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Fasting provokes fundamental changes in the activation of metabolic and

signaling pathways leading to longer and healthier lifespans in animal models.

Although the involvement of different metabolites in fueling human fasting

metabolism is well known, the contribution of tissues and organs to their

supply remains partly unclear. Also, changes in organ volume and composition

remain relatively unexplored. Thus, processes involved in remodeling tissues

during fasting and food reintroduction need to be better understood.

Therefore, this study will apply state-of-the-art techniques to investigate the

effects of long-term fasting (LF) and food reintroduction in humans by a

multi-systemic approach focusing on changes in body composition, organ

and tissue volume, lipid transport and storage, sources of protein utilization,

blood metabolites, and gut microbiome profiles in a single cohort. This is

a prospective, single-arm, monocentric trial. One hundred subjects will be

recruited and undergo 9 ± 3 day-long fasting periods (250 kcal/day). We will

assess changes in the composition of organs, bones and blood lipid profiles

before and after fasting, as well as high-density lipoprotein (HDL) transport

and storage, untargeted metabolomics of peripheral blood mononuclear

cells (PBMCs), protein persulfidation and shotgun metagenomics of the gut

microbiome. The first 32 subjects, fasting for 12 days, will be examined

in more detail by magnetic resonance imaging (MRI) and spectroscopy

to provide quantitative information on changes in organ volume and

function, followed by an additional follow-up examination after 1 and

4 months. The study protocol was approved by the ethics board of the
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State Medical Chamber of Baden-Württemberg on 26.07.2021 and registered

at ClinicalTrials.gov (NCT05031598). The results will be disseminated through

peer-reviewed publications, international conferences and social media.

Clinical trial registration: [ClinicalTrials.gov], identifier [NCT05031598].

KEYWORDS

organ size, lipoprotein metabolism, metabolomics, microbiome, long-term fasting,
magnetic resonance imaging (MRI), protein utilisation

Introduction

The health-promoting effects of long-term fasting (LF),
lasting more than 4 days and up to several weeks, are
increasingly documented (1–3). Our group has shown that LF
improves cardiovascular (CV) risk factors such as hypertension
even in medicated subjects, lipoprotein distribution, non-
alcoholic fatty liver symptoms, inflammatory parameters,
oxidative stress, and gut microbiota profiles (4–9). A large
observational study of 1,422 subjects underlined the safety,
tolerability, and therapeutic efficacy of LF from 4 to 21 days
(10). However, the precise physiological consequences of acute
LF periods and subsequent food reintroduction phases are still
not comprehensively understood.

A key molecular mechanism of fasting-mediated health
benefits is the metabolic switch from glucose, as the main
energy source, to the utilization of fat-derived lipids and ketones
(11). During the first 48 fasting hours, the initial glycogen
depletion is accompanied by fat and–to a lesser extent–protein
utilization. The proportion of protein usage then decreases after
the activation of protein-sparing mechanisms (12). In the 1980s,
concerns about protein loss–and subsequent muscle decline–
were raised for zero-calorie diets lasting more than 100 days,
based on nitrogen balance measurements (13, 14), while the
origin of protein breakdown was not determined. Conversely,
in a recent study investigating 10 days of fasting, including daily
moderate physical activity in 16 healthy men, muscle strength
(grip and leg strength) was observed to be maintained and even
increased (15).

Due to substrate mobilization in several metabolically active
tissues, the size and weights of organs changes. Liver, spleen,
kidneys and skeletal muscle mass decrease in rats after long
periods of severe 50% calorie restriction (CR), while the brain
and testes seem unaffected (16). Multiple cycles of fasting-
mimicking-diet (FMD; 10% of normal daily calorie intake)
in mice restored insulin-generating β-cells, promoted stress
resistance, self-renewal division of stem cells, and hematopoietic
lineage-balanced regeneration (17–19). Few clinical studies
of long-term CR are available in humans. A 12-week semi-
starvation intervention in 32 men reduced the heart’s overall
size proportionally to the body weight and showed a trend of

recovery after food reintroduction (20). Fat loss plays a role
in the shrinkage of organ volume. After a 10-day fast in men,
enhanced lipid oxidation was shown in muscles (15).

Furthermore, fasting-induced autophagy and apoptosis
are also thought to contribute to organ shrinkage (21).
Decreased protein content during fasting is restored upon food
reintroduction, as documented by the switch to a positive
nitrogen balance (22, 23). Consequently, organ size can be
rebuilt due to de novo synthesis and stem cell activation,
possibly conferring beneficial effects on tissue functionality.
To the best of our knowledge, no extensive human studies
exist that systematically analyzed the body composition
after a LF period using state-of-the-art magnetic resonance
imaging/spectroscopy (MRI/MRS) approaches. One case report
outlined the effects of a 14-day fasting period in a healthy man by
MRI/MRS, showing changes in adipose tissue distribution and
fatty acid composition in multiple organs (24).

Thus, in addition to body and organ composition, we will
investigate lipid metabolism during LF. Serum triglycerides,
low-density-lipoprotein (LDL) and atherogenic subfractions
(e.g., small dense LDL) significantly decreased after 2 weeks
of fasting, pointing to a reduced lipid-associated atherogenic
risk (9). Of note, high-density lipoprotein cholesterol (HDL-
C) is inversely associated with both CV disease and mortality
(25) and pharmacological interventions aiming at raising HDL-
C levels were not successful thus far (26, 27). Hence, there
is an increasing interest in measuring high-density lipoprotein
(HDL) function, as reflected by cholesterol efflux capacity (CEC)
and the serum cholesterol loading capacity (CLC), which are
both indices of CV risk (28, 29). This study will investigate
whether LF influences the reverse transport of cholesterol from
the periphery to the liver. In addition, erythrocyte membrane
fatty acid composition reliably predicts total mortality and
clinical events (30–32). Therefore, we will determine the fatty
acid composition of erythrocytes and the omega-3/omega-6
ratio during LF.

The exact cascade of molecular mechanisms leading to
therapeutic benefits of different fasting regimes remains elusive,
at least in humans (33). Interestingly, organisms maintain
cellular and organismal homeostasis during fasting, inter alia,
by well-orchestrated biochemical and (epi) genetic mechanisms
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(11, 34). The progress of precision metabolomics technologies
recently opened new avenues to study the changing metabolic
landscape during the fasting state in a spatiotemporal manner
(35). Thus, this study will shed light on the intracellular
metabolic consequences of LF in peripheral blood mononuclear
cells (PBMCs), focusing on lipids and polyamines, which are
essential for diverse cellular functions (36). Another aspect of
LF-induced metabolic effects is increased endogenous hydrogen
sulfide (H2S) production, a physiological gasotransmitter (37,
38) via sulfhydration/persulfidation (39) with health-promoting
properties (REF). In mice, 40% dietary restriction increased H2S
levels, which is required for the geroprotective effects of CR (37).
Thus, we will investigate the impact of LF on H2S-mediated
signaling in humans.

Finally, we will explore gut microbiota changes during LF.
LF does not eliminate the gut microbiota, but elicits profound
changes in its composition (6, 40). In our recent study, changes
in bacteria profiles caused by fasting were associated with serum
glucose and fecal branched-chain amino acids (6), suggesting
that the gut microbiota can influence fasting-induced changes
in energy metabolism. A more recent study even identified a
bacteria which abundance correlates with serum concentrations
of 3-hydroxybutyrate (41).

In light of these incognita, we designed a multi-stage single-
arm interventional trial to apply state-of-the-art methods to
elucidate the fasting-induced changes in metabolism, body
composition, organ size and function, and the gut microbiome
(Figure 1).

Methods and analysis

Aims

First, the GENESIS study aims to document changes in body
composition and the contribution of the main metabolically
active tissues (skeletal muscular tissues, adipose tissues, liver,
heart, spleen, kidneys, and brain) to the metabolic switch during
a 12-day fasting period. Changes in the size and mass of organs
will be quantified. We hypothesize that a re-expansion and
regeneration will follow a transient decrease of organ volume
during fasting up to 4 months after food reintroduction. Protein
resynthesis upon food reintroduction might correspond to an
acceleration of the physiological protein turnover, which will
be evaluated by measuring nitrogen excretion. Additionally, the
organs’ specific compositions, especially the fat components,
and their function will be documented along the fasting process.
We hypothesize that these multi-system changes are safe, and
that they could also be reflected by an improved cardiac
and skeletal muscle metabolism and mitochondrial oxidative
capacity which will be investigated by spiroergometry.

Second, the study focuses on fat storage, function, and
exchange in adipose tissue, liver, spleen, kidney, and splanchnic

tissue. Among the lipids studied, we focus on cholesterol
metabolism during fasting, particularly sub-types of HDL, but
also CEC and fatty acid profiles in the erythrocyte membrane.

Third, we will measure PBMC metabolome profiles
to reveal cellular metabolic changes in circulating, easily
accessible immune cells.

Fourth, we will determine whether persulfidation, which
contributes to the maintenance of cellular oxidative functions,
changes during fasting.

Last, we will measure if various metabolic and physiological
changes, as described above, correlate to individual gut
microbiota profiles. The composition and function of the
fecal microbiota will be evaluated during LF using shotgun
metagenomics. This will help us understand how intestinal
microorganisms are linked to human physiology during fasting.

Study design

The GENESIS study is a prospective, monocentric, single-
arm interventional study using a two-stage design. A total of 100
subjects will be included (Figure 2). The first 32 participants will
undergo an augmented examination plan, including MRI/MRS
scans to evaluate body composition changes at four time points:
prior to and at the end of 12 fasting days, 1 and 4 months post
fasting. This sub-cohort is statistically powered for detecting
changes in whole body composition. Sixty-eight additional
subjects will then be included for gut microbiota and lipid profile
analyses. The study follows the STROBE guidelines (42).

Recruitment

The study site is a specialized center for long-term
therapeutic fasting under medical supervision. Detailed
information about the GENESIS study will be provided orally
and in a written manner to potential participants. For the
recruitment of the first phase (32 participants), participation
calls will be distributed in the study center, on social media
channels of the Buchinger Wilhelmi clinic and in institutions
working on fasting and nutrition. Informed consent will be
collected prior to the start of the fasting period and any baseline
measurements. Since participants of the first stage need to be
physically present at four time points (prior and post fasting,
follow-up visits after 1 and 4 months), they will stay at the
Buchinger Wilhelmi clinic without charges. The remaining 68
participants will be recruited prospectively during 1 year from
the regular pool of customers voluntarily undergoing fasting in
the Buchinger Wilhelmi clinic in Überlingen. These participants
will not receive any financial incentives. The recruitment started
in September 2021. Thus, the last follow-up will be prospectively
performed in January 2023. Study participants will be informed
by email about their results and publications based on data
collected in the GENESIS trial.
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FIGURE 1

Main outcomes of the GENESIS study. By pooling knowledge acquired by macroscopic multi-organ fat distribution and composition provided
by magnetic resonance imaging (MRI), with erythrocyte fatty acids, lipoprotein, peripheral blood mononuclear cell (PBMC) metabolome, protein
persulfidation, and gut microbiome profiles, we aim to gain a deeper comprehension of molecular and physiological changes during fasting and
food reintroduction.

Participants

Men and women aged 20–75 years with BMIs between 22
and 35 kg/m2 are eligible to participate if they match further
eligibility criteria, as listed in Table 1. Any contraindication to
fasting, as defined in the guidelines of fasting therapy including
kidney, liver or cerebrovascular insufficiency (43) automatically
leads to exclusion. Fulfilment of additional criteria related
to contraindications for the MRI/MRS scans is required for
participants of the MRI subgroup (Table 1).

Fasting intervention

The subjects will receive a plant-based, organic calorie-
restricted diet (600 kcal/day) 1 day before the study begins. The
12-day fasting period will be initiated by emptying the intestinal
tract via the intake of a laxative [e.g., sodium sulfate (Glaubers’

Salt) in the morning or sodium picosulfate (Laxoberal R©, Sanofi-
Aventis, Germany) the night before]. During the fasting period,
the energy intake is limited to 200–250 kcal/day (10), which
will be achieved with 0.25 L freshly squeezed, organic fruit
juice at noon, 0.25 L vegetable soup in the evening and 20 g
honey. Participants will be asked to drink a minimum of
2 L of water or non-caloric, caffeine-free herbal teas that are
purchased by certificated, organic companies (SONNENTOR
Kräuterhandelsgesellschaft mbH, Sprögnitz, Austria; Ulrich
Walter GmbH, Diepholz, Germany). Every second fasting day,
the colon will be emptied by an enema or a laxative. On the
last fasting day, plant-based organic food will be progressively
reintroduced over 3–4 consecutive days (800–1,600 kcal/day).

Medical doctors and nurses will supervise the fasting
intervention. An accompanying program consisting of physical
exercise, mindfulness, and meditation will be provided and
group interaction will be favored. The training program includes
daily outdoor walks of 1.5 h, moderate-intensity fitness exercises
and free access to the gym and swimming pool.
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FIGURE 2

Study design. Specific sessions for the subjects enrolled in the first stage of the projects are indicated in blue. The estimated numbers of
volunteers needed to recruit the sample size of 100 subjects are indicated in gray.

Outcome parameters

An overview of the main study outcomes is shown in
Figure 1.

Body composition
The primary endpoints in this study are changes in whole

body composition (fat mass, lean mass, and water) at the end
of the fasting intervention as well as 1 and 4 months afterward
compared to baseline measured by MRI (44–46) (Figure 3).
Furthermore, changes in size and composition of heart (47–52),
liver (53, 54), kidney, spleen, adipose tissue, lumbosacral muscle
mass, and lower limbs (quadriceps, hamstrings, and calves) (55)
over time as well as changes in brain morphometry (56, 57)
will be assessed. Details of MRI measurements are provided as
Supplementary material.

Changes in bio-electrical multifrequency impedance
analysis will enrich the MRI/MRS scans (58–60) with
information about global and segmental body composition
(water, fat, and lean mass), liquid distribution (total,
extracellular, and intracellular water), metabolic indexes
[metabolic activity index (MAI)], and protein content (total
and active cell mass fraction). Furthermore, the CV fitness
will be assessed by measuring maximal oxygen consumption
(VO2max) on cycloergometers (61). Triaxial actigraphy will
allow a continuous recording of the physical activity and sleep
quality during the whole study. Last, we will use standardized

morning heart rate variability measurements (Polar H10 with
Kubios HRV mobile app.) to assess the autonomous nervous
system response along the protocol (62, 63).

TABLE 1 Eligibility criteria.

Inclusion criteria Exclusion criteria

• Men and women
• Age between 20–75 years
• BMI between

22–35 kg/m2

• Negative COVID-19 test
• Available written

declaration of consent

• Intake of medication (cardiovascular
diseases, lipid, and glucose metabolism)

• Chronic manifest psychical and psychiatric
diseases

• Participation in another study
• Pregnancy or breastfeeding
• Active uncontrolled gastrointestinal

disorders including ulcerative colitis,
Crohn’s disease, indeterminate colitis, severe
irritable bowel syndrome, persistent
infectious gastroenteritis, persistent or
chronic diarrhea of unknown etiology, and
recurrent Clostridium difficile infection

• Major surgery of the gastrointestinal tract,
in the past 5 years. Any major bowel
resection at any time

• Intake of antibiotics in the last 2 months
• In the MRI subgroup, any MRI

contraindication (claustrophobia,
pacemakers, MR-incompatible prosthetic
valves, metallic implants, and foreign
metallic body)
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FIGURE 3

Summary of the magnetic resonance imaging/spectroscopy (MRI/MRS) measurements. Body composition after a 12 days fasting period by
means of MRI/MRS scans with a focus on the brain (A), liver (B), skeletal muscle (C), and myocardium (D–F). Beyond brain morphometry (A),
myocardial mass, function and regional deformation (F), and abdominal organs sizing (B) calculated from localized dedicated scans (side
panels). Subcutaneous, visceral, extra-visceral and bone marrow fat quantification and total lean mass will be calculated from whole body
acquisition (middle panel). MR spectroscopy of the liver (B), leg muscle (C), and heart (E) allows complementary fat decomposition, triglycerides
and metabolites concentrations quantification. Advanced myocardium tissue characterization will include relaxometry and diffusion parameters
mapping, as well as myocardial fiber orientation and local deformation (D). Muscle legs volume and strength (maximum voluntary contraction)
will be compared to MRS 31P data and extracted biomarkers of the oxidative metabolism (C).

Lipid function
High-density lipoprotein, CEC, and serum CLC will

be analyzed as previously described (64–66). Additional
information will be gained through the analysis of chylomicrons
(67), HDL and LDL subfractions, lipoprotein transfer enzymes
(Cholesteryl Ester Transfer Protein activity) (68), proprotein
convertase subtilisin/kexin type 9 (PCSK9) (69), paraoxonase
(PON-1) activity (70), serum amyloid A levels, GlycA (71),
apolipoproteins AI and B (71), lipoprotein(a) (72), and oxidized
phospholipids (73). The fatty acid profile in erythrocyte
membranes will provide additional insights at the molecular
level (74).

Metabolic pathways
An analysis of the metabolome in PBMCs will be

performed using combinations of untargeted and targeted
LC/MS approaches (2).

Sulfur signaling
To address the transsulfuration pathway, sulfur compounds

(amino acids, thiosulfate, and H2S) will be analyzed in serum

and urine at baseline, after three fasting days, at the end of
fasting, as well as 1 month post food reintroduction (75).

DNA methylation profiling
Experimental surrogate indicators of biological age

[so-called epigenetic aging clocks) will be analyzed using
methylation arrays from blood DNA methylation (76)].

Gut microbiota composition
Stool samples will be collected for shotgun metagenomics to

determine the fecal microbiota composition in all participants
prior to fasting and from the first spontaneous stool after the
fasting period as previously described (6). We will evaluate
microbial composition by identifying species-specific marker
genes and functional potential by profiling microbial metabolic
pathways and other molecular functions as described in
other published fecal microbiome studies (77). The study
of carbohydrate metabolism will be complemented by a
carbohydrate-active enzyme (CAZy) profiling method that
is currently in development at european molecular biology
laboratory (EMBL) Heidelberg. All raw microbial data will be
made available on public repositories.
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TABLE 2 Summary of measurements.

Before Transition Fasting days Food
reintroduction

+1 month +4 months

Measurements −5 to −2 −1 0 1 2 3 4 5 6 7 8 9 10 11 12

Demographic data x

Medical history x

Anthropometric measurements x x x x x x x x x x x x x x x x x x

Vital signs x x x x x x x x x x x x x x x x x x

Blood sampling x x x x

Capillary blood sampling x x x x x x x x x x x x x x x x

First morning urine sampling x x x x

24 h urine sampling x x x x x x x x x x x x x x x

MRI x x x x

MRS P31 and H1 x x x x

Bioelectrical impedance analysis x x x x x

Quadriceps muscle ergometry x x x x

Triaxial actigraphy x x x x x x x x x x x x x x x x x

Spiroergometry x x x

Stool sampling x x

Visual scores: wellbeing, symptoms x x x x x x x x x x x x x x x x x x

Questionnaires and life style x x x x

Adverse events x x x x x x x x x x x x x x x x

Measurements only conducted in the first stage of this study (n = 32) are highlighted in blue.
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Clinical data
Clinical data (e.g., body weight, body-mass-index, systolic

and diastolic blood pressure, and heart frequency) will be
documented at baseline, during fasting and food reintroduction
as well as 1 and 4 months afterward. The abdominal
circumference will be measured before and after fasting.
Changes in ketonuria, capillary ketonemia, and capillary blood
glucose levels will be measured during the fasting period
and food reintroduction. Nitrogen balance, measured in 24-
h urine samples (15), will be determined at baseline and
during the fasting and food reintroduction period in the
MRI subgroup only.

A clinical standard laboratory blood profile will be measured
in each blood sample, during the transition day and after fasting
(10). Additional blood samplings will be obtained from the first
32 subjects after three fasting days as well as 1 month afterward.

Questionnaires
Several validated questionnaires will be recorded at baseline,

at the end of fasting as well as 1 and 4 months afterward
to document mental wellbeing (Warwick-Edinburgh Mental
WellBeing Scale) (78), global health (PROMIS Scale) (79),
physical activity (Godin Leisure-Time Exercise Questionnaire)
(80), sleep quality (Pittsburgh Sleep Quality Index) (81), and
dietary behavior (short healthy eating index survey) (82).
Lifestyle habits like smoking behavior, alcohol consumption, or
physical activity in hours/week will be self-reported. Participants
will document energy level, emotional and physical wellbeing,
as well as symptoms including fatigue, muscle weakness, back
pain, hunger, anxiety, headache, and sleep disturbances on
visual scales (0–10) at baseline, daily during fasting and food
reintroduction as well as 1 and 4 months afterward.

Adverse events will be documented continuously.

Data analysis plan

The data of all clinical endpoints will be collected before and
after 9 ± 3 fasting days. Demographic data and each participant’s
medical history will be captured at baseline. The detailed timing
of all measurements is shown in Table 2.

Further, the Supplementary File contains a detailed
description of the anthropometric data, vital signs, blood, urine
and stool samples, the MRI and MRS acquisition protocols,
bioelectrical impedance analysis, quadriceps muscle ergometry,
triaxial actigraphy, and spiroergometry.

Sample size calculation

The required sample sizes vary between the outcome
parameters. Previously, the effect size in matched subjects
was 0.81 for T2 relaxometry in muscles (55). Using these
assumptions, the minimal sample size requirement is 14

to detect meaningful acute changes in muscle physiology
(alpha = 0.05, power = 0.80). MRS studies monitoring
triglyceride (TG) content during CR (83, 84) observed that
effect sizes were 1.09 and 0.59 in liver and muscle, respectively.
Using the small effect size of muscle changes (alpha = 0.05,
power = 0.80), the required sample size to detect organ-specific
differences in MRS measurements is 28. To account for a
potential drop-out rate of 15%, the sample size was set to 32.

Clinical routine laboratory examinations and other blood
sample analyses will be performed on 100 samples. This number
of participants was chosen to reach sufficient power for detecting
differences in gut metagenome analysis. Large inter-individual
differences are usually observed in the composition of fecal
microbiomes. Small differences in alpha diversity (effect size
0.55) between two groups of 50 individuals can be detected with
an 80% statistical power (85). Missing values are commonly
encountered in fecal microbiome evaluations (85). Accounting
for missing data and sufficient numbers to quantify bacteria
abundance at the species level for at least 50 individuals, we
estimated that 100 subjects are needed for this part of the
study (power = 0.80). This is based on a fecal metagenome
analysis, which included missing values for more than 50% of
612 bacterial species out of 724 species detected (86).

Data collection and management

All research data will be documented on case report
forms and the study diary. A pseudonymised identification
number will be allocated to each participant. Study data
will be transcribed from the source documents and stored
electronically in a pseudonymised, password-secured database
at Buchinger Wilhelmi Development und Holding GmbH.
Documents allowing the identification of subjects (e.g., signed
consent forms) will be stored securely and separately from the
study data. Only representatives of the principal investigator,
who are obliged to maintain confidentiality, have access to
these data. The follow-up data will be collected using an online
questionnaire that meets general data protection regulation
standards. Data will always be treated confidentially and data
protection regulations will be complied with. The source data
will be kept for at least 10 years after the termination of the study.

Statistical analysis

The statistical analysis of the data will be performed using
R software for statistical computing. Given the longitudinal
design of our study with multiple repeated measurements, a
mixed model for repeated measures will be used for quantitative
variables. The p-values from linear-mixed models in the
longitudinal data analysis will be adjusted with a post-hoc
Tukey test. Missing data will be handled with complete case
analyses for the dependent variables or imputed using the
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median for auxiliary variables with less than 20% missing values.
Subgroups will be generated using demographic data (e.g., sex)
or unsupervised clustering methods. The statistical models will
be adjusted for potential confounders such as age, gender, or
baseline body weights. A parsimonious approach will be used.
If a covariate does not influence the variance of the model, it will
be excluded from the model. We will use multivariate statistics
for metabolomics or metagenomics, including unsupervised
(e.g., principal component analysis) and supervised statistical
methods (orthogonal partial least squares discriminant analysis,
sparse partial least square discriminant analysis). In the case of
multivariate analyses (e.g., microbiome data), the false discovery
rate corrected p-value (q-value of 5%).

Ethics and dissemination

The ethics commission of the federal state of Baden-
Württemberg approved the study protocol on 26th July 2021.
It was registered in an official clinical trial register on 2nd
September 2021 (ClinicalTrials.gov Identifier: NCT05031598).
The ethics commission will approve all protocol amendments
and update the clinical trial register. The study will be conducted
in accordance with the Declaration of Helsinki and the
guidelines of the International Conference of Harmonization of
Good Clinical Practice Guidelines and German law.

Microbiota data will be made public in a data depository.
Results will be published in peer-reviewed journals and
presented at international conferences and on social media.
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