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Undernutrition remains a major issue in global health. Low protein-

energy consumption, results in stunting, wasting and/or underweight, three

deleterious forms of malnutrition that affect roughly 200 million children

under the age of five years. Undernutrition compromises the immune

system with the generation of various degrees of immunodeficiency,

which in turn, renders undernourished individuals more sensitive to

acute infections. The severity of various infectious diseases including

visceral leishmaniasis (VL), influenza, and tuberculosis is associated

with undernutrition. Immunosuppression resulting from protein-energy

undernutrition severely impacts primary and secondary lymphoid organs

involved in the response to related pathogens. The thymus—a primary

lymphoid organ responsible for the generation of T lymphocytes—is

particularly compromised by both undernutrition and infectious diseases.

In this respect, we will discuss herein various intrathymic cellular and

molecular interactions seen in undernutrition alone or in combination with

acute infections. Many examples illustrated in studies on humans and

experimental animals clearly revealed that protein-related undernutrition

causes thymic atrophy, with cortical thymocyte depletion. Moreover, the

non-lymphoid microenvironmental compartment of the organ undergoes

important changes in thymic epithelial cells, including their secretory products

such as hormones and extracellular matrix proteins. Of note, deficiencies in

vitamins and trace elements also induce thymic atrophy. Interestingly, among

the molecular interactions involved in the control of undernutrition-induced

thymic atrophy is a hormonal imbalance with a rise in glucocorticoids and a

decrease in leptin serum levels. Undernutrition also yields a negative impact of

acute infections upon the thymus, frequently with the intrathymic detection

of pathogens or their antigens. For instance, undernourished mice infected

with Leishmania infantum (that causes VL) undergo drastic thymic atrophy,
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with significant reduction in thymocyte numbers, and decreased levels of

intrathymic chemokines and cytokines, indicating that both lymphoid and

microenvironmental compartments of the organ are affected. Lastly, recent

data revealed that some probiotic bacteria or probiotic fermented milks

improve the thymus status in a model of malnutrition, thus raising a new

field for investigation, namely the thymus-gut connection, indicating that

probiotics can be envisioned as a further adjuvant therapy in the control of

thymic changes in undernutrition accompanied or not by infection.

KEYWORDS

undernutrition, thymus, infectious diseases, visceral leishmaniasis, Chagas disease,
probiotics

Introduction

Despite one of the global health priorities listed in the
Sustainable Development Goals (SDGs) by the United Nations
is combating hunger and ensuring sustainable food security
and proper nutrition (1), malnutrition remains a serious public
health problem worldwide. The World Health Organization
(WHO) defines malnutrition as the deficiency or excess in the
consumption of specific energy and/or nutrients in relation
to the needs of an individual, resulting in corresponding
pathologies: undernutrition or obesity (2). The lack of macro
and micronutrients, and in particular the low consumption
of proteins and calories results in four deleterious forms of
undernutrition: (i) wasting, (ii) stunting, (iii) underweight, and
(iv) micronutrient deficiencies. (i) Wasting is characterized as
low weight-for-height, and in children it may be lethal if not
appropriately treated; (ii) stunting occurs when the individual
presents low height for the respective age, usually due to chronic
undernutrition; (iii) underweight is defined as low weight-for-
age, and underweighted children may be stunted, wasted or
both. Lastly, (iv) micronutrient undernutrition refers to lack of
vitamins and minerals that are essential for body functions (2).
It is estimated that stunt and wasting affect virtually 200 million
children under 5 years of age around the world, whereas in the
adult population this number can reach 462 million. On the
other hand, around 42 million children globally are overweight
or obese (2).

Malnutrition thus constitutes a serious global public health
issue, particularly in developing countries. According to a
recent report (3) of the Food and Agriculture Organization
(FAO) of the United Nations, 720–811 million people in the
world suffered from hunger in 2020, increasing by 161 million
the number of people who experienced hunger in 2019. The
COVID-19 pandemic contributed substantially to this increase.
The global assessment of food insecurity and malnutrition
for 2020 shows that not only world hunger has increased,
but also the prevalence of undernutrition rose by 4% in one
single year (3).

Due to the pandemic, the prevalence of different forms of
malnutrition has increased worldwide and it is estimated that
these effects will be lasting, as already seen in 2021. In fact, the

COVID-19 pandemic has widened and worsened inequalities
between countries, affecting the livelihoods of an estimated 1.6
billion workers in the formal economy (1). Around 12% of the
world’s population suffered from severe food insecurity in 2020.
In Latin America and Caribbean region in 2020, 14 million more
people were affected by hunger as compared with 2019 (3). Data
from the National Survey on Food Insecurity in the Context of
the COVID-19 Pandemic in Brazil showed that the country went
back 15 years in five, and hunger returned to be a structural
problem (4), as depicted in Figure 1.

The decrease in proper food intake results in a series of
physiological changes, including: (i) growth restriction; (ii)
reduction of fat, muscle, and visceral mass; as well as (iii)
reduction in basal metabolic rate and energy expenditure (5).
These alterations also comprise biochemical parameters with
reduced levels of triiodothyroxine (T3), insulin, insulin-like
growth factor-1 (IGF-1) and leptin, among others; together with
increased levels of growth hormone (GH) and cortisol (5, 6).
Overall, undernutrition induces changes in metabolic, hormonal
and glucoregulatory mechanisms (5, 6). Also, undernutrition
modulates the intestinal microbiota and dysbiotic events can
be observed as a cause and/or consequence of undernutrition,
accompanied by local and systemic chronic inflammation (7).
Altered nutrient absorption and chronic inflammation seems to
be related to the fact that malnourished individuals are more
susceptible to various diseases (7–9).

The dynamic relationship between infection, nutrition
and immunity is long recognized. Being a systemic disease,
undernutrition also affects primary and secondary lymphoid
organs, harming the immune system of malnourished
individuals (10). Since the immune response depends on
cell replication and the synthesis of active protein compounds,
undernutrition clearly has a negative impact on immunity
(11). Actually, immunosuppression caused by protein-energy
undernutrition increases susceptibility to acute infections
and leads to the development of more severe forms of
disease, whether they are caused by parasites, protozoa,
bacteria or viruses.

In the present review we aimed at focusing the effects of
undernutrition and infection upon one specific compartment
of the immune system, namely the thymus, particularly
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FIGURE 1

Evolution of hunger in Brazil. The figure shows the percentage of the population affected by severe food insecurity from 2004 to 2020, seen in
different macro-regions of the country. Figure reproduced (with permission) from the Report of the National Survey of Food Insecurity in the
Context the COVID-19 Pandemic in Brazil published by the Brazilian Research Network of Food and Nutrition Sovereignty and Security (applied
herein with permission from Rede PENSSAN, http://olheparaafome.com.br/VIGISAN_Inseguranca_alimentar.pdf).

the changes in the organ involving cellular and molecular
interactions. Yet, before going into this point, it seems
worthwhile to provide a general, yet concise background of the
thymus and the generation of T-lymphocytes.

The thymic microenvironment and
intrathymic T-cell differentiation

The thymus is a primary organ in the immune response,
where the maturation and differentiation of T cells take place
(12). The correct selection and migration of T cells occurs
through a series of proliferation and differentiation stages
dependent upon receiving instructions from the specialized
thymus non-lymphoid microenvironment (13). In mammals,
the organ is histologically divided lobules, each one comprising
two main regions, namely cortex and medulla, with the cortex
being denser in lymphocytes than the medulla. Developing
thymocytes in different stages of maturation are specifically
located in those regions. For example, immature CD4-
CD8- double-negative (DN) and CD4+ CD8+ double-positive
(DP) thymocytes are localized in the cortical region of the
thymic lobules, whereas more mature CD4+ CD8- or CD4-
CD8+ single-positive (SP) thymocytes are placed in the
medulla (13). Such specific distribution indicates that thymocyte
maturation occurs in parallel with organized and coordinated
cell migration (14). In fact, disruption or abnormal cell

migration impacts thymocyte development, as seen for example
in Chagas disease (15).

Intrathymic thymocyte differentiation and migration, from
the entrance of precursor cells to the exit of mature
SP cells, is dependent on interactions controlled by the
thymic tridimensional network. This is composed by cellular
components such as thymic epithelial cells (TEC), thymic
dendritic cells (TDC), macrophages and fibroblasts, as well as
non-soluble and soluble molecules such as the extracellular
matrix (ECM) proteins fibronectin, laminin, type I and IV
collagens; cytokines as interleukin (IL)-2, IL-6, IL-7, and IL-
22; chemokines as CXCL12, CCL4, and CCL7; hormones as
thymosin, thymopoietin, and thymulin; and different typical
soluble components of nervous tissues, such as neuropeptides
and neurotransmitters (12, 15, 16).

During thymocyte development, cells pass through the
positive selection and negative selection events; both being
derived from the molecular interactions involving expression
and survival signaling by the recognition of the T-cell receptor
(TCR), upon interacting with microenvironmental cells,
particularly dendritic cells, and epithelial cells. Positive
selection can be defined as the process through which
TCR-expressing CD4+ CD8+ developing thymocytes are
rescued from programmed cell death upon interaction
with self-antigens presented to the TCR by molecules of
the major histocompatibility complex (MHC) by thymic
microenvironmental cells. Positively selected thymocytes
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still in the cortex of the thymic lobules then move into the
boundary of the cortex and medulla of the thymus for the
presentation of self-antigens by the medullary thymic epithelial
cells for the second time. In the medulla, thymocytes pass
through the negative selection. In this case, differentiating cells
undergo apoptosis if their TCR interact with high avidity with
self-antigens coupled to the MHC class I or class II molecules
expressed by microenvironmental cells in the organ (12, 13).
Different peripheral tissue antigens (PTAs)—or self-antigens—
coupled to MHC molecules are expressed on the membrane of
medullary thymic epithelial cells (mTEC). Such expression is
regulated by the autoimmune regulator (AIRE) transcription
factor and avoids the development of self-antigen reactive cells,
therefore preventing autoimmunity (17, 18). Alternatively,
some clones that recognize self-antigens with high avidity
become regulatory CD4+ CD25+ Foxp3+ T cells (Treg),
through a mechanism dependent on the TCR signaling avidity
and duration (19, 20).

Positioning of developing thymocytes along with
differentiation depend on multiple interactions involving cell-
cell, cell-matrix as well as chemokine-mediated interactions.
For example, CXCL12 is secreted by TEC, and preferentially
attracts immature CD4-CD8- and CD4+ CD8+ cells, by

ligation with the receptor CXCR4. The chemokine CCL25
also attracts immature thymocytes, although all thymocyte
subsets are responsive, which is in keeping with the fact that its
CCR9 receptor is expressed at all stages of murine thymocyte
differentiation. Interestingly, CCL19/CCR7 interactions
participate in thymocyte exit, illustrating that thymocytes may
switch their responses to a given chemokine, tuning their
migratory process (21).

Other stimuli can participate in the overall process of
intrathymic T-cell development, including hormones. Thymulin
is zinc-couple nonapeptide classically defined as a thymic
hormone, being produced by TEC. This molecule enhances
developing thymocyte proliferation and IL-2 production (22).
Interestingly, TECs also produce other thymic hormones as
thymopoietin and thymosin-α1 (23), both known to have
extrathymic functions, but also to induce progression of
thymocyte differentiation.

Overall, we can say that in physiological conditions, at the
end of their journey, CD4-SP and CD8-SP thymocytes exit
the thymus to populate the peripheral lymphoid organs and
participate in adaptive immune responses. The main stages of
thymocyte maturation, selective processes and components of
the thymic microenvironment are represented in Figure 2.

FIGURE 2

The thymic microenvironment and normal intrathymic T-cell differentiation. The panel schematically depicts in a concise way, the general
process of thymocyte differentiation, in the context of the thymic microenvironment. Bone marrow-derived precursors enter the organ through
blood vessels in the corticomedullary junction and migrate toward the outer cortex where they proliferate, but do not express the CD3/TCR
complexes as well as the accessory molecules CD4 and CD8. There CD4/CD8 double-negative cells (DN) evolve to express TCR and become
CD4+CD8+ (double-positive cells) and, under the control of the thymic microenvironment, undergo positive selection, with positively selected
thymocytes migrating toward the medulla, where a large majority will die by negative selection, though apoptosis, and are ultimately resorbed
within the organ by macrophages. Mature CD4+ or CD8+ single-positive thymocytes will eventually leave the organ to colonize the T-cell
regions of peripheral lymphoid organs. Most thymocytes interact with microenvironmental cells in the cortical and medullary regions of the
thymic lobules. Figure created with BioRender.com.
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Undernutrition causes thymic
atrophy, with cortical thymocyte
depletion

It is well described that the intestinal homeostasis is
maintained by immunomodulation of the gut mucosa. This
is promoted by the interaction of endogenous microbiota
with, food and a large variety of vitamins and nutrients,
generating a proper intestinal immunity, which in turn
maintains an adequate systemic immunity, highlighting the
importance of the interaction between the gut mucosa immunity
and the systemic immune response (24, 25). In parallel,
protein-energy undernutrition is also a systemic condition
that causes atrophy of lymphoid tissues, and the thymus is
one of the most affected organs, with severe thymocyte loss,
particularly CD4+ CD8+ cells (26–33). The thymus undergoes
atrophy, as seen by histology, with changes in the lymphoid
and microenvironmental compartments (26, 28). It was
observed that in severely malnourished mice and children the
thymic intralobular extracellular matrix containing fibronectin,
laminin and type IV collagen increased. The enhancement of
these extracellular matrix was correlated with the degree of
thymocyte depletion in both humans and experimental models
(26–29), although a cause-effect relationship has not been
determined so far.

In any case, it is interesting that even in mice developing
non-severe undernutrition by food restriction, there is a
marked thymic atrophy and cortical thymocyte depletion, due
to massive apoptosis, as well as a significant depletion in
all the cytokine producing cells assayed (IL-12, IL-4, IL-6,

IL-10, TNF-α, IFN-γ), as compared to control animals (30), as
summarized in Figure 3.

Finally, although not detailed herein, it is worthy to mention
that deficiencies in vitamins, as well as in micronutrients
(zinc, for example) also promote thymic atrophy with cortical
thymocyte depletion and changes in the microenvironmental
compartment (31). Particularly for the zinc, this should be
linked to the fact that this element is important in several
reactions in the thymus, being not only necessary to thymulin
biological functions but also for promoting regeneration of
TECs and T-cell reconstitution (22, 34).

The thymic microenvironment in
protein undernutrition and
infection

In addition to the lymphoid compartment, the thymic
microenvironment is affected in various undernutritional and
infectious conditions. Morphological changes in the thymic
epithelium from protein-undernourished mice include the
decrease in the volume of the epithelial tissue in the cortex
and in the medulla of thymic lobules from undernourished
mice, as compared to well-nourished control animals (32).
By contrast, an increase, of intracytoplasmic accumulations
of large, circular, homogeneously electron-dense profiles, rich
in free and esterified cholesterol was reported in both in
cortical and medullary TEC, of undernourished animals (33).
Unfortunately, no data were reported concerning TEC death
in this experimental model. In malnourished children the

FIGURE 3

Cytokine producing cells in thymus of undernourished mice. (A) Thymic cells from undernourished mice exhibited a significant reduced
production of IL-2, IL-6, and IL-4 (red arrows) and a significant increased production of TNF-α, and IL-10 (green arrows). (B) Thymic cells from
renourished mice fed with probiotic fermented milk showed a significant increase in the production of IFN-γ, IL-2, IL-6, and IL-10 (green arrows)
and reduction of TNF-α (red arrow). Cytokine production was detected by indirect immunofluorescence assays. Figure created with
BioRender.com, based on data from Maldonado Galdeano et al. (30).
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atrophy of the organ is clear with strong diminution of the
cortex of the thymic lobules, with concomitant appearance of
apoptotic thymocytes, particularly in the CD4+ CD8+ stage of
differentiation.

In Trypanosoma cruzi-acutely infected mice, we also
demonstrated changes in the expression of medullary and
cortical specific TEC markers such as cytokeratins, as compared
to controls, together with a general shrinkage of the thymic
epithelial network (35). Such phenotypic changes do not
prove functional changes of these cells in relation to the
interaction with developing thymocytes. However, they did
unravel an intrathymic pathology comprising both the cortical
and medullary TEC network.

One functional parameter that has been largely evaluated in
undernutrition conditions is the thymic hormone production
by TEC. It was initially found that protein-undernourished
mice exhibited abnormally low levels of circulating thymulin
(32, 36), and that such a decrease was also observed in
protein-undernourished rats and humans (37). Interestingly,
even in human protein undernutrition secondary to anorexia
nervosa, low thymulin serum levels were reported (38).
Furthermore, decreased thymulin serum levels were
reported in mice submitted to diets designed to trigger
deficiency in zinc, iron, or vitamins (36, 39, 40). At least
regarding zinc deficiency, similar results were found in
humans (41). Remarkably, in severe infection conditions
thymic endocrine function is also affected. We observed
in T. cruzi-infected mice a transient decrease in the serum
levels of the thymic hormone thymulin (31). In human
HIV infection we and others showed a consistent and long-
term diminution of thymulin secretion, in terms of both
serum levels and intrathymic contents of the hormone
(39–44).

It is noteworthy that the decrease in thymic hormone
serum levels seen in undernutrition is not restricted to
thymulin, since it was also reported as regards thymopoietin
production. Prenatal undernutrition was significantly associated
with reduced thymopoietin production in interaction with
the duration of exclusive breast-feeding (45). These findings
provide support for the importance of fetal and early infant
programming of thymic function, and long-term implications
for the immune system, and consequently adult disease risk.

As mentioned above, in addition to the abnormalities seen
in thymic epithelial cells, the thymus from undernourished
children presents a further microenvironmental
alteration, namely, an increase in the deposition of ECM
proteins. We studied by histological, ultrastructural and
immunohistochemical means, thymuses obtained in necropsies
from undernourished children. There is a consistent increase
in the intralobular ECM-containing network, which could be
ascertained histologically by the dense reticulin staining, and
immunohistochemically by the higher contents of fibronectin,
laminin, and type IV collagen. Importantly, the enhancement

of thymic ECM in undernourished individuals positively
correlated with the degree of thymocyte depletion (26). This
correlation may represent a cause-effect relationship in which
the contact of thymocytes with abnormally high amounts
of thymic ECM triggers and/or enhances programmed cell
death. However, this notion remains hypothetical, demanding
experimental demonstration. In any case, it is noteworthy that
developing thymocyte do express integrin-type ECM receptors
(21), which makes this hypothesis feasible.

Interestingly, similar changes in thymic ECM were observed
in glucocorticoid-hormone treated mice and TEC cultures (22),
leading to hypothesis that the enhanced ECM deposition seen
in undernutrition may be also related to high levels of serum
glucocorticoid hormones. Actually, high glucocorticoid levels
are seen in undernutrition (46, 47). Such an alteration was
also seen in acute infections, as exemplified by experimental
Chagas disease (35, 48). In this infection model, changes
in ECM were accompanied by alterations in the migratory
response of thymocytes, with abnormal export of CD4+CD8+

immature thymocytes, some of them having bypassed the
normal negative selection process (48–50). Whether similar cell
migration abnormalities exist in undernourished subjects, is to
be investigated, although peripheral CD4+CD8+ T cells have
been detected in the blood of chagasic patients (51).

Along with the changes in the thymic microenvironment
seen in undernutrition conditions, obesity also induces severe
alterations in this compartment, as seen in experimental models.
One is the db/db mouse that develops a diabetes with obesity,
due to a deficit in the expression of leptin receptor, which
leads to obesity and type II Diabetes (52). We showed a
precocious thymic involution in these animals, with cortical
thymocyte depletion as well as changes in the TEC network,
as ascertained by ultrastructural changes in these cells and
a precocious decrease in the production of the TEC-derived
thymulin (53–56). Again, these thymic events may be due to
high corticosterone serum levels seen in these mice (57). In
any case, these results unravel a thymic alteration in obese
animals, which is likely related to an altered adaptive immune
response. Whether such changes exist in humans need to be
determined. Yet, it is conceivable since during age-dependent
thymic atrophy, there is an increase in the numbers of adipose
cells in the thymus (58).

Hormonal imbalance underlines
thymic changes in protein
undernutrition

Besides the alterations above cited, the impact of protein
undernutrition in the thymus is accompanied by a hormonal
imbalance in the organ. As mentioned above, decrease in thymic
hormone production was first described in the 1970 decade,
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unraveling reduced levels of thymulin in the serum of children
with severe undernutrition, in small for gestational age infants,
and in thymuses of children who died in various stages of
undernutrition (59, 60). In this case, children with the severe
forms (marasmus, kwashiorkor, and marasmic kwashiorkor)
presented tiny thymuses that contained very low contents of
thymulin (37).

Other than thymic hormones, it has been shown that
the circulating levels of corticosterone are increased in
protein-undernourished mice, as compared to age-matched
controls. High corticosterone levels are known to induce
thymic atrophy by the depletion of immature thymocytes,
which was also observed in protein-undernourished mice (46).
Accordingly, we might predict a dysregulation of glucocorticoid
control mechanisms.

The HPA axis encompasses the hypothalamus, with the
secretion of the neuropeptide CRH (corticotrophin-releasing
hormone), which in turn stimulates the adenopituitary gland to
secrete ACTH (adrenocorticotrophic hormone) that enhances
glucocorticoid secretion by the cortex of the adrenal glands.
Physiologically, such axis is self-regulated by negative feed-
back with glucocorticoids being able to negatively control
the production of both ACTH and CRH. Yet, it has been
demonstrated that maternal food restriction during the perinatal
period or during lactation disturbs the activity of the HPA axis
at weaning, with pups presenting reduced adrenal, thymus and
liver weight, and increased circulating free corticosterone levels
(61). Disturbances in the HPA axis during protein deprivation
were also reported (62). To determine if corticotropin-releasing
hormone (CRH) and glucocorticoids were respectively required
for hypophagia and catabolism in undernutrition, CRH-
deficient mice were subjected to dietary protein deprivation.
Interestingly, these animals did not exhibit increased plasma
corticosterone as control individuals. In the same vein, CRH
deficiency attenuated body and thymus weight loss induced by
the restricted diet, suggesting that those effects were dependent
on glucocorticoid regulation.

Mild maternal protein deprivation during lactation in
rats affects thymic homeostasis in the young progeny, which
presents lower body and thymus weights, significant alterations
in CD4/CD8-defined T cell subsets and enhanced expression
of leptin receptor ObRb in thymocytes. Although alterations
in leptin circulating levels were not observed in this study,
an increase in leptin signaling response of thymocytes from
protein-deprived rats was described, together with a decreased
rate of thymocyte spontaneous apoptosis when compared
to controls (63). Interestingly, leptin/leptin receptor-deficient
animals exhibit an atrophy of lymphoid tissues, particularly the
thymus, and such a defect can be reversed by the reposition
of the hormone (64, 65). Actually, complementary studies
showed that there is a balance between systemic levels of
leptin and glucocorticoids, controlling thymic atrophy. It is
thus conceivable that in malnutritional states, the imbalance

between the levels of leptin and glucocorticoid hormones could
be, at least in part, responsible for the thymocyte depletion
and consequent thymic atrophy (31). Yet, further studies are
necessary to define if such imbalance is also involved in
infection-related thymic atrophy.

Undernutrition yields a further
negative impact of acute
infections upon the thymus

It is known that the thymic atrophy induced by
undernutrition produces a negative impact in the immune
response against infections (31, 66, 67). In this respect
and considering that protein-energy undernutrition can be
reversed with an appropriate re-nutrition, it might be possible
to recover the functional capacity of the thymus, through
adequate food intake. Actually, this is definitely plausible
since thymopoiesis is a continuous process along with life,
although decreasing with aging. This is important particularly
in facing infant malnutrition and infection, telling us that we
must develop public policies to extinguish food insecurity and
hunger on the planet.

As mentioned above, several findings in humans and
mice showed that the thymus is also a target for infection
(68, 69), as it has been well described for various types
of pathogens, including viruses, bacteria, and parasites, such
as T. cruzi, Plasmodium and Leishmania (Table 1). In fact,
different infectious agents are able to reach and infect the
organ. On this regard, we have recently shown that the thymus
of BALB/c mice is a target during experimental infection
by Leishmania infantum (70). The presence of the parasite
infecting cells of the thymic microenvironment was observed
both in well-nourished animals and in malnourished mice.
However, it remains to be determined which cell populations
are permissive to the parasite infection. Interestingly, it was
possible to observe many more intact amastigotes in the
undernourished animals than in the well-nourished ones (70).
Recent reports have confirmed, using bioluminescence, the
presence of the parasite in the thymus of well-nourished
BALB/c mice infected with L. donovani (71). These observations
demonstrate that the thymus is a target organ during infection
by viscerotropic species of Leishmania, including L. infantum
and L. donovani. This was further confirmed by the presence
of the parasite in the thymus in dogs naturally infected with
L. infantum (72). In a broader way, several data show that
various parasites as well as viruses and even fungi, can be found
within the thymus parenchyma. For example, in respect to
Chagas disease, previous work had revealed that both epithelial
and non-epithelial thymic microenvironmental cells can be
infected by T. cruzi, as ascertained both in vitro and in vivo
(68).
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TABLE 1 List of pathogens detected in the thymus.

Infectious agent Alterations observed in the thymus Type of infection
(organism)

References

Protozoa parasites Leishmania infantum Increased cortex:medulla index; altered abundance of extracellular matrix
proteins and cell migration-related molecules; altered thymocyte
homeostasis

Experimental (Mouse)
Natural (Dog)

(69, 70, 72)

Leishmania donovani Not reported Experimental (Mouse) (71)

Trypanosoma cruzi Atrophy; alteration in extracellular matrix; depletion of DP cells; early export
of DN/DP cells; increased expression of cell adhesion and cell
migration-related molecules.

Experimental (Mouse) (15, 73–76)

Plasmodium berghei Atrophy; histological alterations; increased apoptosis; DP cells depletion,
changes in cell migration-related molecules, early release of DN/DP cells

Experimental (Mouse) (77–79)

Toxoplasma gondii Atrophy; decreased thymic output; parasite-induced destruction of the
thymic epithelium; altered thymic microarchitecture.

Experimental (Mouse) (80, 81)

Bacteria Mycobacterium tuberculosis Increased iNOS, IFN-γ and TNF expression Experimental (Mouse) (82–84)

Mycobacteria Not reported Natural (Human) (85)

Mycobacterium avium Atrophy; pathogen-specific immune tolerance Experimental (Mouse) (82, 83, 86, 87)

Salmonella Typhimurium Atrophy; thymocyte apoptosis; depletion of DP cells Experimental (Mouse) (88, 89)

Francisella tularensis Atrophy; depletion of DP cells Experimental (Mouse) (90)

Viruses Influenza virus Atrophy; Depletion DP cells; Decreased TCR repertoire diversity; Increased
apoptosis index

Experimental (Mouse) (91–93)

Mouse Hepatitis virus (MHV) Atrophy Experimental (Mouse) (94–96)

Human Immunodeficiency virus (HIV) Atrophy; decreased thymic output; depletion of DP, CD4+ cells Natural (Human) (97–104)

Zika virus Cortical atrophy; alteration in extracellular matrix Natural (Human) (105, 106)

Coxsackievirus Hypertrophy; disruption of T cells export; sjTREC frequencies decreased;
depletion of DP cells; altered TEC gene expression

Experimental (Mouse)
TEC primary cultures (Human)

(107–115)

Cytomegalovirus
(CMV)

Atrophy; reduced IL-1 secretion Experimental (Mouse)
TEC primary cultures (Human)

(116–119)

Measles virus Cortical atrophy; Depletion DP cells Experimental (Mouse) (120–122)

Porcine reproductive and respiratory syndrome
virus (PRRSV)

Atrophy; decreased thymic cortex; thymocyte apoptosis; thymic epithelial
cell autophagy.

Experimental (Piglets) (123, 124)

Lymphocytic choriomeningitis virus (LCMV) Atrophy; severe thymocyte depletion; impaired thymic negative selection;
escape of self-reactive T cells; pathogen-specific immune tolerance

Experimental (Mouse) (125, 126)

Murine eucemia virus (MLV) Atrophy; thymocyte apoptosis Experimental (Mouse) (127, 128)

Herpesvirus:
Murine roseolovirus (MRV)
Mouse thymic virus (MTLV)

Atrophy, thymic necrosis; T cell depletion Experimental (Mouse) (129, 130)

(Continued)
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As previously mentioned, immunosuppression resulting
from protein-energy undernutrition severely impacts primary
and secondary lymphoid organs, involved in the response
to pathogens, contributing to mortality and morbidity,
especially in children (10). In addition, systemic hormonal and
metabolic dysfunctions, as well as changes in intestinal
barrier function and intestinal microbiota, caused by
undernutrition, dramatically increase the susceptibility
of individuals to infections, as seen in many different
examples, such as visceral leishmaniasis (VL), influenza,
dengue, Zika and tuberculosis, among others (10, 67, 140–
151). In children aged less than 5 years, undernutrition is
an underlying cause of 61% of deaths from diarrhea, 57%
of deaths from malaria, 52% of deaths from pneumonia
and 45% of deaths from measles (152). Furthermore, it
has been estimated that the COVID-19 pandemic will
increase childhood mortality from wasting by more than
20% (153). Indeed, recent report already described increased
rates of fatal COVID-19 in areas with elevated burden of
undernutrition (154).

Another example of the deleterious role of acute infections
in undernourished subjects it the study on predictors of
mortality in adult patients with influenza infection in
Switzerland. This analysis was conducted during four influenza
seasons and identified undernutrition as a strong predictor
of mortality among those patients (155). Experimental
model of protein-energy undernutrition and influenza
A virus infection showed that mice fed low-protein diet
(2% protein content) exhibited more severe disease than
mice fed a control protein diet (18% protein content).
Undernourished animals presented higher and sustained
virus titers in the lungs, trafficking of inflammatory cells to
the lung tissue, and higher virus-induced mortality, when
compared to what was seen in control mice. Interestingly,
undernourished-infected mice fed with control diet improved
virus clearance, as well as recovered protective immunity to
viral challenge (67).

It has also been suggested that maternal protein
undernutrition increases susceptibility to Zika virus infection,
which causes the Congenital Zika Syndrome in children.
This syndrome is characterized by multiple neurological,
muscular and immune disturbances, secondary to infection
in pregnant mothers. In neurological terms, the children
may present severe microcephaly, decreased brain tissue with
a specific pattern of brain damage, including subcortical
calcifications, damage to the back of the eye, with macular
scarring and focal retinal pigmentary mottling, congenital
contractures, such as clubfoot or arthrogryposis and Hypertonia
restricting body movement soon after birth (156). From an
experimental perspective, it was showed that pregnant mice
subjected to protein undernutrition and infected with Zika
virus presented severe alterations of placental structure and
embryonic body growth, with offspring displaying a reduction
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in neurogenesis and postnatal brain size as well as alterations
in the expression of genes required for brain development
(142). Still regarding arboviruses, experimental models of
Dengue virus (DENV) infection have shown that, compared
with well-nourished animals, mice fed low protein content
diet (5% protein) had a significant reduction in the level of
platelets, increased spleen pathology and higher viral titers in
the spleen following infection (143). However, studies regarding
the association between the nutritional status and dengue
infection in humans are controversial; some studies reporting
higher risk of dengue shock syndrome or dengue hemorrhagic
fever in undernourished children, whereas other studies could
not observe these associations (157, 158). Consequently, more
data are needed to clarify the influence of nutritional status on
dengue infection outcome.

Another controversial association is that observed between
malaria and undernutrition. Data from different analyses
present conflicting conclusions regarding the potentially
protective or exacerbating effects that undernutrition has
on Plasmodium spp. infection (159). Because in endemic
regions there is a common seasonality of malaria and
undernutrition (160), it is difficult to clearly point if one is
cause or consequence of the other. Some studies suggested
that undernutrition increases the susceptibility of children
to infection and/or impairs the individual’s capability to
recover from infection (161–163). It has been observed
that malnourished children have decreased specific anti-
Plasmodium antibody titers when compared to well-nourished
children (164). On the other hand, data related to the risk
of malaria infection in children with chronic undernutrition
revealed a protective effect of undernutrition against infection
(165, 166). Several studies in experimental models indicate
that animals submitted to a low-protein diet had reduced
parasitemia when compared to controls; however, the
immune response was also suppressed, and the animals
were unable to clear the infection (167, 168). Interestingly,
the immunosuppression observed during the deficit in
protein consumption makes parasitized animals protected
from experimental cerebral malaria (169, 170), a severe
form of malaria directly associated with an exacerbated
inflammatory response. Notably, it was observed that a brief
restriction of food intake prevents neuropathology in an
experimental cerebral malaria murine model with P. berghei
ANKA (170). One hypothesis that should be investigated is
that undernutrition would induce lower inflammatory and
adaptive immune response that would partially undermine
the autoimmune environment seen in both human and
experimental malaria (171).

In general, infection or undernutrition induces similar
alterations to lymphoid organs. Independently, undernutrition
or acute infectious diseases result in thymic atrophy with
drastic reduction of immature CD4+CD8+ double positive
(DP) T cells due to increased apoptosis and premature

egress of immature thymocytes (29, 36, 68, 77, 92, 172–
174). Intrathymic chemokines and extracellular matrix (ECM)
components are also altered during pathological conditions
of infection or undernutrition. The thymus of T. cruzi-
infected mice exhibits increased fibronectin and chemokine
deposition, and increased abundance of thymic ECM proteins
such as fibronectin, laminin, and type IV collagen has been
observed in undernourished children (26, 49). Thymus atrophy
with thymocyte depletion, increased intra and inter-lobular
connective tissue, and decreased cortico-medullary limits have
been also observed in undernourished children (175–177).
Indeed, a smaller thymus is a risk factor for mortality and
is predictive of decreased immune competence (178). As
mentioned above, one of the mechanisms underlining these
effects on thymocytes is be related to the hormonal imbalance
between the rise in glucocorticoids and the decrease in leptin
(50). Yet, other hormonal circuits may be involved as seen
in experimental acute Chagas disease, in which prolactin
partially reverts the thymic atrophy and the corticosteroid
levels (179). Should we emphasize however, that other non-
hormone-mediated mechanisms may be involved, and should
be investigated.

Consequences of undernutrition
and Leishmania infection upon the
thymus: Cellular and proteomic
approaches

Visceral leishmaniasis (VL) is a neglected disease that
frequently afflicts children and malnourished populations in
tropical and subtropical regions of the world. The disease is
caused by Leishmania infantum or L. donovani parasites, which
infect the spleen, liver, bone marrow, and lymph nodes, causing
fever, hepatosplenomegaly, and loss of weight. If not properly
treated, VL can be fatal (180, 181).

Seminal prospective studies in children who acquired VL
revealed that those who had a precondition of moderate to
severe undernutrition before infection had 8.7 times greater
risk of having classic and severe forms of the disease, whereas
well-nourished children did not progress beyond subclinical
infections (140). More recent epidemiological surveys revealed
that in cases of VL in adults who died, 32.7% of patients had
undernutrition as the main comorbidity (182). In Northwest
Ethiopia it was observed that roughly 85% children aged
under 5 years and 95.5% adults with VL were undernourished
(183, 184).

Studies of the relationship between VL and undernutrition
in experimental murine models established a murine scale of
undernutrition based on weight for age in analogy to the
anthropometric classification of human undernutrition. Using
this model it was found that undernutrition led to a failure in
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FIGURE 4

Quantitative proteomics analysis of thymic interstitial fluid of undernourished-infected mice reveals a non-proliferative quiescent thymic
microenvironment. Examples of proteins with differential abundance in the undernourished-infected mice relative to the control
(well-nourished) mice are represented in the figure. Proteins involved in transcription and translation as well as proteins involved in cell
migration and differentiation were reduced in undernourished mice (red arrows). Conversely, proteins involved in fatty acid beta-oxidation and
Krebs’ cycle were increased in those animals (green arrow), compatible with a quiescent, non-proliferative metabolic profile. Such profile was
corroborated by a decreased percentage of proliferating thymocyte subsets expressing Ki67. Figure created with BioRender.com, based on data
from Losada-Barragán et al. (69).

the barrier function of the lymph nodes in mice infected with
L. donovani and, consequently, anticipated the visceralization
of the parasite (185), likely due to the reduction of phagocytic
cells in the lymph nodes of undernourished animals (186).
A reduction in the number of skin-resident dendritic cells
(DCs) drained to satellite lymph nodes was also observed, as
well as a deregulation in the expression of chemokines and
corresponding receptors, involved in the migration of DCs to
the lymph nodes (187).

Also, in an undernourished murine model of infection with
L. infantum, we observed a drastic reduction in cellularity and
changes in the microarchitecture of the spleen and thymus of
infected animals, as well as changes in the subpopulations of
thymocytes and splenocytes, which were aggravated when the
infection was preceded by undernutrition (69, 70, 188, 189).
Indeed, undernourished-infected mice exhibited a significant
reduction in the cortex:medulla ratio (69).

Aiming at understanding the effects of protein
undernutrition in the course of infection and immune

response to L. infantum, we established a model of protein
undernutrition and infection with L. infantum, which has
allowed us to describe cellular and molecular alterations in the
thymus, spleen and gut of mice and how they affect the response
to the parasite (69, 70, 188–190), using BALB/c mice fed control
(14% protein) or low protein (4% protein) isocaloric diets
further infected with L. infantum infection. Undernourished-
infected mice exhibited a significant reduction of body and
thymus weight, showed a significant decrease in CD4+CD8+

(DP) thymocytes, and remarkable alterations in total single
positive subpopulations (CD4+ and CD8+) of the organ (69,
70, 188). Those changes were accompanied by reduced systemic
levels of leptin and IGF1 and increased corticosterone, all
of which have been associated with thymocyte depletion in
undernourished individuals (66). Notably, those defects were
induced independently by each condition (undernutrition
or parasite infection), but the synergy of both exacerbated
the observed alterations, accelerating the pathological events
seen during infection (69, 70, 188). We further observed a
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FIGURE 5

Cytokine production in thymus of obese mouse model. (A) Thymus from obese animals showed adipose deposits covering the tissue, a
significant decrease in thymocytes, increased levels of IL-12, IL-6, TNF-α, and IFN-γ (green arrow) and decreased production of IL-3, IL-7, and
IL-10 (red arrow). (B) Thymus from obese mice fed probiotic bacteria L. casei CRL 431 did not exhibit visible adipocytes, recovered thymocyte
numbers, showed decreased levels of IL-12, IL-6, TNF-α, and IFN-γ (red arrow), and exhibited increased levels of IL-3, IL-7, and IL-10 (green
arrow). Cytokines were measured by ELISA in the supernatants of cultured thymocytes. Figure created with BioRender.com, based on data from
Balcells et al. (206). (C) Micrographs of thymus sections from normal control and obese mice. Tissue sections from normal control (100×),
obese control (100× and 400×) and obese mice feed with probiotic bacteria (100× and 400×) stained with hematoxylin and eosin. Figure
modified from Balcells et al. (206).

decreased intrathymic abundance of CCL5, CXCL12, CXCL9,
and CXCL10 as well as IGF1 in undernourished-infected
animals, suggesting altered migration of developing T cells.
Nevertheless, in this combined condition thymocytes were able
to migrate ex vivo in response to chemotactic stimuli, suggesting
that undernutrition may compromise the production of soluble
factors inside the thymic microenvironment, altering in vivo
thymocyte migration, rather than migratory capability of T cells
per se (70).

As mentioned above, the successful production of mature
T cells depends on the constant migration of differentiating
thymocytes through the thymic microenvironment, and such
migration is a process controlled by complex interactions
between cell surface molecules, extracellular matrix (ECM)
proteins, cytokines, chemokines and hormones (21, 191,
192). We conducted a histopathological study of the tissue
organization and using a quantitative mass spectrometry-
based proteomics approach, to measure the protein abundance
within the thymic interstitial space in undernourished BALB/c
mice infected with L. infantum (69). Undernourished-infected

animals exhibited a significant reduction of the thymic cortical-
medullary ratio and altered the abundance of proteins secreted
in the thymic interstitial fluid. Proteomic analyzes revealed that
these alterations were accompanied by a significant change in
the abundance of soluble factors that are secreted via exosomes
into the thymic microenvironment, suggestive of defects in
the intrathymic molecular communication mediated by these
microvesicles in undernourished animals (69).

Also, early changes in protein abundance were observed
in infected animals, and those alterations were exacerbated
or annulated when animals were previously undernourished,
reinforcing the deleterious role of undernutrition in the
response to infection and revealing an unknown role of the
thymus during VL (69). Functional analysis of proteomics
data showed that molecules involved in cell migration and
differentiation such as galectin-1, von Willebrand factor, Rho
GDP-dissociation inhibitor 1 and 2, differentiation factor 1
and transgelin-2 were significantly reduced in undernourished-
infected mice (69). In addition, we observed an increase in the
amounts of proteins involved in β-oxidation of fatty acids as well
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FIGURE 6

Effects of undernutrition upon the thymic lymphoid and microenvironmental compartments. The scheme clearly shows the atrophy of the
thymus in undernutrition conditions, affecting both developing thymocytes and microenvironmental elements of the organ. Importantly,
undernourished thymuses are more susceptible to infections and thymic changes are still more pronounced. Figure created with
BioRender.com.

as in those involved in Krebs’ cycle, both of which suggest a non-
proliferative quiescent thymic microenvironment (Figure 4),
which in fact was corroborated by the decreased detection of
Ki67 proliferation marker in thymocyte subpopulations (69).
Together these data compose a scenario where structural and
soluble protein factors of the thymic microenvironment are
altered by L. infantum infection and worsened by a precedent
undernutrition condition.

As mentioned above, we detected parasites in the thymus
of both well-nourished and undernourished animals infected
with L. infantum, but amastigote nests were only observed in
mice fed protein restricted diet (70). Furthermore, using qPCR,
we observed a significantly higher parasite load in the thymus
of undernourished animals when compared to the control
mice (193).

Interestingly, T cells generated in the thymus previously
infected by Mycobacterium avium are tolerant to the pathogen
in the periphery (86). In this line, the persistence of infection
and antigenic peptides in the thymus may favor the appearance
of pathogen-tolerant T cells, thus contributing to its persistence
in other tissues (194). In a similar way, the persistence of
L. infantum in the thymus of undernourished animals could
favor the emergence of Leishmania-tolerant T cells, impairing
the resolution of the infection in the periphery, favoring parasite

persistence in the spleen. Such reasoning can also apply for
different intrathymic infections.

Probiotics: Potential
immunotherapeutic tools for
restoring undernutrition related
thymic dysfunctions

A large reservoir of microorganisms is found in the
gut, reaching a bacterial community that is 10 times more
than the number of human eukaryotic cells, coexisting in a
symbiotic relationship (195). The role of these microorganisms
in the gut physiology and maintaining intestinal homeostasis
is indisputable. They participate in the breakdown of food,
nutrient absorption, synthesize vitamins, protect us against
pathogens, act on the neurodevelopment, and participate in
the development and regulation of the immune system (196,
197). The microbiota composition differs from one individual
to another, being in direct relation to age, diversity of
food consumed, lifestyle, ethnicity, environmental factors and
following the use of medicines such as steroids, antibiotics,
etc. (198, 199). Among the millions of microorganisms in the
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human digestive tract, probiotics are found. They can influence
the intestinal immune system by several mechanisms including
change in the microbiota composition and its function, as well
as improvement of the intestinal epithelial barrier (200, 201).

The mechanisms involved in the remote effects of
probiotic are poorly understood. Yet, they can balance the
microbiota and modulate the expression of pro-inflammatory
cytokines. Such an effect occurs through multiple mechanisms,
including the modulation and stimulation on MAPK (mitogen-
activated protein kinase) pathways, as well as upon the
NF-kB transcription factor, especially by inhibiting IkB
phosphorylation, thus hindering the transfer of NF-kB (202).

Much less is known about the putative action of probiotics
upon the thymus. In a mouse model of non-severe protein
undernutrition, we found that the administration of a probiotic
fermented milk as a re-nutrition supplementation did improve
the thymic microarchitecture, recovering the corticomedullary
differentiation in the thymic lobules, in conjunction with a
decrease in thymocyte apoptosis. All the structural changes
of thymus were accompanied by changes at the functional
level, with increase in the numbers of mature and immature
thymocytes and enhancement of cytokine production (203).

In a second vein, studies in obese humans and in obese
mice, showed a relation between obesity and involution of
the thymus gland revealing the important role of nutrients
intake on the anatomy and functionality of the thymus
(65, 203, 204). The use of a probiotic yogurt as dietary
supplementation resulted not only in the control of body
weight, serum biochemical parameters, but also in the recovery
of the histological structure and thymus weight in obese
animals (205). This was confirmed by recent data showing
that a probiotic strain L. casei CRL 431 administered in
the drinking water to a high-fat diet consuming obese mice,
improved the cellularity and functionality of the thymus, with
an increase in IL-7 and IL-3 production as seen in Figure 5
(206). These two cytokines are involved in normal intrathymic
T-cell development; IL-7 is secreted by TEC and stimulates
survival and expansion of the immature thymocytes and
increase thymocyte numbers (207) and IL-3, also produced by
TECs, is a hematopoietic growth factor that promotes myeloid
proliferation (208).

Concluding remarks and
perspectives

As undernutrition remains a major issue in global
health, studies on the pathophysiological aspects of this
affection, associated or not with infection are yet important,
particularly the mechanisms governing dysregulation of the
immune response. In this respect, the immunosuppression
resulting from protein-energy undernutrition severely impacts
primary and secondary lymphoid organs involved in the

response to a give pathogen. The thymus is particularly
compromised by both undernutrition and infection, with
a consistent cortical thymocyte depletion and important
changes in thymic epithelial cells. Moreover, undernutrition
yields a negative impact upon the thymus in acute infections,
frequently with the intrathymic detection of pathogens
or their antigens.

The impairment of the thymic cortical area due
to undernutrition during acute infections may alter
physiological processes crucial for T cell development,
such as (i) intrathymic selection of the T cell repertoire
(209), (ii) thymocyte proliferation, (iii) adequate migration
of developing thymocyte, as well as (iv) changes in the
microenvironmental component of the organ, and (v)
intrathymic and systemic hormonal circuits (Figure 6),
all of which having a deleterious impact in the adaptive
immune responses in the periphery. As intrathymic T cell
development is a continuous process, it exhibits a certain
degree of plasticity, rendering possible the partial (or even
total) restoration to normal steady state after a given deleterious
stimulus has stopped. Accordingly, it seems plausible that
those alterations can be at least partially reverted by dietary
interventions, rescuing proper immune responses to infection.
However, this remains to be investigated. Addressing whether
nutritional rehabilitation combining balanced macronutrients,
micronutrients and probiotics can recover the structural and
cell differentiation damage caused by undernutrition in the
thymus, would allow proposing nutrition-based interventions
that would positively impact both the nutritional status of
the individuals and their ability to respond adequately to
infections.
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