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Background and aims: Although iron homeostasis has been associated with

liver function in many observational studies, the causality in this relationship

remains unclear. By using Mendelian Randomization analyses, we aimed to

evaluate the genetic e�ects of increased systemic iron levels on the risk of

liver injury and various liver diseases. Moreover, in light of the sex-dependent

iron regulation in human beings, we further estimated the sex-specific e�ect

of iron levels in liver diseases.

Methods: Independent single nucleotide polymorphisms associated

with systemic iron status (including four indicators) at the genome-wide

significance level from the Genetics of Iron Status (GIS) Consortium were

selected as instrumental variables. Summary data for six liver function

biomarkers and five liver diseases were obtained from the UK Biobank, the

Estonian Biobank, the eMERGE network, and FinnGen consortium. Mendelian

Randomization assessment of the e�ect of iron on liver function and liver

diseases was conducted.

Results: Genetically predicted iron levels were positively and significantly

associated with an increased risk of di�erent dimensions of liver injury.

Furthermore, increased iron status posed hazardous e�ects on non-alcoholic

fatty liver disease, alcoholic liver disease, and liver fibrosis/cirrhosis. Sex-

stratified analyses indicated that the hepatoxic role of iron might exist in

NAFLD and liver fibrosis/cirrhosis development among men. No significantly

causal relationship was found between iron status and viral hepatitis.
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Conclusion: Our study adds to current knowledge on the genetic role of

iron in the risk of liver injury and related liver diseases, which provides clinical

and public health implications for liver disease prevention as iron status can

be modified.

KEYWORDS

iron, mendelian randomization, liver injury, non-alcoholic fatty liver disease, liver

fibrosis/ cirrhosis

Introduction

Iron is essential for many vital functions, however, there

are no regulated means by which excess iron can be disposed

of in humans. Therefore, whenever systemic iron exceeds

its needs and storage capabilities are saturated, toxicity due

to iron overload may arise (1). The liver plays a core

role in systemic iron regulation. It is a major storage site

for iron, taking up iron, and releasing iron back into the

circulation (2). Additionally, the liver acts as a regulator in

iron absorption and recycling for the organ to synthesize

proteins to modulate iron homeostasis (3). Therefore, hepatic

injury and dysfunction can disturb iron hemostasis. On the

other hand, the presumption that iron-catalyzed oxidative

injury plays a key role in the pathology of various forms of

liver disease permeates the scientific and clinical literature (3).

Iron is implicated in the pathogenesis of several human liver

diseases, as hepatocellular and/or mesenchymal iron deposition

was found in them. The type of liver siderosis (parenchymal,

mesenchymal, or mixed) and its distribution throughout the

lobule and the liver are useful means for suggesting its

etiology (4). Accumulated observational studies have reported

the association between iron overload and liver dysfunction

(5–12). Nevertheless, confusion and conflict exist as the

pathogenesis of various liver diseases is complicated. Moreover,

for observational studies, it is difficult to distinguish causal

and spurious associations due to problems of confounding and

reverse causation.

Abbreviations: GWAS, genome-wide association study; NAFLD,

Nonalcoholic fatty liver disease; ALT, alanine aminotransferase AST,

aspartate aminotransferase; ALP, alkaline phosphatase; GGT, gamma-

glutamyl transferase; DBIL, direct bilirubin; TBIL, total bilirubin; HFE,

hemochromatosis protein; IVW, inverse variance weighted; MR,

Mendelian Randomization; SNP, single-nucleotide polymorphism;

TMPRSS6, transmembrane serine protease 6; GIS, Genetics of Iron

Status; UKBB, UK Biobank; HH, Hereditary haemochromatosis; ALD,

Alcoholic liver disease; HCC, hepatocellular carcinoma; KC, Kup�er cells;

CHC, chronic hepatitis C; HBV, hepatitis B virus; NASH, non-alcoholic

steatohepatitis; CLDs, chronic liver diseases; SD, standard deviation; OR,

odds ratio; CI, confidence interval.

Plasma concentration of liver enzymes (i.e., alanine

aminotransferase [ALT], aspartate aminotransferase [AST],

alkaline phosphatase [ALP], and gamma-glutamyl transferase

[GGT], direct bilirubin [DBIL], and total bilirubin [TBIL])

are routinely measured clinical markers that represent

different dimensions of liver function (13). Observational

and laboratory studies suggested that systemic-iron

regulation was associated with plasma concentrations of

these enzymes (7, 10, 14). Iron overload is supposed to

correlate with liver dysfunction, however, it is currently

uncertain whether iron disorders contribute to, or result from

liver dysfunction.

Genes are randomly allocated at conception, so that

genetic effects on the exposure cannot be affected by classical

confounding factors or reverse causation, as in the situation

where the phenotype level is influenced by the presence of the

disease (15). Mendelian Randomization (MR), where genetic

variants that are strongly associated with a risk factor of interest

are used to test its causal effect on an outcome, can help to

distinguish causal effects from associations due to confounding

or reverse causality (16). By studying the effect of iron status

related to randomly allocated alleles, such an MR approach has

previously been used in targeted analyses to investigate the effect

of iron status on the risk of Parkinson’s disease, coronary artery

disease, stroke, and asthma (15, 17–19). However, so far, the

causal effects of systemic iron status on liver function and related

liver diseases are unclear.

In this work, we have extracted the largest available

and updated datasets from UK Biobank to interrogate the

potential effect of iron status (referred to serum iron, ferritin,

transferrin, and transferrin saturation in a pattern consistent

with an effect on systemic iron status), on liver function,

proxied by multiple biomarkers (ALT, AST, ALP, GGT, DBIL,

and TBIL), as well as on related liver diseases (including

nonalcoholic fatty liver disease (NAFLD), alcoholic liver disease

(ALD), viral hepatitis, liver fibrosis and/or cirrhosis and liver

malignant neoplasm). Furthermore, we have also investigated

whether systemic iron levels have a sex-specific effect on liver

diseases since the morbidity of them are gender-dependent.

Replication analyses in the largest liver disease genome-

wide association study (GWAS) and reverse MR analysis
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were performed to comprehensively evaluate the iron-liver

disease associations.

Materials and methods

Study design

This is a two-sample Mendelian Randomization study using

summary statistics from two different studies to identify the

causal effect of exposure on outcome. Appropriate patient

consent and ethical approval were obtained in the original

studies from which data for this work were obtained. The study

design is depicted graphically in Figure 1.

Genetic instruments

As genetic instruments for systemic iron status, we selected

single-nucleotide polymorphisms (SNPs) that related to 4

clinically measured biomarkers. Increased systemic iron status

is associated with increased serum iron, ferritin, and transferrin

saturation, as well as decreasing transferrin levels (20). A GWAS

performed by the Genetics of Iron Status (GIS) Consortium

on 48,972 European subjects identified 3 such SNPs associated

with all 4 biomarkers at genome-wide significance (P < 5 ×

10−8): rs1800562 and rs1799945 in the hemochromatosis (HFE)

gene and rs855791 in the transmembrane protease serine 6

(TMPRSS6) gene (21), with low linkage disequilibrium (LD:

r2 < 0.01) between the two SNPs in the HFE gene (21, 22).

Supplementary Table 1 shows all iron status instrumental SNPs

were strong instruments for MR analysis as measured by

F-statistics > 10 (23).

We also performed a reverse MR analysis to estimate

the effect of NAFLD on the alteration of iron status. The

NAFLD GWAS study was recruited from clinics at several

leading European tertiary liver centers involving 1,483 biopsied

NAFLD cases and 17,781 controls (24). Twelve SNPs associated

with NAFLD at the genome-wide significance and with low

linkage disequilibrium were established as genetic instruments

(Supplementary Table 2).

Study outcomes

The outcomes of our MR analysis were liver function

biomarkers and liver diseases. We obtained associations with

outcomes using summary statistics from the UK Biobank,

provided by Neale Lab (http://www.nealelab.is/uk-biobank/), in

361,194 European descent participants. The study was adjusted

for age, age square, and 20 principal components in sex-specific

analysis and additionally adjusted for sex, interactions of

sex with age and age square in the overall analysis. For liver

function biomarkers, we retrieved GWAS of untransformed

variable type (natural unit) from Neale Lab. Among all the liver

diseases examined by Neale Lab, we excluded those of self-

reported conditions, unclear origin of liver diseases, unspecific

classification (such as other inflammatory liver diseases, other

diseases of liver), relative small case numbers and duplicates.

Therefore, five out of eighteen classified liver diseases were

included in our primary analysis. The population of patients

with an established diagnosis of liver disease was characterized

according to the International Statistical Classification of

Diseases and Related Health Problems of the 10th revision

(ICD-10). Liver fibrosis/cirrhosis was diagnosed according to

ICD10: K74.0 (Hepatic fibrosis) and K74.2 (Hepatic fibrosis

with hepatic sclerosis). NAFLD diagnosis was established from

hospital records according to ICD10: K75.81, ICD10: K76.0,

and ICD10: K76.9. ALD was defined according to ICD10:

K70 and hepatitis ICD10: K73 (25). Supplementary Tables 3, 4

showed mean level and standard deviation (SD) of the

included biomarkers, as well as the numbers of participants

and cases in analyses. The summary data and phenotype

information of liver enzymes and liver diseases can be

accessed from https://docs.google.com/spreadsheets/d/

1kvPoupSzsSFBNSztMzl04xMoSC3Kcx3CrjVf4yBmESU/edit?

ts=5b5f17db#gid=227859291. The extracted information and

web link to each GWAS of the outcomes were provided in the

Supplementary Data Sheet.

The replication analysis for NAFLD was conducted in an

updated GWAS meta-analysis of four cohorts: The Electronic

Medical Records and Genomics (eMERGE) network, the UK

Biobank, the Estonian Biobank, and FinnGen. This GWAS

meta-analysis included 8,434 NAFLD cases and 770,180

controls, making it the largest genome-wide analysis for a

clinical diagnosis of NAFLD (24). In addition, we also performed

replicate analysis in the most updated publicly available dataset

of UK Biobank provided by Gene ATLAS (http://geneatlas.

roslin.ed.ac.uk) (26). In 452,264 European descent participants,

901 cases of liver fibrosis/cirrhosis, 919 cases of ALD, and 625

cases of viral hepatitis were identified.

In the reverse MR analysis, the outcomes were the

four indicators of iron status including serum iron, ferritin,

transferrin saturation, as well as transferrin levels. Summary-

level data for these iron markers were obtained from

the Genetics of Iron Status (GIS) Consortium (21). Data

from the Consortium were extracted through the MR-Base

platform (27).

Statistical analysis

To test the hypothesis that genetic instruments affect liver

function and liver diseases by affecting iron levels, we utilized

MR analysis methods. Wald estimates for each SNP were

calculated as the ratio of genetic association on outcomes and
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FIGURE 1

Graphical overview of the two-sample MR study design. Three SNPs, each of which has a genome-wide significant association with increased

serum iron, increased ferritin, increased transferrin saturation and decreased transferrin levels, were used as instruments for systemic iron status.

By using genetic instruments associated with these four iron status biomarkers, the MR approach can be used to estimate the causal e�ect of

systemic iron status on the risk of liver function (biomarkers including ALP, ALT, AST, GGT, DBIL, TBIL) and liver disease (NAFLD, ALD, fibrosis and

cirrhosis, viral hepatitis, malignant neoplasm). Replication and reverse MR analyses were performed in the largest available GWAS studies. MR,

Mendelian randomization; SNP, single-nucleotide polymorphism.

genetic association on iron status (28). For liver biomarker,

the effect estimate was beta of standardized liver biomarker

level (SD). For liver disease, the effect estimate was odds

ratio. Genetically determined 1-SD increase for iron indicators

(or decrease for transferrin levels) were associated with an

increase of beta (SD) for liver biomarkers or odds ratio for liver

diseases. Standard errors were calculated using the Delta method

(29). Then we performed fixed-effect inverse-variance weighted

(IVW) meta-analysis for all 3 instrument SNPs to derive the

overall MR estimate (23). A threshold of P < 0.05 was used to

determine statistical significance.

For sensitivity analyses, we tested our findings in an

updated dataset (Gene ATLAS) which included a larger sample

size and more cases to evaluate whether the results were

affected markedly by sample size. To further investigate the

potential bias of the findings due to possible pleiotropy, we
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also used the weighted median and MR-Egger methods to

confirm findings from our main analyses (30, 31). Specifically,

the weighted median method is robust to invalid instruments

and able to provide consistent estimation even when up to

50% of the weight is from invalid SNPs (30). The MR-

Egger method may provide correct estimates as long as the

instrument strength independent of direct effect assumption

is satisfied. A non-null MR-Egger intercept suggests that the

IVW estimate is invalid (31). Furthermore, we checked for

secondary phenotypes associated with the selected instruments

in two comprehensive curated genotype to phenotype cross-

references, i.e., Ensembl (http://www.ensembl.org/index.html)

and PhenoScanner (www.phenoscanner.medschl.cam.ac.uk).

Statistical power was estimated by using an online tool (https://

shiny.cnsgenomics.com/mRnd/) (32).

All statistical analyses were conducted using the “Mendelian

Randomization” package in the statistical program R version

3.6.1 (R Foundation for Statistical Computing, Vienna, Austria).

Results

Genetic instruments for systemic iron
status

We identified 3 SNPs associated with systemic iron status

from the GIS meta-analysis. The effect on iron levels for

each copy of the effect allele of instrument SNP expressed

as the number of SD from the mean were listed in

Supplementary Table 1. The F-statistics was high for all genetic

instruments, as can be expected given the sample size of 48,972

individuals (21).

Associations with liver biomarkers

Descriptive characteristics of the UK Biobank participants

included in MR analyses, together with the number of

participants and cases available for each outcome were provided

in Supplementary Tables 3, 4.

Overall, genetic liability to higher iron status was associated

with increased liver injury risk (indicated by ALP, ALT, AST,

DBIL, and TBIL level), albeit the association with GGT was

not statistically significant (Figures 2A–C). In mainMR analyses

(IVW), higher predisposition to genetically predicted serum

iron (each increase in 1 SD) was strongly related to an increase

of 1.43 SD of ALP (95% CI 1.00–1.85, P = 6.4 × 10−11), 0.57

SD of ALT (95% CI 0.35–0.79, P = 5.8 × 10−7), 0.65 SD of

AST (95% CI 0.48–0.82, P = 1.7 × 10−13), 0.10 SD of DBIL

(95% CI 0.08–0.11, P = 1.0 × 10−37), 0.63 SD of TBIL (95%

CI 0.56–0.70, P = 2.2 × 10−67), but was not related to GGT

(0.39, 95% CI −0.29 to 1.08, P = 0.261). Similarly, genetically

determined increase (or decrease, for lower transferrin levels

indicating higher iron status) in other iron status biomarkers

were also significantly associated with the rise of ALP, ALT,

AST, DBIL, and TBIL (Figures 2A–C). The associations were

persistent in all sensitivity analyses including weighted median

and MR-Egger method, though a few possible evidence of

unbalanced horizontal pleiotropy was revealed by the MR-Egger

method (Supplementary Table 5). A search of SNP-phenotype

associations demonstrated that none of three SNPs were listed in

either the Ensembl or PhenoScanner database as being strongly

associated with traditional liver diseases risk factors.

Associations with liver diseases

Given the causal relationships between iron status and

liver biomarkers, we further investigated the five classified liver

diseases available in the Neale Lab. As shown in Figure 3, higher

iron status was positively associated with risk of NAFLD (serum

iron odds ratio 1.89, per SD unit increase; 95% CI 1.05–3.39,

P = 0.033) and ALD (serum iron odds ratio 1.76, per SD unit

increase; 95% CI 1.01–3.06, P = 0.047) based on the IVW

estimates (P < 0.05 for all 4 iron status biomarkers). Similar

results that deleterious effects of iron overload on the risk of

NAFLD and ALD were also obtained for other instruments of

iron status biomarkers (Figure 3).

In addition, serum transferrin was negatively related to

liver fibrosis/cirrhosis (odds ratio 0.50, per SD unit increase;

95% CI 0.25–0.97, P = 0.041) and malignant neoplasm (odds

ratio 0.42, per SD unit increase; 95% CI 0.21–0.86, P = 0.018).

The positive associations remained consistent in the weighted

median mode, albeit with wider CI in the MR-Egger method

(Supplementary Table 6).

Since the prevalence and severity of liver disease in many

populations around the globe were gender-specific, we also

examined sex differences in 3 diseases of which genetic summary

data including both women and men were publicly available.

Interestingly, genetically predicted systemic iron status was

associated with higher risk of NAFLD in men (Figure 4).

Similar causality was found for body systemic markers and

liver fibrosis/cirrhosis risk in men after stratifying sex. There

was no evidence for an association between iron and viral

hepatitis both in women and men. Weighted median and MR-

Egger estimates in the sensitivity analyses produced qualitatively

consistent effects as the IVW estimates (Supplementary Table 7).

Despite this, we observed that the power to demonstrate an

insignificant relationship between iron status and liver diseases

was limited (Supplementary Table 8).

Replication analyses for iron-liver disease
association

To comprehensively study the causality of iron- NAFLD

association and minimize selection bias, we further performed

an MR analysis in a recently reported NAFLD genome-wide
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FIGURE 2

Associations of genetically preidicted iron status and liver biomarker. (A) Causal e�ects of iron status on ALP, ALT, AST, GGT; (B) Causal e�ects of

iron status on DBIL; (C) Causal e�ects of iron status on TBIL. The beta (95% CI) of standardized liver biomarkers (ALP, ALT, AST, GGT, DBIL, and

TBIL) per SD increase of iron status biomarkers were estimated using fixed-e�ect inverse-variance weighted meta-analysis. Beta, the Mendelian

Randomization e�ect of continuous variable outcome; 95% CI, 95% confidence interval; ALP, alkaline phosphatase; ALT, alanine

aminotransferase; AST, aspartate aminotransferase; GGT, gamma glutamyltransferase; DBIL, direct bilirubin; and TBIL, total bilirubin; SD,

standard deviation.

meta-analysis. This study included 4 cohorts of electronic

health record-documented NAFLD in participants of European

ancestry (8,434 cases and 770,180 controls), representing the

largest genome-wide analysis for a clinical diagnosis of NAFLD.

Consistently, we found that genetic liability to higher systemic

iron status was significantly and positively associated with
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FIGURE 3

Associations of genetically predicted iron status and liver diseases. The OR (95% CI) of liver diseases (NAFLD, ALD, fibrosis and cirrhosis, viral

hepatitis, and malignant neoplasm) per SD increase of iron status biomarkers were estimated using fixed-e�ect inverse-variance weighted

meta-analysis. OR, odds ratio; 95% CI, 95% confidence interval; NAFLD, nonalcoholic fatty liver disease; ALD, alcoholic liver disease; SD,

standard deviation.

NAFLD risk, odds ratios estimation of per SD increase in

biomarker levels were 1.19 (95% CI 1.07–1.31, P = 5.3 × 10−3)

for serum iron, 1.15 (95% CI 1.06–1.24, P = 2.3 × 10−3) for

transferrin saturation, 1.57 (95% CI 1.29–1.85, P = 1.7 × 10−3)

for ferritin, and 0.8 (95% CI 0.66–0.94, P = 1.9 × 10−3) for

serum transferrin (Figure 5). The positive association between

iron status and NAFLD risk was also replicated in both weighted

median and MR-Egger estimations (Supplementary Table 9).

For other liver diseases, after updating case number

and sample size from Gene ATLAS (Figure 6), genetically

determined higher systemic iron status (represented by all

four biomarkers) became significantly associated with increased

fibrosis and cirrhosis risk, odds ratios per SD increase in

biomarker levels were 1.53 (95% CI 1.11–2.11, P = 0.010) for

serum iron, 1.55 (95% CI 1.23–1.95, P = 2.1 × 10−4) for

transferrin saturation, 4.44 (95% CI 2.19–8.99, P = 3.4 × 10−5)

for ferritin, and 0.42 (95% CI 0.30–0.59, P = 4.5 × 10−7) for

serum transferrin. In line with our primary analyses in Figure 3,

systemic iron status was significantly associated with higher

ALD risk, but had no causal effect on viral hepatitis.
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FIGURE 4

Sex-specific associations of genetically predicted iron status and liver diseases. The OR (95% CI) of liver diseases (NAFLD, fibrosis and cirrhosis

and viral hepatitis) by sex per SD increase of iron status biomarkers were estimated using fixed-e�ect inverse-variance weighted meta-analysis.

OR, odds ratio; 95% CI, 95% confidence interval; NAFLD, nonalcoholic fatty liver disease; SD, standard deviation.

FIGURE 5

Replication of associations of genetically predicted iron status and NAFLD in the largest NAFLD GWAS study. The ORs (95% CI) of NAFLD per SD

increase of iron status biomarkers were estimated using a fixed-e�ect inverse-variance weighted meta-analysis. OR, odds ratio; 95% CI, 95%

confidence interval; NAFLD, nonalcoholic fatty liver disease; SD, standard deviation.
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FIGURE 6

Replication of associations of genetically predicted iron status and liver diseases in the updated database. The ORs (95% CI) of liver diseases

(ALD, fibrosis and cirrhosis, viral hepatitis) per SD increase of iron status biomarkers were estimated using fixed-e�ect inverse-variance weighted

meta-analysis. OR, odds ratio; 95% CI, 95% confidence interval; ALD, alcoholic liver disease; SD, standard deviation.

Reverse MR analyses

To assess the genetic effects of liver disease on iron levels,

the MR estimates were performed in the opposite direction. By

using the established IVs for NAFLD, our results showed no

significant association for genetic liability to NAFLD on levels

of iron status indicators, except for an association with ferritin

level in the IVWmode (Supplementary Table 10).

Discussion

Although multiple observational studies have reported the

association between iron overload and liver dysfunction (7,

11, 14, 33), it is still unclear whether this association reflects

causation. Our findings from the MR analyses showed strong

evidence that genetic predisposition to higher systemic iron

status was related to a higher risk of liver injury, which

was reflected by increased blood concentration of ALT, AST,

ALP, DBIL, and TBIL. In further analyses on liver diseases,

our primary and replication results all showed that genetic

liability to higher iron status was associated with increased risks

of NAFLD, ALD, and liver fibrosis/cirrhosis. Moreover, our

analyses stratified by sex indicated that genetically predicted iron

status was associated with a higher risk of NAFLD and liver

fibrosis/cirrhosis in men. Although serum iron wasn’t found

to be significantly associated with liver malignant neoplasm,

other iron markers indicated the detrimental effect of iron on

the progression of this severe disease. No strong evidence was

found for a causal effect of genetically predicted iron status on

viral hepatitis. In the reverse MR analyses, no significant genetic

effects were observed for NAFLD progression on iron status.

Hereditary hemochromatosis (HH) is an iron overload

disease and is the most common genetic condition in people

of European descent (34). Observational evidence suggested

that patients with HH were associated with a 4∼11-fold risk

of liver disease, including hepatocellular carcinoma, hepatitis

C and nonalcoholic steatohepatitis (35). Other clinical studies

also reported that HH-related iron overload can result in

life-threatening clinical complications, most notably of which

were severe liver diseases such as cirrhosis or hepatocellular

carcinoma (HCC) (36, 37). Arguably, however, it remains

confusing whether the risk of liver disease in HH homozygotes

is attributable to disease penetrance, or from the independent

hepatotoxic effect of iron. Epidemiological studies suffer

from confounding and reverse causation, which is intrinsic

to their observational nature so they can hardly provide

conclusive evidence on the causality of an observed association.
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Thus, independent MR studies and large prospective trials

using more accurate methods of diagnosing liver disease

are needed to reach a conclusion on the crucial role

of iron.

So far, this is the first MR study to examine the causal

effect of predisposition to iron status on liver function.

Previous observational studies observed an elevation of serum

transaminases in most hemochromatosis patients and mouse

models of iron-induced liver injury (38–40). Serum ferritin

levels were also reported to associate with elevated liver function

enzymes (7, 14). However, the intrinsic causality between iron

status and liver function warrants to be clarified. Our results

of increased systemic iron status cause elevated circulating liver

injury biomarkers, including ALT, AST, ALP, DBIL, and TBIL,

provide strong genetic evidence that excess iron could be a

trigger for liver dysfunction.

The deleterious effect of higher iron levels on NAFLD

and ALD found in our study may get support from previous

observational and experimental studies. It is not uncommon

that epidemiological studies point toward an association

between high ferritin levels and the presence of NAFLD

and steatohepatitis (7, 11, 14, 41, 42). As an indicator of

systemic iron status, elevated serum ferritin concentration is an

independent predictor of advanced hepatic fibrosis in patients

with NAFLD (43). Accumulating evidence suggested that

hepatic mitochondrial dysfunction might contribute to NAFLD

development and severity, as occurs in experimental iron

overload (44). Moreover, hepatic iron excess might contribute

to the impairment of glucose homeostasis by influencing insulin

signaling and metabolic control, reinforcing the idea of a

possible role of iron in favoring NAFLD progression (45, 46).

Sets of data suggested a correlation between systemic iron

burden and the extent of liver damage in ALD patients (47,

48). The underlying pathogenic mechanisms of iron-promoted

alcoholic steatohepatitis may be ascribed to the ability that

alcohol and iron synergistically caused oxidative stress, stellate

cell activation, and hepatic fibrogenesis, an exaggerated effect on

liver disease progression (49). On the other hand, excess iron

accumulation in Kupffer cells (KC) has emerged as a central

event in hepatic toxicity in ALD (50), suggesting the dominant

role of iron in the hepatic toxicity of ALD.

Studies have shown that the risk of cirrhosis is increased in

iron-overloaded patients (51). Laboratory studies also reported

that iron-generated oxyradicals and lipid peroxidation results

in damage to hepatocellular organelles, which is thought to

contribute to the development of hepatic fibrogenesis (52). It

is highly necessary to use genetic variants to assess the genetic

effect of iron exposure on liver cirrhosis. Our study supports

the genetic association of increased iron levels with the risk of

developing liver fibrosis/cirrhosis. The underlining mechanism

of iron-triggered liver fibrosis/ cirrhosis progression could be

explained by a newly identified, iron-dependent, and non-

apoptotic cell death named ferroptosis (53). Previous studies

reported that excess iron-induced liver ferroptosis played a key

role in hepatic dysfunction and liver damage in different liver

fibrosis/cirrhosis mouse models (54, 55), indicating the crucial

effects of iron triggered ferroptosis in liver fibrosis/cirrhosis.

Although epidemiologic studies have yielded mixed results for

liver malignant neoplasm, there is an iron–cancer relationship

among patients with HH, who are prone to develop liver cancer

(33). However, we still emphasize that large prospective studies

in selected groups of participants are needed to evaluate the

independent pathogenic role of hepatic iron deposits in liver

fibrosis/cirrhosis and malignant neoplasm.

In this study, we observed a sex-dependent casual

association between iron status and NAFLD risk in men, similar

sex-dimorphic result was also found for liver fibrosis/cirrhosis.

These findings were corroborated by previous population-based

studies which reported sex-specific prevalence of liver disease

in HH patients, with the male gender increasing the estimated

effect size for liver disease association (34). The prevalence of

cirrhosis in the United States was reported to independently

associated with the male sex (56). Males are also shown more

susceptible to non-alcoholic fatty liver disease, non-alcoholic

steatohepatitis, and liver fibrosis than females in humans or

animals (57, 58). Previous observational studies suggested a

significantly higher propensity of NAFLD among men with

higher iron levels. The HH (H63D) mutation was reported

to be significantly associated with male NAFLD patients, but

not in female patients with NAFLD, suggesting that female

patients with the H63D mutation might be protected from the

development of NAFLD by iron loss through menstruation

or pregnancy (59). In accordance with this, participants with

higher dietary iron intake were subject to a higher prevalence

of NAFLD in a dose-response relationship manner, moreover,

after stratifying by gender, such association only remained

in the male population (60). The observed sexual dimorphic

associations between iron status with NAFLD and liver fibrosis/

cirrhosis progression may be explained by multiple pathways. It

was established that iron accumulation occurs later in women,

as serum ferritin levels in adult men were around 120 µg/L,

while the values remained low in women at around 30 µg/L

until menopause when ferritin levels increase to around 80

µg/L. This partially explained the stronger effect size of iron

on liver disease among men. In addition, estradiol and its

derivatives had a strong antioxidant capacity to suppress the

generation of iron-induced reactive oxygen species and lipid

peroxidation in the liver (61), which may prevent hepatocytes

from oxidative damage, inflammation, and cell death.

Since randomized trials are very difficult to perform in

the case of iron and liver disease, as investigating the long-

term effect would require not only a very long follow-up but

also a huge sample size, MR offers a cost-effective approach

to derive well-powered causal effect estimates. However, the

potential limitations of MR and this study deserve comment.

In our study, genetic variants of iron status were used as
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IVs to explore the association between iron on liver function

and liver disease based on 3 core MR assumptions: (1) The

association between the genetic variants and the exposure is

reliable, suggesting that the genetic IVs for the exposure should

be selected at a genome-wide significance level (P < 5 × 10−8).

In our MR study, we selected 3 SNPs strongly associated with

all four iron status biomarkers (P < 5 × 10−8) that are broadly

used in other MR studies (15, 17–19). The instrument strength

was high for all of them, as shown by their F-statistic values.

(2) The genetic variants should not be associated with any

possible known confounders. (3) The genetic variants should

affect the outcome only through the exposure. The second and

third assumptions are known collectively as independence from

pleiotropy. Pleiotropy is a potential source of bias specific to

MR studies. In sensitivity analysis, we checked for unknown

pleiotropy using the weighted median and MR-Egger methods

and found little indication of pleiotropy. Investigation for SNP-

associated secondary phenotypes using online databases also

found no evidence of traditional liver disease risk factors,

consistent with the assumption of no alternate causal pathways.

Moreover, we also note that a Wald-type estimator for MR

analysis of binary outcomes has been shown to induce bias,

although typically of small magnitude (within 10%) (62). In

addition, when interpreting our results, some concerns should

be taken into consideration. Firstly, due to the low incidence

of severe liver disease, the proportion of disease cases from UK

Biobank was relatively small, which might reduce the effect size

of the iron-disease estimate and result in statistically insufficient

for MR analysis. However, our persistent results in primary and

replication analyses showed a causal effect of iron overload on

the enhanced risk of liver injury, providing evidence to reach the

conclusion that increased iron is detrimental to liver function.

Secondly, although our findings on the sex-specific analysis

were supported by previous observational studies, it should be

careful when interpreting the results as the statistical power was

limited, suggesting that the insignificant associations might be

due to a lack of power. Moreover, sex-specific IVs for iron status

are not available. Therefore, further larger GWAS studies that

explore the sex effects of iron are needed. Thirdly, due to not

enough IVs being available for other liver diseases in current

GWAS studies, the reverse MR analysis was conducted only for

NAFLD patients. Moreover, a detailed fibrosis assessment was

not available as the disease identification in the database has been

generated from the ICD-10 codes. Further GWAS studies with a

larger number and proportion of liver disease cases, and detailed

information for disease characteristics, are warranted. Finally,

to minimize bias from population stratification, we confined

the study population to individuals of European ancestries, our

findings may be limited when generalized to other populations

with different ethnicities.

In conclusion, our study shows the genetic effects of

increased iron levels on a higher risk of liver injury, and

the development of NAFLD, ALD, and liver fibrosis/cirrhosis.

In addition, sex-specific analyses found the hepatoxic role of

iron in NAFLD and liver fibrosis/cirrhosis progression among

men. These findings provide genetic evidence that disrupted

iron metabolism may be a trigger in the pathogenesis of liver

injury. Independent GWAS and large prospective studies are

warranted to further validate our findings in other cohorts

and ethnicities.
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