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Since 2019, the coronavirus disease (COVID-19) has caused 6,319,395 deaths

worldwide. Although the COVID-19 vaccine is currently available, the latest

variant of the virus, Omicron, spreads more easily than earlier strains, and its

mortality rate is still high in patients with chronic diseases, especially cancer

patients. So, identifying a novel compound for COVID-19 treatment could

help reduce the lethal rate of the viral infection in patients with cancer. This

study applied network pharmacology and systematic bioinformatics analysis

to determine the possible use of curcumol for treating colon adenocarcinoma

(COAD) in patients infected with COVID-19. Our results showed that COVID-

19 and COAD in patients shared a cluster of genes commonly deregulated by

curcumol. The clinical pathological analyses demonstrated that the expression

of gamma-aminobutyric acid receptor subunit delta (GABRD) was associated

with the patients’ hazard ratio. More importantly, the high expression of

GABRD was associated with poor survival rates and the late stages of

COAD in patients. The network pharmacology result identified seven-core

targets, including solute carrier family 6 member 3, gamma-aminobutyric acid

receptor subunit pi, butyrylcholinesterase, cytochrome P450 3A4, 17-beta-

hydroxysteroid dehydrogenase type 2, progesterone receptor, and GABRD of

curcumol for treating patients with COVID-19 and COAD. The bioinformatic

analysis further highlighted their importance in the biological processes and

molecular functions in gland development, inflammation, retinol, and steroid

metabolism. The findings of this study suggest that curcumol could be an

alternative compound for treating patients with COVID-19 and COAD.

KEYWORDS

colon adenocarcinoma, COVID-19, curcumol, bioinformatics, biological functions,

pharmaceutics targets

Introduction

Since 2019, 537,591,764 confirmed coronavirus disease (COVID-19) cases, leading

to 6,319,395 deaths worldwide, have been reported by WHO as of June 20, 2022 (https://

covid19.who.int). Chronic health conditions were associated with the risk of COVID-19-

related hospitalization and mortality (1). Patients with cancer are highly susceptible to

Frontiers inNutrition 01 frontiersin.org

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/journals/nutrition#editorial-board
https://www.frontiersin.org/journals/nutrition#editorial-board
https://www.frontiersin.org/journals/nutrition#editorial-board
https://www.frontiersin.org/journals/nutrition#editorial-board
https://doi.org/10.3389/fnut.2022.961697
http://crossmark.crossref.org/dialog/?doi=10.3389/fnut.2022.961697&domain=pdf&date_stamp=2022-07-29
mailto:laikp_hospital@126.com
https://doi.org/10.3389/fnut.2022.961697
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnut.2022.961697/full
https://covid19.who.int
https://covid19.who.int
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Li et al. 10.3389/fnut.2022.961697

severe symptoms (2). A systematic review of 52 pooled studies

showed that patients with cancer and infected with COVID-

19 exhibited a higher death risk (3). Similarly, Ahmadi’s

group showed that COVID-19 brings unfavorable survival

outcomes for patients with colon cancer via the alteration

of the immune cell infiltration-linked process (4), and the

COVID-19 pandemic led to widespread disruption of colorectal

cancer services (5). So, there is a need to identify alternative

therapeutic compounds to reduce the severity and mortality rate

of COVID-19 in patients with cancer. Colon adenocarcinoma

(COAD), the most frequently diagnosed histological subtype

of colorectal cancer, is one of the most prevalent malignant

tumors in the gastrointestinal system worldwide (6, 7). The

5-year survival rate of patients with advanced COAD is <

10% (8). Cumulating evidence has suggested the effectiveness

of Traditional Chinese Medicines (TCMs) in cancer treatment

(9, 10). One of the possible mechanisms is immune system

regulation in patients with cancer (11). In addition, TCMs

modulate the gut microbiota, which is considered a pathogenic

factor of COAD (12). Besides the antitumor role, TCMs have

also been reported to be effective in treating COVID-19 via their

antiviral and anti-inflammatory activities (13, 14). Curcumol,

a common TCM, is isolated from Rhizoma curcumae. The

antitumor and antiviral effects of curcumol are well-documented

(15, 16). Curcumol, in particular, has been shown to induce

cell cycle arrest and increase the sensitivity of colon cancer

to chemotherapy (17, 18). This study aimed to determine

the pharmacological targets and the molecular mechanisms

controlled by curcumol using network pharmacology and an in

vitro COAD model. The results of this study will provide novel

insight into the possible use of curcumol for treating patients

with COAD and COVID-19.

Materials and methods

Identification of curcumol’s targets
against COAD and COVID-19

The transcriptome data from patients with COAD were

obtained from The Cancer Genome Atlas (TCGA) database

(https://portal.gdc.cancer.gov/) to identify COAD-associated

Abbreviations: COAD, colon adenocarcinoma; COVID-19, coronavirus

disease 2019; TCGA, The Cancer Genome Atlas; GO, gene ontology;

KEGG, Kyoto Encyclopedia of Genes and Genomes; TCMSP,

Traditional Chinese Medicine Systems Pharmacology Database and

Analysis Platform; OS, overall survival; TCMs, Traditional Chinese

Medicines; SLC6A3, solute carrier family 6 member 3; GABRP, gamma-

aminobutyric acid receptor subunit pi; BCHE, butyrylcholinesterase;

CYP3A4, cytochrome P450 3A4; HSD17B2, 17-beta-hydroxysteroid

dehydrogenase type 2; PGR, progesterone receptor; GABRD,

gamma-aminobutyric acid receptor subunit delta.

genes. Using theDEseq2 package of R&Bioconductor, genes with

a false discovery rate of <0.05 and a |logfold change| of >1 were

considered differentially expressed genes (19). For the COVID-

19-associated genes, keywords such as “coronavirus COVID-19,”

“coronavirus disease 2019,” “severe acute respiratory syndrome

coronavirus 2,” and “COVID-19” were subjected to databases

search, including the Genecards Database, Online Mendelian

Inheritance in Man Database (https://omim.org/), Therapeutic

Target Database (20), Comparative Toxicogenomics Database

(21), and National Center for Biotechnology Information

(https://www.ncbi.nlm.nih.gov/). The pharmacological targets

of curcumol were determined using various online tools and

databases, including Swiss Target Prediction and Bioinformatics

Analysis Tool for Molecular Mechanisms of Traditional Chinese

Medicine (Batman-TCM) (22, 23). The target genes were

subjected to UniProt for human database correction (24).

The COVID-19-, COAD-, and curcumol-associated genes were

compared and overlapped to obtain the potential curcumol’s

targets for treating COVID-19 and COAD.

Clinicopathological analysis and
functional characterization of curcumol’s
targets against COAD and COVID-19

To determine the pathological roles of the curcumol’s targets

in COAD, Cox proportional hazards models were applied in

univariate survival analysis as a function of clinical variables

and gene expression. The interaction of the identified curcumol’s

targets was analyzed using the STRING database (version 11.0)

and Cytoscape (version 3.6.1) (25, 26). The functions and

signaling pathways of curcumol’s targets against COAD and

COVID-19 were determined using Gene Ontology (GO) and

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway

enrichment analyses.

Cell culture study

The human lung adenocarcinoma cell line, A549, was

incubated with high glucose Dulbecco’s Modified Eagle Medium

(DMEM, Solarbio, Beijing), 0.5% penicillin-streptomycin

(Solarbio, Beijing), and 5% fetal bovine serum (Solarbio,

Beijing) in 5% CO2 at 37
◦C.

Cell proliferation analysis

The cells were cultured in a 96-well plate at a cell density

of 2 × 104 cells/well and treated with different doses of

curcumol (5, 25, and 75µM) for 48 h. Following the co-

incubation, cell proliferation was calculated using the cell-

counting-kit-8 method (Beyotime Biotechnology, China), as

reported previously (27).
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Immunostaining procedures

After the curcumol treatment, A549 cells were fixed with a

freshly prepared paraformaldehyde solution (4%, v/v) for 30min

at room temperature, followed by blocking with bovine serum

albumin solution (5%, v/v) for 1 h at room temperature. The cells

were then incubated at 4◦C overnight with primary antibodies

against BCHE or CYP3A4 (1:200, Bioss, Beijing, China).

The secondary antibody with a fluorescent dye (Beyotime

Biotechnology, China) was applied to bind the antigen–antibody

complex. The cell nuclei were stained using 4’, 6-diamidino-

2-phenylindole dihydrochloride dye (Abcam, United States).

The fluorescence-labeled positive cells were counted under the

fluorescence microscropy system.

Statistical analysis

The statistical data were expressed as the mean ± standard

deviation. Comparisons between control and treatment

groups were determined using the Statistical Product and

Service Solutions (SPSS, 19.0 version) software (Chicago,

IL, United States), followed by a one-way analysis of variance

(ANOVA) using Tukey’s post-hoc test. The statistical significance

was identified as p < 0.05.

Results

Identification of pharmacological targets
of curcumol for treating COVID-19 and
COAD

We searched the available online databases and identified

8,339 genes associated with COVID-19 (Figure 1A). To identify

COAD-associated genes, we analyzed the transcriptome data of

patients with COAD and obtained 6,456 differentially expressed

genes (Figure 1A).When the COVID-19- and COAD-associated

genes were compared, 803 shared genes were found (Figure 1B),

of which 414 downregulated and 389 upregulated genes were

identified in patients with COAD (Figure 1B). In addition,

we identified 151 curcumol-associated genes from different

databases (Figure 1A). Then, we compared the curcumol-

associated genes with COVID-19/COAD-associated genes to

determine the pharmacological targets of curcumol in COVID-

19 and COAD. We found 18 target genes shared by curcumol,

COVID-19, and COAD (Figure 1A). The molecular network

analysis using Cytoscape further highlighted the protein–

protein interaction of the 7 core targets, including solute carrier

family 6 member 3 (SLC6A3), gamma-aminobutyric acid

receptor subunit pi (GABRP), butyrylcholinesterase (BCHE),

cytochrome P450 3A4 (CYP3A4), 17-beta-hydroxysteroid

dehydrogenase type 2 (HSD17B2), progesterone receptor

(PGR), and gamma-aminobutyric acid receptor subunit

delta (GABRD) of curcumol against COVID-19 and COAD

(Figure 1C; Supplementary Table 1).

Clinicopathological analysis of
curcumol’s target genes for treating
COVID-19 and COAD

Cox proportional hazards models were applied in univariate

analysis of overall survival (OS) as a function of clinical variables

and gene expression of the 7 core targets. Our results showed

that the expression of GABRD was significantly associated with

the hazard ratio of COAD (Supplementary Table 2). Survival

analysis using the Kaplan–Meier estimator further highlighted

that the COAD patients with higher expression of GABRD had

a poorer OS rate (Figure 2A). In addition, the higher expression

of GABRD was correlated with the later stage (Figure 2B),

metastatic tumor (Figure 2C), and a higher number of tumors

spread to the lymph nodes (Figure 2D) in COAD.

Functional characterization of curcumol
for treating COVID-19 and COAD

The core targets of curcumol were subjected to GO and

KEGG enrichment analyses to determine their functional

role in treating COVID-19 and COAD. In the GO analysis,

our results highlighted the biological processes related to

metabolism and biosynthesis, especially fat metabolism and

biosynthesis, such as long-chain fatty acid biosynthetic and

metabolic processes and fat-soluble vitamin metabolic processes

(Figure 3A). In addition, steroid hormone biosynthesis and

steroid hormone-mediated signaling pathways were found to be

controlled by curcumol’s targets (Figure 3A). More importantly,

we found curcumol’s targets’ contributions to the biological

processes related to growth and development, especially gland

development (Figure 3B). In terms of molecular function, our

results highlighted the steroid binding and activities such as

steroid hormone receptor, steroid dehydrogenase, and steroid

hydroxylase activities (Figure 3C).

Moreover, many molecular functions related to ion

channels, such as ion channel, anion transmembrane

transporter, sodium symporter, chloride symporter, and

extracellular ligand-gated ion channel activities, were observed

(Figure 3C). The observed biological processes and molecular

functions occurred in the chloride channel complex, nuclear

envelope lumen, ion channel complex, transmembrane

transporter complex, transporter complex, organelle envelope

lumen, and plasma membrane raft (Figure 3D). Finally,

the KEGG pathway enrichment further highlighted the

involvement of curcumol’s targets in steroid hormone

biosynthesis, retrograde endocannabinoid signaling, chemical

Frontiers inNutrition 03 frontiersin.org

https://doi.org/10.3389/fnut.2022.961697
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Li et al. 10.3389/fnut.2022.961697

FIGURE 1

Network pharmacology identified the targets of curcumol against COVID-19 and colon adenocarcinoma. (A) Right panel: venn diagram shows

the number of common targets of curcumol, COVID-19, and colon adenocarcinoma. Left panel: protein–protein interaction of curcumol’s

target against COVID-19 and colon adenocarcinoma. (B) Volcano plot shows the di�erentially expressed genes in colon adenocarcinoma

targeted by curcumol. The blue dots represent the downregulated genes; the red dots represent the upregulated genes. (C) Cytoscape analysis

highlights the protein–protein interaction of curcumol’s core targets against COVID-19 and colon adenocarcinoma.

carcinogenesis through receptor activation, and DNA adducts

linoleic acid and retinol metabolism (Figure 3E).

Curcumol treatment suppressed cell
proliferation and altered the expression
of BCHE and CYP3A4 in the COAD cell
line

Cell proliferation was determined using the MTT assay

to assess the pharmacological action of curcumol on lung

cancer cells, A549. Our data indicated that the treatments

with curcumol caused a significant dose-dependent inhibition

of cell proliferation in lung adenocarcinoma cells (Figure 4A).

In addition, immunofluorescence staining analysis showed that

curcumol treatment resulted in increased expression of BCHE

and reduced expression of CYP3A4 in A549 cells, as compared

to the control group (Figure 4B).

Discussion

This study aimed to investigate the possible use of

curcumol therapy for COVID-19 and COAD comorbidity.

Using network pharmacology, we identified 7 core targets of
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FIGURE 2

Clinicopathological analysis of curcumol’s targets against COVID-19 and colon adenocarcinoma. (A) Survival analysis using the Kaplan–Meier

estimator showed that the colon adenocarcinoma patients with higher expression of GABRD had poorer overall survival rates. Higher

expressions of GABRD in colon adenocarcinoma patients are associated with (B) advanced stages, (C) metastatic tumors, and (D) a higher

number of tumors spread to the lymph nodes. M0 means cancer has not spread to distant organs. M1 means cancer has spread to distant

organs. N represents the number of lymph nodes containing the tumor.

curcumol against COVID-19 and COAD, including GABRD,

GABRP, BCHE, CYP3A4, PGR, HSD17B2, and SLC6A3. Our

clinicopathological analysis further suggested the prognostic

value of GABRD in patients with COAD. GABRD, a subunit of

GABAA receptor subtypes, has been reported to be associated

with the development of many cancers (28). A clinical study

suggested that GABRD promoted progression and predicted

poor prognosis in colorectal cancer (29). In addition, gene

set enrichment analysis further showed that the enhanced

expression of GABRD predicted poor prognosis in patients

with COAD (30). In our results, another GABA subunit,

GABRP, was also found to be targeted by curcumol. It was

reported that GABRP regulated macrophage recruitment and

tumor progression in pancreatic cancer (31). In breast cancer,

GABRP was found to control the stemness of triple-negative

breast cancer cells through epidermal growth factor receptor

signaling (32).

A study of the bronchial asthma mice model showed that

the inhibition of GABRP could reduce the differentiation of

airway epithelial progenitor cells into goblet cells, leading to

reduced inflammation (33). So, the GABAA receptor subtypes

GABRD and GABRP might be the promising targets of
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FIGURE 3

(Continued)
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FIGURE 3

(Continued)
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FIGURE 3

(Continued)
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FIGURE 3

(Continued)
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FIGURE 3

Functional characterization of curcumol’s targets against COVID-19 and colon adenocarcinoma. The bubble plot highlights the involvement of

curcumol’s targets in biological processes related to (A) fat and steroid hormone biosynthesis, (B) gland development, and (C) steroid binding

and ion channel activity. (D) Gene ontology showed the occurred cell components. (E) KEGG enrichment analysis showed the contribution of

curcumol’s targets in cell signaling pathways of carcinogenesis. The size of the bubble represents the number of genes. The color of the bubble

represents the significance of the terms.
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FIGURE 4

Curcumol treatment inhibited cell proliferation of colon adenocarcinoma and altered the expression of BCHE and CYP3A4. (A) MTT assay

showed significant dose-dependent inhibition of cell proliferation in lung adenocarcinoma cell A594 caused by curcumol treatments (0–75µM).

(B) Immunofluorescence staining showed that the treatment of curcumol induced the expression of BCHE and reduced the expression of

CYP3A4 in COAD cell, as compared to the control group. *p < 0.05.

curcumol for treating COAD and COVID-19. BCHE, an α-

glycoprotein synthesized in the liver, is abundant in the intestine

and lung (34). The serum level of BCHE was reported to be

decreased in many clinical conditions such as inflammation

and infections (35). BCHE’s low expression level has been

documented in colorectal cancer (36), and its activities were

found to be decreased in COAD patients (37). In addition,

inhibition of BCHE is considered to reduce immunity through

the cholinergic anti-inflammatory pathway, although its role in

lung inflammation is still unknown (38). A rat study of sepsis
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suggested that BCHE can function as an inflammatory marker

in sepsis (39), further supporting its role in inflammation.

The other target of curcumol, CYP3A4, is a member of the

cytochrome P450 superfamily of enzymes. Many clinical trials

suggested the importance of the cytochrome P450 system in

the drug discovery of COVID-19 (40–42) because CYP3A

metabolism is altered in patients with COVID-19 having

increased cytokine release. In addition, an in vitro study of colon

cancer stem cells demonstrated the contribution of CYP3A4 in

the chemoresistance of colon cancer and its negative impact

on disease-free survival in the patients (43). So, targeting these

genes with curcumol might provide an alternative approach for

treating COVID-19 and COAD.

In the second part of our study, we focused on the functional

roles of the curcumol targets. Our results highlighted the

regulation of fat metabolism and biosynthesis by curcumol.

Fat metabolism and excess visceral fat were reported to be

closely associated with the severity of clinical outcomes in

patients with COVID-19 (44, 45). It was further supported by

an observational study and Mendelian randomization analysis

that central fat distribution and metabolic consequences of

excess weight are strongly associated with the severe COVID-19

outcomes (46). Furthermore, dietary fat and metabolism were

reported to affect colonic tumorigenesis (47). A mice study

showed that obesity is linked to altered metabolism in colon

carcinogenesis through the JNK/STAT3-signaling pathway (48).

Alex’s group demonstrated that short-chain fatty acids stimulate

tumor promoter angiopoietin-like 4 synthesis in human COAD

cells (49).

Conclusion

This study predicts the pharmacological targets of curcumol

for treating COVID-19 and COAD. Additionally, the predicted

targets involved in the biological andmolecular functions related

to fat metabolism and gland development are reported to be

associated with the pathogenesis and severity of COVID-19 and

COAD, suggesting the possible use of curcumol as a therapeutic

compound for these diseases. The findings of this study need

further validation by additional animal and preclinical studies

before clinical use.
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