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The origin of lactation and the composition, structures and functions of milk’s biopolymers

highlight the Darwinian pressure on lactation as a complete, nourishing and protective

diet. Lactation, under the driving pressure to be a sustainable bioreactor, was under

selection pressure of its biopolymers with diverse functions acting from the mammary

gland through the digestive system of the infant. For example, milk is extensively

glycosylated and the glycan structures and their functions are now emerging. Milk

contains free oligosaccharides; complex polymers of sugars whose stereospecific

linkages are not matched by glycosidic enzymes within the mammalian infant gut. These

glycan polymers reach the lower intestine undigested. In this microbe-rich environment,

bacteria compete to release and ferment the sugars via different hydrolytic strategies.

One specific type of bacteria, Bifidobacterium longum subsp. infantis, (B. infantis) is

uniquely equipped with a repertoire of genes encoding enzymes capable of taking up,

hydrolyzing and metabolizing the complex glycans of human milk. This combination of a

distinct food supply and unique genetic capability shapes the composition and metabolic

products of the entire microbial community within the lower intestine of breast fed infants.

The intestinal microbiome dominated by B. infantis, shields the infant from the growth of

gram negative enteropathogens and their endotoxins as a clear health benefit. The world

is facing unprecedented challenges to produce a food supply that is both nourishing, safe

and sustainable. Scientists need to guide the future of agriculture and food in response to

these 21st century challenges. Lactation provides an inspiring model of what that future

research strategy could be.
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INTRODUCTION

The world is facing an urgent challenge: transform the existing agriculture and food enterprise
into a sustainable, nourishing and health-promoting system. A daunting problem is the lack of
knowledge of what we should eat. While necessary, obtaining all of the essential nutrients is not
sufficient to health. The tools are emerging to measure diet as a complex ensemble of biomolecules
at specific concentrations (1, 2). What is needed, in addition to compositional data, is to determine
which and how much of those hundreds of thousands of components should each individual
human eat, according to their genotypic variations, phenotypic diversity, life stage and lifestyle?
Databases of food composition (Periodic Table of Foods), annotated for bioactivities are emerging
as the knowledge resources needed to take advantage of computational biology (3).
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FIGURE 1 | Strategic model for research and development of lactation and its

biological product milk.

As the life sciences advance with powerful new tools of biology
and genomics, of big data and artificial intelligence, we are
faced with many challenges, from demographics to emerging
pathogens. Ideally, a goal of health is prevention. The aim
is to understand biology: how to intervene pro-actively, build
individual defenses and protections that prevent the development
of disease. Prevention is challenging. Interventions must act
on healthy individuals. There is not the simplifying focus of
disease diagnostics, there is no disease to diagnose. What targets
improve performance, while protecting and preventing diseases
in healthy individuals? The cost-benefit ratio is different. If one is
suffering from a disease, then the costs of reversing that disease
are tangible, quantifiable and specific. The risk of side effects
of disease therapeutics can be evaluated within a context. What
costs are justified to prevent a disease that one is never going
to get? Even more profoundly, an intervention that lowers the
risk of one disease but increases the risk of another is a hollow
prevention. What scientific strategy would allow investigators to
understand how to improve the health of healthy individuals, to
act on preventing all diseases and to do so without putting any
individuals at risk?

The biological history of mammalian lactation is a process of
evolutionary selection of the output of that tissue: milk, sculpted
by infant survival and long term genetic success. Mammalian
mothers literally dissolve themselves to make a complete and
comprehensive diet for their infants. From the earliest pre-
mammals, secreting fluids from a hyperactive sweat gland (4),
generation after generation, selective pressure rewarded mothers
whose lactation secretions gave their offspring a competitive
advantage via diet, milk. The combination of cost to the mother
and advantage to the infant has yielded the rosetta stone for
scientific discovery of nourishment, and of the entire principle

of diet. Milk nourishes healthy infants, guides their development,
protects them from biological and chemical threats and equips
them for the complex environments that they will face, life long.
This article describes the implementation of a research strategy
based around lactation as a scientific focus.

A basic strategy to study milk is summarized in Figure 1.
The goals are to build a map, molecule by molecule, target
by target, of how milk achieves its benefits to health. A range
of disciplines must work in open collaboration of parallel
discovery and innovation. One aim is to identify the components
of milk, their structures, abundances and variation within
and across mammalian lactation. Another aim is to develop
methodologies to isolate these components in purity to enable
detailed mechanistic investigations. Another aim is to use a
range of biological models in the presence and absence of those
isolated components. Once mechanisms of action are discovered,
they must move into clinical tests of efficacy. This aim requires
insights into the utility of discovered mechanisms: what is the
breadth of efficacy across lifespan and lifestage; what diagnostics
identify need among the population andwhat diagnostics provide
absolute markers of efficacy. The final imperative is to bring the
discoveries to practice as innovations for human benefits.

TOOLSETS

Lactation Genomics
The tools to understand lactation are from genomics to
physiology. Whole genome sequencing provides the basic
knowledge set. The challenge is to identify and annotate genes
associated with lactation. The goals for lactation genomics were
propelled by a diverse group of scientists participating with the
International Milk Genomics Consortium (5). The diversity of
lactation across mammalia is an important asset, so the goal of
the IMGC was to assemble a variety of entire genomes from
marsupials to humans (6). Comparing these genomes formed the
basis for interpreting the evolution of mammalian lactation (7),
the expression of genes during lactation (8), the sequences (9) and
digestibility of proteins (10), the sequences of peptides (11) and
their formation (12), the biosynthetic pathways of glycans (13),
the variation among women due to genetic diversity (14), timing
of lactation (15), diet (16) and the biosynthesis of lipids (17).

Lactation Analytics
Milk is a challenge for analytical chemistry. From small molecules
to entire cells, milk is a cornucopia of biomolecules varying
in size and concentration by orders of magnitude. All the
essential nutrients are in milk, each present within a matrix
that enhances their bioavailability and controls their chemical
reactivity. These matrices that enhance bioavailability impede
the characterization of the molecules analytically. Every class
of biopolymer is present in milk, all the substrates and
intermediates in their synthesis. Milk oligosaccharides were
typical. Entire methodological platforms had to be developed
for this one biopolymer class alone (18). Oligosaccharide
method development required innovative approaches to initial
separation, liquid chromatography on novel stationary matrices,
mass spectrometry techniques including highly sensitive time of
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flight and triple quadropole mass spectrometry. The construction
of structurally annotated databases of mass spectra was necessary
to automate high throughput (19).

Lactation Bioseparations
The scientific investigations to discover biological actions of milk
require that the components be available as purified research
materials in quantities and purities maintained in their native
conformations for the multiple assays by which investigators
address their hypotheses. Also, human milk is a rare and
valuable material and simply accessing milk as research material
is and should be a process of regulatory, safety and ethical
formalities. Combinations of traditional separation technologies
and bioguided separations were needed (20). Strategies such
as physical separation of milk components by size achieved
enrichment in oligosaccharides but retained contamination by
peptides and lactose (21). Peptides are an important biological
resource in milk but vary widely in abundances and structures
depending on the stages of lactation, treatment of milk etc. (22).

TARGETS OF BIOLOGICAL FUNCTION

The evolutionary history of mammalian lactation is remarkable
across all of biology. Once begun, the complex interplay between
the composition of epithelial secretions and the success of
offspring set in motion a Darwinian engine of diet for protection
and nourishment of the mother-infant dyad (23). The challenge
of annotating lactation is in identifying their mechanisms of
function. The challenge of milk research is to understand their
role within infants (24). Yet, what are possible actions that would
lead to a selective advantage in the mother-infant dyad? Complex
oligosaccharides provide an example.

Milk Oligosaccharides and the Perplexing
Lack of Digestion
Glycans are abundant across the tree of life and the most
abundant biopolymer in the biosphere (25). Despite their
importance they are not sequence encoded but products of
enzymatic metabolism. The enzyme specificity to produce glycan
structures limits the number of biological structures that are
found relative to the enormous number of structures that are
mathematically possible. This difference between biologically
feasible andmathematically possible has led to the concept of bio-
defined analytics (C. Lebrilla, 2000, unpublished). Combining
biology with chemical analysis has guided analytical strategies
to catalog the glycan structures present in milk and a variety of
organisms (26). Structures of glycans include monosaccharide
composition, branching, the stereospecific linkages of those
sugars all leading to multiple isomers even for a single net
atomic mass. Glycan structures are both free and bonded to
proteins, peptides or lipids again by enzymatic synthesis. Every
glycan, in each sample, must be explicitly analyzed to be
identified (14).

The oligosaccharides of human milk have been attractive to
scientists because they are free, abundant (1-2% w/v) and yet
indigestible by the neonate. They are perplexing to annotate:
why would mothers “dissolve themselves” to produce these

biopolymers in such abundance? The scientific challenges posed
by this apparent paradox propelled laboratories to pursue the
analytical platforms to identify and annotate them (27).

The Bacterial Support Functions of Human
Milk Glycans
The structures of milk oligosaccharides have been selected, in
part, for an unusual biological value: NOT to be consumed
by infants. Research on oligosaccharides in human milk has
established as one function, that they support the growth of
specific bacteria notably strains of the genus Bifidobacterium
(28). While the mechanisms and extent of microbial diversity
in breastfed infants are still being actively documented, the
basic observation that bifidobacterial species dominate the
microbiota of breastfed infants around the world compared
with formula-fed infants has been well-established (29). How
an intestinal microbial ecosystem maintains a dominant and
consistent bacterial population in the face of repeated and
diverse inoculations with environmental microorganisms has
been largely speculative until recently. The idea launched by
Gyorgi that oligosaccharides were a Bifidus factor (30) was
unfortunately insufficiently specific. Oligosaccharides do not
stimulate the growth of the entire genus of Bifidobacterium in
general. Bifidobacterium represent a broad genera of bacteria
whose members occupy a wide range of ecological niches.
Though first identified microscopicslly by Tissier in the 19th
century in breast fed infants only recently has research recognized
the unusual specificity of the strains of Bifidobacterium that
dominate the intestinal microbiome of breast fed infants (31–33).
Intensive studies revealed the remarkable interaction between
the stereospecific linkages of milk oligosaccharides and the
genetic repertoire of glycosidases and solute binding proteins that
provide these bacteria a distinct competitive growth advantage
within the intestine of the breast fed infant (34).

Bifidobacteria and the Colonization of the
Infant Microbiome
The colonization of the infant by microorganisms begins at
birth (35). The consensus of microbiome research argues that
the infant gut is ostensibly sterile at birth and those organisms
that may have arrived into the amniotic compartment prior
to delivery are not competitive once the “flood” of exogenous
microorganisms (bacteria, yeast, fungi, viruses) that accompany
a normal human birth. These initial inocula are the first of
a continuous wave of inoculations of the infant from the
environment (36). The mode of delivery, vaginal or by C-section
has been noted to alter the gut microbiota of term infants in early
life (37), however, these observations are mainly of infants within
a restricted microbial environment, the modern hospital delivery
room. Infants delivered vaginally acquire bacterial communities
resembling those of maternal vagina and fecal microbiomes,
while C section babies initially reflect a microbiota resembling
that of maternal skin. Infants delivered vaginally exhibited
higher abundances of Bacteroidaceae and lower abundances
of Enterococcaceae, Pasteurellaceae, Carnobacteriaceae, and
Gemellaceae compared to C section delivered infants (38).
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Knowing that each infant is inoculated with a diverse array of
organisms, a goal was to understand the role of that environment
and milk components simultaneously in guiding the distinct
microbiological community in the breast fed infant. Which
microorganisms utilize and grow on specific components of milk
(39)? Many components from milk, in isolation, can support
microbial growth. Thus, enabling technologies were needed:
isolating potential growth substrates in pure form from milk
and media for bacterial culture assays that include all of the
nutrient requirements for growth, but lack a carbon fuel source.
Into these media can then be added the components of milk
that are expected to arrive at different sections of the intestine
(39). The complex oligosaccharides from milk were isolated
to assess bacterial growth on those undigestible components
of milk that arrive at the lower intestine. Surprisingly, initial
growth experiments did not observe significant growth of
bacteria when human milk oligosaccharides were the sole source
of carbon in the otherwise supportive medium (40). Among
gut-related bacteria tested (including Lactobacillus, Clostridium,
Eubacterium, E. coli, Veillonella, Enterococcus isolates) only
Bifidobacterium and Bacteriodes species grew to high cell
densities yet, growth was strain specific (41). Robust growth on
HMO was found just in a select group of B. bifidum and B.
longum subsp. infantis (B. infantis) strains. In these same growth
conditions even isolates of B. longum subsp. longum and B.
breve showed poor growth and strains of B. adolescentis, and B.
animales were unable to grow on HMO (41).

Any ecosystem is driven by accessible food. The lower
intestine of the breast fed infant is supplied by those components
of milk that are not digested nor absorbed by the infant in
the upper intestine. Thus, those bacteria capable of accessing
oligosaccharides are provided a competitive advantage by the
infant’s mother’s milk. Nonetheless, only the combination
of microorganisms growing on the oligosaccharides coded
by lactation genes from each infant’s mother that confer a
selective advantage to infant success would be rewarded through
evolution. The outcomes of that Darwinian engine, pathogen
protection to immune education are continuing to emerge as
novel mechanisms of Bifidobacterium dominated microbiome
actions (42).

One defining set of traits for colonic bacteria is their
ability to degrade biopolymers and access the monomeric
sugars, amino acids etc., in that environment. How they do
that is important. Most intestinal bacteria secrete extracellular
glycosidase enzymes into the luminal environment and these
enzymes catalyze the hydrolysis of complex glycans and liberate
free sugars extracellularly. Free sugars are taken up by bacteria
and metabolized. Select strains of bifidobacteria use extracellular
lacto-N-biosidase activity to break down oligosaccharides (43).
Some bacterial strains, notably B. infantis, pursue a different
strategy of transporting oligomeric structures into the interior of
the cell and breakdown reactions occur internally. This internal
feeding strategy confers an advantage to the host by blocking the
liberation of simple sugars into the lumen that other organisms
can utilize. Cross feeding liberated sugars to other organisms
is a known mechanism to promote the growth of undesirable,
opportunistic pathogens (44).

The discovery that growth of bacteria onmilk oligosaccharides
was a strain specific, gene driven process and that B. infantis
ATCC15697 was uniquely capable phenotypically, prompted
the goal to sequence its genome and begin the process of
annotating its unique capabilities. One of the joys of being a
scientist is those occasions when you are witness to the sheer
elegance of biology. The genetic repertoire of B. infantis, was
one of those rare moments in which scientific discovery revealed
that elegance (31). This specific strain provides the field of
microbiome research with insights into the traits associated with
capabilities to thrive within the anaerobic intestine including
genes providing the strain its phenotype (31). Breast fed
infants that are exposed to such HMO consuming strains are
colonized by them and in turn achieve direct and indirect
benefits. Those benefits even include the protection from the
horizontal transfer of virulence and antibiotic resistance traits
(45). These benefits are consistent with the concept that the
oligosaccharides produced by the mammary gland and the
emergence of oligosaccharide consumption gene clusters in
specific strains of bifidobacterial strains are an example of
symbiotic co-evolution.

The principle of nourishment as the center of cross-
kingdom partnerships is not unique to lactation. Glycan
based nourishment appears to be at the center of most cross-
kingdom symbioses from plants feeding pollinating insects
with sugar rich nectar (46) to roots feeding nitrogen fixing
bacteria (47). This same strategy emerging from evolution
of milk feeding a metabolically distinct and mutually
beneficial bacterial population (mutualism) in infants is
another example. The challenge is what do we learn by
understanding it?

Evidence from epidemiology, mechanistic insights and
increasingly prospective interventions shows that the mutualism
between human breast milk and the B. infantis commensal is
important, yet fragile. The importance was first suggested by
premature infants. Infants born premature, by Cesarian section,
are placed in an incubator. At that point the immediate hospital
environment serves as the inoculating reservoir of seeding
microorganisms. In such an environment, the explicit steps
taken to prevent cross-patient pathogen transfer, (scrupulous
hygiene, sanitation, etc.) have the unintended consequence of
preventing the transfer of commensal organisms as well. The
first indications of the outcomes of that environment emerged
in studies comparing the explicit inoculation of candidate
organisms. Studies used in-vivo administration of B. infantis to
premature infants fed either formula or breast milk. Breast milk-
fed infants, when supplemented with B. infantis saw increases in
fecal bifidobacteria and decreases in γ -Proteobacteria compared
with a formula-fed group (48).

Following on those initial studies, B. infantis, used clinically,
has already been demonstrated to significantly impact the
development of inflammation (49), autoimmunity (50) and
necrotizing enterocolitis and mortality of premature infants (51).
Thus, understanding how mothers are shaping the protective
milk-oriented microbiota (MOM) of their infants through breast
milk is an urgent model for guiding microbial communities at
all ages.
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CONCLUSIONS

The deconstruction of human milk through a highly interactive
and multi-disciplinary program of research has illuminated the
profound interactions between mammals and their resident
bacteria. The traditional view of bacteria on and in humans is
that they are potentially pathogenic and deleterious. While some
bacteria are unquestionably deleterious to animal health, this
simple concept that all bacteria are deleterious is incompatible
with the realization that human breast milk contains abundant
undigestible matter that explicitly feeds a specific strain of
B. infantis. Research must now pursue studies that illuminate
all the reasons why selective pressures through evolution have
favored this remarkable partnership.
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