACN contents in agricultural products. Therefore, the main aim
of this literature review is to present a summary of the rapid and
non-interruptive methods and technologies for the evaluation of
ACN in different agricultural products and food items.

DATA SCREENING AND METHODOLOGY

In May 2021, non-systematic searches were performed in
five electronic databases (Science Direct, Google Scholar,
SCOPUS, and PubMed) using the following search strategy:
“anthocyanins” AND “non-destructive techniques,” “Raman
spectroscopy,” “hyperspectral imaging,” “surface-enhanced
Raman spectroscopy.” Only articles published in English were
included in this review. A large number of articles were focused
on the chemistry, health benefits, and extraction techniques of
several different ACNs. Included articles were further grouped
based on the overall non-destructive techniques implemented in
the analysis of ACNs.

NON-DESTRUCTIVE TECHNIQUES AND
FOOD QUALITY EVALUATION

With the rapid increase in the global population, the provision
of nutrient-dense foods is becoming an emerging challenge
(25). Therefore, there is an increased focus on establishing
reliable methods for authenticating several quality parameters of
agricultural products including internal and external attributes.
There are several different conventional techniques available
for the assessment of ACNs that are already established
such as gas chromatography (GC), high-performance
liquid chromatography (HPLC), gas chromatography-mass
spectrometry (GC-MS), and liquid chromatography with
tandem mass spectrometry (LC-MS/MS). However, these
techniques are time-consuming, laborious, require expert
knowledge, and complex sample preparation with reagents
that can cause environmental pollution and can present a
health hazard.

The use of non-destructive spectroscopic techniques,
including vibrational methods, possesses a wide range of
benefits such as chemical-free assessments, minimal and non-
interruptive sample processing, and very rapid and relatively
accurate determination of multiple physicochemical properties.
Moreover, the advancement in computation, instrumentation,
and chemometric methods have further increased the reliance on
these rapid assessment techniques in various research domains
(26, 27). Some of the spectroscopic techniques include nuclear
magnetic resonance spectroscopy (NMR), Fourier transforms
infrared spectroscopy (FT-IR), fluorescence spectroscopy (FS),
near-infrared spectroscopy (NIRS), hyperspectral imaging
(HSI), ultraviolet-visible spectroscopy (UV-Vis), and Raman
spectroscopy (RS). The use of these spectroscopic techniques is
already widely applied in food (fish, meat, fruit, and vegetable)
and beverage (milk, wheat plantlet juice, and tomato juice)
analysis (28–32). In addition to spectroscopic techniques, the
use of spectral imaging techniques has also been proposed
as an option for the quantitative and qualitative analysis of
food products (33). Spectral imaging techniques integrate
digital imaging and spectroscopy into a powerful analytical
system; enabling the acquisition of both spectral and spatial data
simultaneously from a target region. Such approaches possess the
potential to provide a generic pixel (x, y) and specific wavelength
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(l), and create a two-dimensional (2D) or three-dimensional
(3D) dataset that contains many images of a sample for rapid
screening (26, 34). Examples of these imaging techniques are
Raman hyperspectral imaging, laser backscattering imaging,
microwave imaging, fluorescence imaging, thermal imaging, and
odor imaging among others (35–37).

CHEMOMETRIC-BASED MEASUREMENT
THROUGH MACHINE LEARNING AND
ARTIFICIAL INTELLIGENCE

Non-destructive assessment techniques can produce a large
amount of information that can effectively be exploited by
machine learning, artificial intelligence (AI), and traditional
technique-based chemometrics (33). Chemometrics can be
described as the science of concerning measurements based
on a system or chemical process via the use of mathematical
or statistical methods. Chemometrics is not a single technique
but it is a range of methods that includes signal processing,
pattern recognition, curve fitting, statistical analysis, calibration,
validation, prediction, preprocessing, and so on. Chemometrics
is categorized into quantitative (multivariate calibration) and
qualitative analysis (pattern recognition). Pattern recognition is
generally utilized for the classification of data analysis and can
be supervised or unsupervised as presented in Figure 1 (38).
Chemometrics is discussed here as pre-processing technique,
classification methods, selection of effective variables from data,
and prediction development models (39). AI and machine
learning (ML) have combined as the basic technology for
qualifying demand-side response. AI has the potential to deal
with consumer preferences, challenges, and attributes, ranging
from the selection of an optimum set of consumer responses.
AI highlighted the expansion of intelligence machines, working
and thinking like human beings, for example, planning, learning,
problem-solving, and speech recognition. AI is a combination
of different phenomena and methods, among which two main
concepts known as neural networks and deep learning are
supposed to be main tools for better attainment with more
advancement (40).

The data obtained from several non-destructive assessment
techniques, in general, contain unnecessary information
commonly referred to as “noise” that can interfere with the
measurement making it inaccurate. Currently, different pre-
processing techniques of data have been adopted to create
effective models, such as multiplicative scatter correction (MSC),
smoothing, standard normal variate transformation (SNV),
normalization, orthogonal signal correction (OSC), centering,
straight-line subtraction (SLS), wavelet transforms (WT), direct
orthogonal signal correction (DOSC), and first and second
derivatives (40). The data obtained from each technique are
handled based on their characteristics.

Nowadays, there are different types of techniques available for
classification, data removal, and regression. The authentication
or discrimination with the use of different models plays an
important role in the assessment of ACN data collected from
conventional and non-destructive techniques. Application of

different models for ACNs is generally used such as supervised
approaches (k nearest neighbors (KNN), soft independent
modeling of class analogy (SIMCA), linear discriminant analysis
(LDA), multi-Layer Perceptron (MLP), and partial least-
squares discriminant analysis (PLS-DA)) and unsupervised
approaches (principal component analysis (PCA), hierarchical
cluster analysis (HCA), cluster analysis (CA), singular value
decomposition (SVD), and neural networks (NN)) (33, 41, 42).

The development of quantitative predictive models was
applied for the prediction or quantification of ACNs with
non-destructive techniques. Artificial neural network (ANN),
backward interval-PLS (Bi-PLS), non-parametric algorithm
(NPA), principal component regression (PCR), chaotic neural
network (KIII), partial least squares (PLS), competitive
adaptive reweighted sampling (CARS)-PLS, response surface
regression (RSR), multiple linear regression (MLR), back
propagation neural network (BPNN), step multiple linear
regression (SMLR), ant colony optimization (ACO)-PLS,
genetic algorithm-PLS (GAPLS), and synergy interval-PLS
(Si-PLS) (Figure 1) are generally used for quantification
models (43–47).

The evaluation of a final build model is essential to judge
the predicted effectiveness, accuracy, and reliability for the
practical application of the model. In this case, the calibration
set is normally used for training, while the prediction set is
commonly employed to evaluate the stability and robustness
of the model/system. The lowest root mean square error of
cross-validation (RMSECV) and root mean square error of the
prediction (RMSEP) are frequently adopted to assess the build
model performance. The best model can be judged by the
lowest RMSEP and RMSECV, or sometimes RSMECwhile higher
correlation coefficient of calibration and prediction correlation
coefficient of calibration (RC) and correlation coefficient of
prediction (Rp) (48). The model is considered more robust
and better if the difference between RC and Rp or RMSECV
and RMSEP is small. Furthermore, residual predicted deviation
(RPD) shows the build model stability. The stability of the build
model can be assessed if RPD <2 (poor), RPD >2 (good), RPD
>3 (stable), and RPD >10 (excellent) (49).

RAPID NON-DESTRUCTIVE TECHNIQUES
AND ACNS ASSESSMENT

Several different agricultural products have very similar
antioxidant attributes due to the occurrence of bioactive
compounds that can potentially prevent cellular oxidation
such as carotenoids, flavanols, and stilbenes. However,
these functional components are unstable on exposure to
physicochemical challenges during the extraction and require
specialized analysis commonly using different chromatographic
techniques. Therefore, to ensure quality assessment of bioactive
compounds, non-destructive spectroscopic and imaging
methods have been seen as the best available options, in
particular, for their ease of use and non-destructive nature of
the techniques deployed (Tables 1, 2) in different food and
agricultural products.
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FIGURE 1 | Chemometric models used in spectral imaging and spectroscopic techniques for classification and regression models.

Nuclear Magnetic Resonance
Spectroscopy
The implementation of NMR-based methods (low and high-filed
NMR) has received increased attention and consideration in the
food industry (81). NMR is a relatively robust technology and
has been commonly used for the authenticity and traceability
of several different food samples without the modification
of the food sample and generation of wastes (82). This
approach provides the opportunity to estimate the structural
data quantitatively, by carrying atoms with an internal angular
momentum and magnetic moment. Moreover, low-field proton
(1H-NMR) relaxation is continuously utilized to quantify
and distinguish a large number of compounds at the same
time (83). However, the challenge of several agricultural food
products is that in addition to being chemically and structurally
heterogeneous structures, every compound can have distinctive
participation in the NMR signal principally due to variations in
molecular movement (83).

For the past few decades, NMR spectroscopy has been used
in the food industry for structural characteristics, compositional
analysis of functional components, food authentication,
physicochemical analysis, and microbiological inspection of
various food and agricultural samples (72). The use of NMR can
also be applied for ACN detection in food items. A study by
González-Manzano et al. (71) isolated the anthocyanin-flavanol
condensed pigment from purple corn powder, and later its
structure was examined by 13C and 1H NMR using correlation

spectroscopy, heteronuclear multiple bond correlation, and
heteronuclear single quantum coherence techniques. The
existence of condensed pigments was observed in three out of six
corn varieties and the condensed pigment results ranged from 0.3
to 3.2% of total ACNs. A study by Zhang et al. (72) established an
efficient approach for the scale formation of high-purity ACNs
mixtures and a semi-preparative HPLC method was used to
obtain monomeric acylated ACNs. This was followed by the use
of 1H and 13C-NMR to allow the specific connectivity of acyl
and glycosyl moieties and ascertained the entire structure of
acylated monomeric ACNs. The specific structures of the unique
monomeric acylated ACNs from purple sweet potato, namely
peonidin, were determined by 13C and 1H-NMR.

Similarly, Zielińska et al. (84) determined the variations
in ACNs contents and chlorogenic acids during Aronia
fruit ripening and development. Comparative analysis using
HPLC-DAD and NMR spectroscopy was performed for the
determination of chemical composition and data were examined
using multivariate statistics and chemometric analysis. The 1H-
NMR spectrum revealed different signals in the aromatic protons
varying between 6.5 and 9.0 ppm proposed to represent the ACNs
content, which begins to appear in the second stage of fruit
development along with a dark color. For ripe fruit extract, a two-
dimensional (1H-1H COZY) NMR spectrum presented H5’/H6’,
H2’/H6’, and H4/H8 correlations, and the resonances of two
major ACNs, cyanidin arabinosides, and cyanidin galactosides
were also reported. Relatively recently, a study by Ha et al.
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TABLE 1 | FTIR, NIR, HIS, and RS techniques for the measurement of anthocyanin.

Technique Food item Attribute Pre-processing and

mathematical model

Results References

FT-IR Red grapes Total anthocyanins ANOVA, Post-hoc analysis,

PCA

Best calibration statistic obtained for merlot grapes

SEP= 0.12mg/g and R2 = 0.84

(50)

Soybean seed Anthocyanins PLSR, MSC, and SNV R2 of 0.86-0.88, SEP of 9.7-21.8% (51)

Soybean seed Anthocyanins PLSR, MSC, and SNV R2 of 0.88-0.90, SEP of 9.4-19.5%

Red wine Anthocyanins MPLSR, and PCA R2 for both cross-validation and calibration exceeding

0.8

(52)

Wine Anthocyanins PLSR, and PCA R2 = 0.64-0.93, %CVE 25-30%, SEC (mg/L) 0.2-25.5 (53)

Red grape musts Anthocyanins PLSR, and PCA R2 = 0.46-0.66, SEC (mg/L) 0.12-16.40, %CVE

15.4-35.4

(54)

NIR Elderberry Total anthocyanin PLSR model for evaluation RMSECV/RMSEC of 1.31 and RSDPLSR of 13.5%, for

pH-differentiation; RMSECV/RMSEC of 1.28 and

RSDPLSR of 12.9% for the HPLC

(55)

Blueberry Anthocyanins PLSR, MSC, PCA RMSECV = 0.25mg malviding/g and RMSEP =

0.22mg catechin/g

(56)

Intact fruit (açaí

and

palmitero-juçara)

Total anthocyanin PLS, iPLS, GA, SPA RMSECV 13.8 g/kg, RMSEP 4.8 g/kg, and R2 = 0.90 (57)

Flowering tea Total anthocyanin ACO-iPLS, GA-iPLS R = 0.9856, RMSECV = 0.1198 mg/g (58)

RS Plum Anthocyanin and

other bioactive

compounds

PLSR, SVM FT (200-1800 wavenumber/cm−1 ), NIR (900-1700

wavenumber/nm), and MIR (800-1800

wavenumber/cm−1 ) SVM-anthocyanin training,

validation, and test set accuracy 100%;

RMSECV of 9.8 mg/100g, RMSEC of 6.7 mg/100g, and

R2 = 0.9,856

(59)

Blueberry Anthocyanin – FT-Raman spectra (400-4,000 cm−1);

n2 =-2.07 X 10−7 cm2/W, β =-2.19 X 10−3 cm/W, and

OL behavior 3.21 X 102 W/cm2

(60)

Purple yam Anthocyanin Pearson correlation, multiple

dimensional scaling, and

hierarchical clustering

Raman spectra (1–3,500 cm−1 );

Identify the major anthocyanin components as cyanidin

derivative

(37)

Bulgarian red wine Anthocyanin,

phenolic, and

flavonoid

PCA, PLSR Raman spectra (400–3000 cm−1);

6.6 to 466.8 mg/dm3 anthocyanins

(61)

Blueberries Anthocyanin PCA, KNN, PLSR Raman spectra (900–1800 cm−1);

R2 cal= 0.78/0.87, RMSEC= 43/7.7 mg/hg, R2

val=0.75/0.84, RMSECV= 48/8 mg/hg

(62)

HSI Purple-fleshed

sweet potato

Anthocyanin LS-SVM, PLSR, MLR MLR yielded better results; coefficient of determination

for prediction (R2
P) and calibration (R2

C) of 0.866 and

0.868, respectively.

(35)

Lychee pericarp Anthocyanin SRA, SPA, SWR, RBF RMSEs of 0.610% and 0.567%, and higher coefficients

of determination (R2) 0.872 and 0.891

(63)

Strawberry Anthocyanin MLR, BNN, RF, NB, SVM R2
= 0.65 (64)

Dry black goji

berries

Anthocyanin PLS, LS-SVM, PCA, WA,

CNN

For PLS: R2
C = 0.914, RMSEC=103.03, R2

v = 0.916,

RMSEV= 104.21, R2
p = 0.883, RMSEP= 123.89

For LS-SVM: R2
C = 0.934, RMSEC=89.813, R2

v =

0.893, RMSEV= 120.786, R2
p = 0.875,

RMSEP=130.48

For CNN: R2
C = 0.929, RMSEC=97.29, R2

v = 0.931,

RMSEV= 92.48, R2
p = 0.889, RMSEP= 118.24

(65)

Wine grapes Anthocyanin PLSR, SVR For SVR: R2
p = 0.9,414, RMSEP=0.0046

For PLSR: R2
p = 0.8,407, RMSEP= 0.0129

(66)

Grape berry Anthocyanin ε-SVMs R2
p =0.83, RMSE of 0.211 mg/g berry, R2

v = 0.72,

RMSE of 0.282 mg/g berry

(67)

PLSR, partial least squares regression; SEC, standard Error of Calibration; CVE, errors of cross validation; SPA, successive projection algorithm; SVR, support vector regression; MSC,

multiple scatter correction; SNV, standard normal variate; SWR, stepwise regression; RBF-SVR, radial basis function support vector regression; RBF-NN, radial basis function neural

network; SWR-RBF-SVR, stepwise regression-radial basis function-support vector regression; SPA-RBF-SVR, successive projection algorithm-radial basis function-support vector

regression; GA, genetic algorithm; RMSEs, root mean square errors; RMSEP, root mean square error of prediction; RMSEV, root mean square error of validation; PLS, partial least

squares; LS-SVM, least-squares support vector machine; CARS, competitive adaptive reweighted sampling, n2, nonlinear index of refraction; β, nonlinear absorption coefficient; OL,

optical limiting; KNN, K-nearest neighbor; BNN, back propagation neural network; RF, random forest; NB, naive Bayes; SVM, support vector machine; WT, wavelet transform; CNN,

convolutional neural networks; ε-SVMs, epsilon-support vector machines; and PCA, principal component analysis.
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TABLE 2 | NMR, FS, RI, and UV-Vis techniques for the measurement of anthocyanin.

Technique Type Sample Attribute Purpose Reference

NMR Spectroscopic Grape berry skin Anthocyanin identification and composition (68)

Spectroscopic Red wine Anthocyanin-flavanol Identification (69)

Spectroscopic Boysenberry Anthocyanin Structural identification (70)

Spectroscopic Purple corn varieties Flavanol-anthocyanin Characterization and presence (71)

Spectroscopic Purple sweet potato Acylated anthocyanins Isolation and identification (72)

Spectroscopic Black seed coated

Korean adzuki bean

Anthocyanin Identification and composition (73)

Spectroscopic Aging red wine Acylated anthocyanin-

vinyl-flavanol

Structural characterization (74)

Spectroscopic Aged red wines Anthocyanin-derived

pigments

Isolation and characterization (75)

FS Spectroscopic purple corn Anthocyanin Impact of alginate and zinc ion on the

chemical stability of anthocyanins

(76)

Spectroscopic Black Soybean Anthocyanin Chelating Activity of Anthocyanin (77)

RI Imaging Bilberry, elderberry Anthocyanidins Identification of anthocyanins without

glycosidic moiety

(78)

Imaging Bilberry, elderberry,

sumac, purple corn,

and hollyhock

Anthocyanin Identification of anthocyanins (79)

UV-Vis Spectroscopic Graphs malvidin-3,5-O-

diglucoside

Extracted anthocyanins from samples and

tested for antioxidant potential

(80)

(73) also investigated the ACNs derivatives (delphinidin-3-O-
glucoside and delphinidin-3-O-galactoside) in the black seed
coated adzuki bean through NMR spectroscopy.

Fourier Transform Infrared Spectroscopy
One of the most extensively used methods for real-time, reliable,
and rapid evaluation of food products without requirements
for extensive training and operating skills is FT-IR. The FT-
IR analysis is based on the principle that functional groups
within the phytochemicals require different energy levels for
excitation (20). In the IR region, the electromagnetic spectra
can be broadly classified into near-infrared (NIR) spectra (4,000
to 12,821 cm−1), mid-infrared (MIR) (400 to 4000 cm−1),
and far-infrared (FIR) spectra (33 to 400 cm−1) (85). By
obtaining data about chemical components and producing
authentic fingerprints, the high-energy FT-MIR and FT-NIR
spectra are proposed to be more fitting as compared to FT-FIR
spectra for inspecting the quality of food products (86). It is
proposed that the FT-MIR spectra reveal the information about
molecular fundamental vibrations and associated rotational
vibrational structures, whereas the FT-NIR spectra provide
more complex structural information because they can excite
overtone or harmonic vibration as the vibrational behavior
of bond combinations (87). However, low-moisture products,
such as cereals, possibly need dilution in any medium due to
comparatively high absorption coefficients presented by various
elements in the MIR region, which restricts the FT-IR industrial
applications (20). The FT-IR analysis of vegetables and fruits
can be classified into two groups requiring analysis: raw food
products and/or processed materials such as extracts, juices,
and purees (88). In addition, the use of FT-IR techniques

can be successfully implemented in the food industry for
the analysis of different substances in the evaluation of food
forensics and potential adulteration of different food products
(89). The use of FT-IR is also suitable for the detection of
ACN content in different agricultural samples. A study by
Miramont et al. (52) examined the concentrations of different
ACNs by FT-IR spectroscopy using PLS models during red
wine fermentation. The observed results have indicated that
the determination coefficient (R2) for both cross-validation and
calibration exceeds 0.8. Furthermore, the authors have also
proposed that FT-IR spectroscopy with PLS regression used in
this estimation of various ACNs parameters is a reliable and
adequate technique for providing winemakers with indications
for keeping the suitable conditions that can affect wine quality
and pigment concentration.

A study by Amanah et al. (51) evaluated the feasibility of
FT-IR and FT-NIR to estimate different types and total ACNs
content in soybean seeds. The spectra were obtained from 70
distinct types of soybean seeds and data were correlated with
the chemical components analyzed using HPLC-DAD. Several
pre-processing methods including data normalization, MSC,
first and second derivatives, and SNV were used to develop
an optimal PSL regression model to predict the ACNs content.
The prediction performance of the PLS regression models for
FT-IR spectra showed R2 = 0.86–0.88 and standard error of
prediction (SEP) (9.7–21%) for chemical components, which
were lower than FT-NIR delivering, R2 = 0.88–0.90 and SEP
(9.4–19.5%). The results of this study indicated the relatively
strong and reliable potential of FT-IR and FT-NIR techniques
to non-destructively predict ACNs contents in a single seed of
soybean (51).
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Fluorescence Spectroscopy
Fluorescence spectroscopy is a sensitive and rapid assessment
technique used to evaluate the various food components based
on a particular fluorescence generated from the fluorophore
materials. A fluorophore is an organic molecule that can absorb
light at a distinct wavelength and then release it at a higher
wavelength. Different fluorophores emit particular excitation and
emission peaks that can be ascribed to different compositional
and structural variations in a sample (90). In the food industry,
FS is commonly used to determine lipid oxidation, Maillard
products, vitamin A, and chlorophyll (91–93). The fundamental
concept of FS is presented in Figure 2. Moreover, the technique
is widely used to determine the structural changes in proteins
when interacting with different phytochemicals such as ACNs.
For example, a study by Dumitrascu et al. (94) investigated the
interaction of heated soy proteins with ACNs from cherry fruit
using FS. Furthermore, an in silico method was also used to
highlight the interaction between ACNs and soy proteins. The
docking outcomes further supported the FS findings showing
affinity to glycinin for cyanidin 3-glucoside and cyanidin 3-
rutinoside (94).

A study by Condurache et al. (95) investigated the ACNs
composition of eggplant peels extract for binding properties with
bovine peptides using the FS quenching approach and molecular
modeling method. The in-silico method was performed to
determine the single-molecule level interaction between various

peptides and main ACNs. The results showed fluctuation in
fluorescent attributes of lactoferrin hydrolysate with the addition
of ACNs.

Near-Infrared Spectroscopy
The NIRS is a rapid analytical technique that utilizes analytes
absorption mechanism (radiations) of the spectra in the range
between 700 and 2500 nm (96, 97). This analytical approach
(Figure 3) ascertains that the C-H, N-H, and O-H vibrational
motions correspond with the chemical composition of a sample
(98, 99). Furthermore, the NIR radiation can interrelate with
samples by interacting, reflectance, or transmittance modes.
The interacting mode describes the mechanism which estimates
the materials’ responses at a laterally different point on the
surface of a sample while the transmittance mode evaluates the
NIR spectra that proceed through the sample. In contrast, the
reflectance mode of NIR evaluates the bands that are reflected
from the material (100). The NIRS is reported to be suitable
for the assessment of ACNs in food and agricultural products.
A study by Stuppner et al. (55) used the NIRS method for the
determination of total ACNs in whole elderberry fruits. The
results were also compared with the pH-differential method
and ultra-high performance liquid chromatography-multiple
wavelength detection-ultra high resolution-quadrupole-time of
flight-mass spectrometry (UHPLC-MWD-UHR-Q-TOF-MS). In
this study, pre-processing methods included data smoothing

FIGURE 2 | Fluorescence spectroscopy principal acquisition mode; EEM, Excitation emission matrix; SFS, Synchronous fluorescence spectroscopy.
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(second derivatives), and SNV was used to develop an optimal
PLS regression model to predict the ACNs content. The findings
have indicated that relative standard deviation (RSDPLSR) and
root mean square error of calibration (RMSECV/RMSEC) for
NIRS-calibrated pH-differentiation method was 13.5% and 1.31
and for uHPLC 12.9% and 1.28, respectively. Furthermore,
the NIRS estimation appeared to be a cost-efficient and more
reliable technique for the measurement of ACNs in whole
elderberries. Likewise, a study by Inácio et al. (57) used NIR
reflectance spectroscopy to evaluate ACNs in palmitero-jucara
and intact acaí fruit. Different preprocessing methods (Savitzky-
Golay smoothing, first polynomial order, mean-centering, and
first and second derivatives), chemometric regression models
(PLS-iPLS, Full-PLS, MLR-SPA, PLS-SPA, and PLS-GA), variable
selection methods (SPA, GA, and iPLS), and system validation
were performed to develop an optimal PLS regression model to
predict the ACN content. The obtained results also indicated the
PLS regression model, as accuracy measured as RMSEC=13.8,
RMSEP=4.8, R2p= 0.90, R2c= 0.97, and RPD=3.08. These results
propose that NIRS and multivariate calibration are effectively
employed to determine ACN content in palmitero-juçara and
intact açaí fruit (57).

A study by Xiaowei et al. (58) estimated total ACNs using the
NIR method with a spectrum ranging from 4000 to 10,000 cm−1.
Genetic algorithm interval PLS and ant colony optimization
interval PLS were applied to develop calibration models for
ACNs. The ant colony optimization interval PLS model for
total ACNs (RMSECV=0.1,197 mg/g and R2 = 0.9,857) had
better results than genetic algorithm interval PLS, full-spectrum
PLS, and iPLS models. These outcomes propose that NIRS
can be employed for the non-destructive estimation of total
ACNs content.

The major disadvantage of NIR spectroscopy is the
interference with the samples that contain high water content.
These samples may generate a strong absorption band in a
definite spectral range which limits its potential commercial
application (101). Although this method may be inappropriate
for the measurements of volatile components in fruits, it is still
integrated with an “electronic nose” for the detection of volatile
components. Therefore, this type of approach depends on the
standardized size of the sample, homogeneity, temperature, and
presentation of the analyzed sample (102).

UV-Vis Spectroscopy
The ultraviolet-visible (UV-Vis) spectroscopy is fast absorption
spectroscopy that measures the interaction of light with a
sample in the UV and visible spectra between 200 and 780 nm
(103, 104). The light can interact with samples by absorption,
refraction, diffraction, reflection, or scattering which depends
on the functional groups in the materials to be analyzed (105).
This technique can be used for the identification and relatively
accurate quantification of different constituents in food samples
(106, 107). This method is also suitable for the detection of
coloring compounds such as ACNs profiling. A study by Nistor
et al. (108) extracted ACNs from chokeberries and black carrots
using different solvents and characterized them with UV-Vis
coupled to HPLC integrated with MS. From chokeberries, five

bioactive monoglycosylated ACNs were determined, while four
acylated and four diglycosylated compounds were identified from
black carrot extracts. In a study by He et al. (80), various
ACNs from Vitis amurensis Rupr (a graph variety) were extracted
and identified by UV-vis spectroscopy, FTIR spectroscopy, MS,
and NMR.

Hyperspectral Imaging
Hyperspectral imaging (HIS) is a fast analytical technique that
integrates optical spectroscopy and digital imaging principles
with spectral and spatial information simultaneously from a
material in a 3D dataset (109, 110). Although HSI is the
extension of multispectral imaging (MSI), it is relatively slower
than multispectral imaging as it includes extended scanning
time for online analysis and evaluation (111). The images
from HSI can be obtained by area, line, and point scanning
methods. In area scanning, simultaneously, a 2D single-band
grayscale image with full information is obtained. In the point
scanning method, spectral information is scanned, while the
inline scanning method incorporates the slit of an area with
complete spectral information and is an extension of the point
scanning method (112). This imaging method has also been
found to be suitable for ACN detection in various samples. A
study by Yang et al. (63) proposed a quantification approach
for the estimation of lychee pericarp ACNs using HSI. Sense-
Reason-Act (SRA) and successive projection algorithms (SPA)
were used to overcome data dimensionality, while for a 3-D
lychee image, an HSI system in the range of 350 to 1,050 nm
was employed. To enhance the prediction accuracy of stepwise
regression-radial basis function-support vector regression (SWR-
RBF-SVR), successive projection algorithm-radial basis function-
support vector regression (SPA-RBF-SVR) models were fused
into a single model by the radial basis function neural network
(RBF-NN) algorithm. The fusedmodel exhibited lower RMSEs of
0.610% and 0.567% and higher coefficients of determination (R2)
of 0.872 and 0.891 for the testing and training sets, respectively
(63). This research supported the notion that the HSI method
is proficient in visualizing and predicting the ACNs contents
in lychees.

The use of HSI for ACNs detection in purple-fleshed sweet
potatoes was evaluated in a study by Liu et al. (35). The
PLSR and LS-SVM were used to build the calibration models
based on raw spectrum and spectrum preprocessed by Savitzky–
Golay filter, moving average, SNV, and MSC methods. Three
different algorithms such as LS-SVM, PLSR, and multiple linear
regression (MLR) were used to establish models based on 10
optimal wavelengths adopted by the regression coefficients (RC)
method. The obtained results proposed that RC-MLR yielded
better results with R2P and R2C of 0.866 and 0.868, respectively.

A study by Zhang et al. (65) measured total ACN content
in black goji berries by near-infrared HSI technique. The CNN
model was built to estimate the chemical compositions of black
goji berries. The wavelength selection methods (SPA and CARS),
modeling methods (LS-SVM and PLS), and extraction methods
(wavelet transform and PCA) were studied as conventional
methods for comparison. For total ACNs, the performance of
RPDp and RPDv of all models were over 2.000 and R2p, R2v, and
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FIGURE 3 | A fundamental concept of near-infrared spectroscopy.

R2c of all models were over 0.850. In this study, deep learning and
feature extraction methods provided comparable results with the
conventional data analysis methods (65).

Furthermore, a study by Chen et al. (66) quantified ACNs
values in wine grapes during the ripening stages using the HSI.
The spectral images were recorded with a range of 900 to
1,700 nm and a quantitative model for ACNs determination was
developed using the SVR or PLSR. The SVRmodel showed better
results than the PLSR model, as it yielded RMSEP of 0.0,046, and
a coefficient of validation [P-R (2)] of 0.9,414 much higher than
the PLSR model, which yielded RMSEP of 0.0,129 and [P-R (2)]
of 0.8,407.

Raman Spectroscopy
Raman spectroscopy (RS) is a label-free vibrational spectroscopic
method that provides information about the chemical bond,
molecular structure, and molecular composition of the analyte.
This type of analysis was widely used in pharmaceutical and
medical sciences, detection of bioactive compounds, molecular
composition, and several other diagnostic purposes (113). The
RS system is composed of a narrow-band laser, data controlling
software, data processor, and electrical and optical components.
The laser used in this spectroscopy causes the fluorescence
of organic compounds, influencing the signal-to-noise ratio
and reducing the sensitivity of the technique. Usually, the
electromagnetic radiations emitted are collected with the lens and
passed through the collimator. The molecules from the ground
move to an excited state and then into a vibrational state usually
referred to as anti-stoke Raman scatter. A change in the polarity
of molecules is required for Raman scattering (19).

Relatively recently, a study by McIntyre et al. (59) used
different spectroscopic techniques (Raman, mid-infrared, and
near-infrared) in combination to assess the range of bioactive
compounds (including ACNs) in different plum cultivars. The
obtained spectra were first pre-processed through SVN, second-
order polynomial, Savitzkyp–Golay, and 5-point window to
remove differences associated with spectral intensity. Then, PLSR
was used to compare the data obtained from spectroscopic
techniques and conventional methods. PLSR of Raman data
indicated the best results for ACNs with a test set RMSEP of 12
mg/100 g than the one obtained with MIR and NIR.

Furthermore, a study by Jeyaram and Geethakrishnan (60)
identified the functional group of ACNs using FT-Raman FT-IR.
Results showed that ACNs contents present a negative non-linear
index of refraction (n2) and nonlinear absorption coefficient (β),
respectively, due to its saturable and self-defocusing absorption
nature. The β and n2 values of ACNs were measured to be−2.19
× 10−3 cm/W and−2.07× 10−7 cm2/W, respectively.

Surface-Enhanced Raman Spectroscopy
To provide additional strengths to the Raman scattering
phenomenon in normal Raman spectroscopy, different
nanoparticles were used to boost the Raman peaks and the
process is named SERS (100). Several nano substrates are
commonly used (gold, silver, and copper) in both food and
non-food applications (114). The main reasoning for the
use of nanoparticles is that placement of this material near
nanoparticles, chemical, and physical mechanisms contribute
(simultaneously) to enhance the Raman signals from up
to 1012 (115). The chemical process occurs due to charge
transfer between nanomaterial and sample, while amplification
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FIGURE 4 | Principal quality components of food and future advancement in non-destructive techniques with time.

of signals due to optical properties of nanoparticles is a
physical mechanism (116). Furthermore, the sensitivity of
SERS relies on the nano substrates proposed, and recently
hundreds of nanoparticles have been proposed for different
food safety investigations and others (115, 117). However,
nanoparticles with uniform and stable hot spot region
(small area with higher enhancement of signals) remains
a challenge. Numerous functionalized nanoparticles have
been proposed recently with better stability and sensitivity
such as thioglycolic acid-activated nano-substrates (118)
and octane thiol-fabricated nanoparticles (119) among
others. The functionalized nanoparticles provided more
adsorption sites for target samples, which enhanced the
target results.

A study by Zaffino et al. (120) proposed the use of
different pH ranges (3–10) for the identification of six
different anthocyanidins using silver as an SERS substrate.
The study proposed that the interaction taking place through
the hydroxyl group is due to the aromatic system and
quinoidal bases (120). Similarly, silver-based SERS was also
used for the determination of anthocyanin from textile dyed
and plant sources (purple corn, sumac, elderberry, hollyhock,
and bilberry). Four characteristic peaks were observed at 1,330,
1,530, 1,590, and 1,640 cm−1 assigned to ring stretching
vibrational modes, while a strong peak at ∼1,240 was
ascribed to the C-OH bond to be from protentional bioactive
compounds (79).

FUTURE PERSPECTIVES

Recent research established that rapid spectroscopic and
imaging methods have the potential to replace conventional
chromatographic and other troublesome methods for detection
applications in food samples. However, future work can be
focused on minimizing the disadvantages existing in these
methods. For example, the synthesis of nanoparticles with more
hotspot regions, stability, and cost-effectiveness can be extended
to the commercial application of the SERS method. Likewise,
the introduction of innovative algorithms to extract target peaks
from the redundant data (non-target peaks) in the HSI approach.
Similarly, efforts can be also diverted toward less involvement
of chemicals used as a reference for calibration of the NIRS
equipment in which 20 to 50 chemicals of known values are
used. In addition, the integration of two or more methods
can also improve the reliability of work. Moreover, coupling
spectroscopic and imaging tools with non-thermal methods is
also an available option in future studies. All imaging and
spectroscopic techniques can have unnecessary information and
background elements in spectral data which can influence the
result of the expected study. Therefore, a suitable pre-processing
method and proper model selection will generate more reliable
findings. Moreover, the building of single-step fast algorithms is
essential to provide a suitable solution for food safety and quality
monitoring. The future researcher should be orientated toward
the careful planning and execution of non-destructive techniques
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for combining the non-invasive nature for the forecast of internal
and external food quality parameters (Figure 4). Moreover,
the use and generation of portable, easy to handle, low-
cost, easy-to-use techniques, and the use of simple and novel
chemometric algorithms for data interpretation are essential
(Figure 4).

CONCLUSION

With the increasing demand for food production and
supply to meet the needs of the global population growth,
there is an increasing demand for rapid assessments
of food quality and safety. Therefore, non-invasive
quality assessment technologies relating to the analysis of
individual phytochemicals are rapidly developing. In the
present review, we have summarized the latest literature
relating to the ACNs screening through non-destructive
spectroscopic and imaging techniques. The importance
of rapid screening methods, their principles, application
outlines, and the benefits and some pitfalls of these approaches
are also reviewed. Furthermore, the use of chemometrics
base AI for possible practical utilization in food and
agricultural food products analysis represents one of the

potentially greatest advancements in the applications of
non-destructive techniques.
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