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Recent studies demonstrate that paternal nutrition prior to conception

may determine offspring development and health through epigenetic

modification. This study aims to investigate the effects of paternal

supplementation of n-3 polyunsaturated fatty acids (n-3 PUFAs) on the

brain development and function, and associated gene imprinting in the

offspring. Three to four-week-old male C57BL/6J mice (founder) were fed

with an n-3 PUFA-deficient diet (n-3 D), and two n-3 PUFA supplementation

diets – a normal n-3 PUFA content diet (n-3 N) and a high n-3 PUFA

content diet (n-3 H) for 12 weeks. Then they were mated to 10-week-

old virgin female C57BL/6J mice to generate the offspring. The results

showed that paternal n-3 PUFA supplementation in preconception reduced

the anxiety- and depressive-like behavior, and improved sociability, learning

and memory in the offspring, along with increased synaptic number,

upregulated expressions of neuron specific enolase, myelin basic protein, glial

fibrillary acidic protein, brain-derived neurotrophic factor in the hippocampus

and cerebral cortex, and altered expressions of genes associated with

mitochondria biogenesis, fusion, fission and autophagy. Furthermore, with

paternal n-3 PUFA supplementation, the expression of imprinted gene Snrpn

was downregulated both in testes of the founder mice and their offspring,

but upregulated in the cerebral cortex and hippocampus, with altered DNA

methylation in its differentially methylated region. The data suggest that

higher paternal intake of n-3 PUFAs in preconception may help to maintain

optimal brain development and function in the offspring, and further raise

the possibility of paternal nutritional intervention for mental health issues in

subsequent generations.
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Introduction

N-3 polyunsaturated fatty acids (n-3 PUFAs) are paramount
for human health, and their functional roles in cardiovascular
system, brain development and function, immune response,
allergy, and particular physiological states (e.g., pregnancy,
prematurity, infancy), have been focused during the past
decades (1, 2). N-3 PUFAs are components of cellular
membranes and the precursors of several metabolites with
different beneficial effects on cell membrane fluidity, neuronal
growth and differentiation, intracellular signaling and gene
expression, inflammation and oxidation (3, 4). However, the
modern western diet has greatly reduced the intake of n-
3 PUFAs with an increase of n-6 PUFAs, resulting in the
ratio of n-6/n-3 PUFAs at 20–30:1 which is much higher
than that at 1–2:1 in the Paleolithic diet (5, 6). Growing
evidence suggests that this altered dietary n-6/n-3 PUFAs is
closely associated with chronic non-communicable diseases,
including cardiovascular diseases, diabetes, obesity, as well as
neurodevelopmental diseases (e.g., autism, attention deficit and
hyperactivity disorder, and schizophrenia) in children, and
degenerative neurological diseases in the elderly, and that the
ratio of n-6 to n-3 PUFAs in diets at 1–2:1 should be the target
ratio for health (7, 8).

The fetal programming hypothesis and thereafter the
development origins of health and disease hypothesis indicate
that nutrition and other environmental factors in early life
determine the offspring phenotype and health in later life (9,
10). Both animal and human studies have demonstrated that
maternal dietary n-3 PUFA deficiency during pregnancy and
lactation impairs learning and memory in adult offspring (11,
12), and a high level of seafood intake or supplementation
of docosahexaenoic acid (DHA, C22:6n-3) during pregnancy
and lactation can effectively improve the psychological,
language learning and intellectual development levels in early
childhood (13, 14), although some inconsistent findings exist
owing to multiple factors, such as differences in body n-
3 PUFA baseline, quantity and duration of supplementation,
interference from harmful chemicals or substances in seafood,
and/or micronutrient (iron, iodine, zinc, etc.) deficiency (15–
20).

During the past decade, a substantial number of studies
have strengthened the paternal origins of health and disease
paradigm, which stresses the need for more research on the
role of the father in the transmission of acquired environmental
messages from his environment to his offspring (21, 22).
Mammalian spermatozoa are rich in PUFAs, particularly DHA,
which are important for spermatogenesis with higher sperm
motility and concentration, and normal morphology (23, 24).
The reduction of n-3 PUFA intake in modern population leads
to obstacles to spermatogenesis and maturation, resulting in the
decline of male fertility, which has become a global problem
in reproduction (25, 26). However, there is lack of relevant

research on whether paternal n-3 PUFA status in preconception
impacts on offspring development and health, including brain
development and function.

The mechanisms through which parental nutrition
determines offspring health have been extensively investigated,
but they are still not completely understood. The contribution
of maternal n-3 PUFAs to offspring brain development has been
considered to be associated with several pathways, including
enhancement of prenatal and postnatal DHA accretion in
offspring brain, and epigenetic and non-epigenetic regulation
on the expression of genes associated with neuronal growth
and differentiation, protection against neuroinflammation,
oxidation and apoptosis, etc. (4, 27, 28). Additionally, maternal
feeding of DHA exerts preventive effects on prenatal stress-
induced brain dysfunction through modulating metabolism
of mitochondria (29), which plays a decisive role in brain
development by providing energy for cell proliferation and
differentiation, and synaptogenesis (30, 31). Being different
from the direct interaction between the mother and offspring
by nutrient exchange during prenatal and postnatal periods,
the sperm- and seminal plasma-specific mechanisms connect
paternal nutrition with the offspring development and health,
as well as the maternal health (32). Gene imprinting, one
class of epigenetics, is particularly relevant to early life
and transgenerational effects since imprints are established
in the germline, maintained during the preimplantation
reprogramming phase, and then passed on through the somatic
cell lineages impacting on genome function and gene expression
(33, 34). Imprints are particularly promising candidates in brain
research as they are known to be important for neurogenesis,
brain function and behavior (33–36).

Therefore, we hypothesized that paternal higher n-3 PUFA
intake in preconception might produce positive influences
on brain development and function in the offspring through
altering mitochondria metabolism and associated gene
imprinting. In this study, using a mouse model that was
received feeding intervention, the impact of preconception
n-3 PUFA status in the father on the brain function (anxiety-
like behaviors, depression-like behaviors, and memory)
and histological changes were determined in the offspring.
Furthermore, changes in offspring brain mitochondria
metabolism, and expressions of imprinted genes associated with
brain development in the testis and brain were investigated.

Materials and methods

Diets

Three types of diets with n-3 PUFA deficiency (n-3 D),
normal n-3 PUFA content (n-3 N), or high n-3 PUFA content
(n-3 H) were designed and manufactured by modifying the
oil type in the AIN-93G diet as our previously published
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(37). The lard oil and sunflower oil were added in the n-
3 D diet to produce n-3 PUFA deficiency with an n-6/n-
3 PUFA ratio at 47.2:1; whereas the flaxseed oil and fish
oil mixed with the lard oil and sunflower oil were added
to the n-3 N and n-3 H diets to yield two different n-
6/n-3 PUFA ratios at 4.3:1 and 1.5:1, respectively, which
represent the current recommendation (4–10:1) and the dietary
ratio for our ancestors, containing both very long-chain n-3
PUFAs, eicosapentaenoic acid (EPA; C20:5n-3), DHA and their
precursor α-linolenic acid (ALA, C18:3n-3) (5–7). The AIN-93G
growing diet and AIN-93M mature diet were used for maternal
feeding during pregnancy and lactation, and offspring pup’s
feeding after weaning, respectively. Details for the diet formula
and fatty acid compositions are shown in Table 1. All the diets
were prepared by the Beijing Huafukang Bioscience Co. Inc.
(Beijing, China) and were sterilized with γ-irradiation 25 kGy
and stored at −20◦C before use.

Animals

Three- to four-week-old male C57BL/6J mice were
purchased from the Gempharmatech Co., Ltd (Nanjing, China)
and were housed at the animal facilities with SPF-grade
condition in the National Institute of Occupational Health and
Poison Control, China CDC. Following one week of recovery
from transportation, the mice were randomly classified into
three groups (n = 12 in each group) and fed with one of the
n-3 D, n-3 N and n-3 H diets, respectively. All the mice were
free access to water and food under the condition of a 12-h
light/12-h dark cycle and cycles of air ventilation. After 12 weeks
of feeding intervention, the founder male mice were mated
with 10-week-old virgin female mice (1 male for 2 females
per cage) and fed the AIN-93G diet (H10293G), which lasted
for the pregnancy and lactation of the mating female mice.
A 12-week feeding intervention for the founder male mice was
set up to ensure optimal models of n-3 PUFA deficiency and
supplementation, owing to that 3–6 months are needed for
tissue saturation of EPA and DHA concentrations with fish oil
supplementation (38–40).

After weaning at 3 weeks of age, the offspring mice from
the three groups were fed the AIN-93M diet which lasted for
6 weeks. At the end of experiments, examination of the brain
function (anxiety-like behaviors, depression-like behaviors, and
memory) was conducted in some offspring mice (n = 5 in
each group for the same sex). To avoid bias due to behavior
tests, the other offspring mice (n = 8 in each group for the
same sex) in a fasted state were used for determination of
gene expression and DNA methylation. Each offspring mouse
selected in each paternal diet group was from separate litters
to avoid being born from the same father. The mice were
euthanized by intraperitoneal injection of an overdose of
Avertin (2,2,2-tribromoethanol) (500 mg/kg) (T-4840-2, Sigma-
Aldrich Chemie GmbH, Steinheim, Germany) for anesthesia

followed by decapitation. The testis, cerebral cortex and
hippocampus were immediately dissected free of surrounding
tissue, removed and frozen in liquid N2 and then transferred
to −80◦C for gene expression analysis. Meanwhile, tissues of
the cerebral cortex and hippocampus from mice for the brain
function experiment were immediately fixed by immersion in
10% paraformaldehyde and 2.5% glutaraldehyde, respectively,
for immunohistochemical determination and transmission
electron microscopy analysis. After mating, the founder male
mice were also euthanized and testes were collected, frozen in
liquid N2 and then transferred to −80◦C for later use.

All experiments complied with the ARRIVE guidelines as
well as the Guide for the Care and Use of Laboratory Animals
in China. All procedures were conducted in accordance with
the Animals (Scientific Procedures) 1986 Act (UK) (amended
2013) and approved by the Ethic Committee of the National
Institute of Occupational Health and Poison Control, China
CDC (No. EAWE-2021-06).

Fatty acid analysis

Fatty acid analysis in diets and tissues was conducted by
gas chromatography on Agilent 6890N GC equipped with a
flame ionization detector (FID) and injector, using the method
of fatty acid methyl esters (FAMEs). Diets and tissues of testis
and brain were homogenized using a tissue disrupter in 0.9%
sodium chloride solution. Preparation of FAMEs from tissue
homogenates was performed according to a modified Lepage
method based on our previously published (37). The quantity
of each fatty acid was expressed as the percent (%) (wt/wt) of
total fatty acids.

Assessment of sperm counting and
vitality

During the process of tissue collection, the cauda
epididymidis of founder male mice was dissected, punctured
and incubated in the prepared HEPES buffer for sperm to swim
out. The supernatant was removed, centrifugated (3,000g for
5 min), washed twice in buffer PBS (41). The sperm preparations
were assayed for sperm count and vitality assessment using the
hemocytometer under the microscope.

Behavioral experiments

Offspring mice aged 9 weeks were subjected to a series
of behavioral determination. Five days before the experiment
conduction, all mice were kept in the specific room to adapt
to the testing environment. All tests were performed between
9 am and 5 pm. Three tests were used to determine anxiety-
and depressive-like behavior. The open-field test (OFT) was
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TABLE 1 The ingredient compositions and fatty acid profiles in mouse diets.

Founder diets Growing diet Mature diet

n-3 D n-3 N n-3 H AIN-93G AIN-93M

Fat (g/kg)

Lard oil 22 22 22 0 0

Sunflower oil 48 37 22 0 0

Flaxseed oil 0 7 17 0 0

Fish oil 0 4 9 0 0

Soybean oil 0 0 0 70 40

Other nutrients (g/kg)

Casein 200 200 200 200 140

Corn starch 397 397 397 397 496

Maltodextrin 132 132 132 132 125

Sucrose 100 100 100 100 100

Mineral mix 35 35 35 35 35

Vitamin mix 10 10 10 10 10

Cellulose 50 50 50 50 50

Antioxidants 0.014 0.014 0.014 0.014 0.008

Choline 2.5 2.5 2.5 2.5 2.5

Fatty acids (%)

6SFA 33.19 33.85 33.53 35.85 36.88

6MUFA 27.29 25.37 25.07 17.94 17.68

6n-6 PUFAs 38.70 33.14 24.95 41.19 40.58

C18:2n-6 (LA) 38.04 32.29 24.23 41.18 40.46

C18:3n-6 (GLA) 0.41 0.47 0.34 – 0.12

C20:3n-6 (DGLA) 0.04 0.07 0.05 – –

C20:4n-6 (AA) 0.14 0.16 0.19 – –

C22:2n-6 (DDA) 0.05 0.09 0.07 – –

C22:4n-6 (ADA) 0.02 0.06 0.06 – –

C22:5n-6 (OA) – – 0.01 – –

6n-3 PUFAs 0.82 7.64 16.45 5.02 4.86

C18:3n-3 (ALA) 0.28 5.74 13.54 4.15 4.02

C18:4n-3 (STA) 0.32 0.46 0.32 0.08 0.06

C20:3n-3 (EA) 0.22 0.38 0.28 0.79 0.78

C20:5n-3 (EPA) – 0.80 1.60 – –

C22:5n-3 (DPA) – 0.06 0.11 – –

C22:6n-3 (DHA) – 0.20 0.60 – –

Ratio of n-6/n-3 PUFAs 47.2:1 4.3:1 1.5:1 8.2:1 8.4:1

6SFA, total saturated fatty acids; 6MUFA, total monounsaturated fatty acids; 6n-6 PUFAs, total n-6 polyunsatuirated fatty acids; 6n-3 PUFAs, total n-3 polyunsaturated fatty acids; LA,
linoleic acid; GLA, γ-linoleic acid; DGLA, dihomo-γ-linolenic acid; AA, arachidonic acid; DDA, decanedicarboxylic acid; ADA, adrenic acid; OA, osbond acid; ALA, α-linolenic acid;
STA, stearidonicacid; EA, eicosatrienoic acid; EPA, eicosapentaenoic acid; DPA, docosapentaenoci acid; DHA, docosahexaenoic acid.

conducted by placing mice in the open field (L × W × H;
50 cm × 50 cm × 30 cm) individually and allowed 5 min
of free movement, and the time spent in the center area was
recorded. Light/dark test (LDT) was performed according to
the procedure described by Heredia (42). The rectangular box
(L × W × H; 50 cm × 30 cm × 30 cm) comprised two
compartments, painted black (dark compartment) and another
white (light compartment), which separated by a polymeric
methyl methacrylate with a centrally-positioned 7.5 × 7.5 cm

opening at floor level. Mice were individually placed in
the center of the dark compartment and allowed 5 min to
explore the apparatus. The inter-compartmental transitions and
time spent in the dark compartment were evaluated. Sucrose
preference test (SPT) was performed as the described method
(43). Before the test, the mice were housed in the cage with two
bottles of sucrose water [2% (w/v)] to acclimate for 24 h. Then,
one bottle of sucrose water was replaced by tap water for 24 h,
alternating the positions of two bottles every 6 h to eliminate the
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possibility of side or position preference. The sucrose preference
(SP) value was calculated as follows: SP (%) = sucrose intake
(g)/[sucrose intake (g) + water intake (g)] × 100%.

The three-chamber test (TCT) was used for sociability
assessment as described by Liu (44). Briefly, the mouse
was first habituated to the empty box (L × W × H;
50 cm × 30 cm × 30 cm) with three equally sized,
interconnected chambers (left, center, right) for 5 min. During
the second 5-min, the tested mouse could interact either with an
empty wire cup or the other wire cup contained a stranger. The
time spent interacting (sniffing, crawling upon) with the two
cups was recorded. Sociability index was calculated as follows:
(time spent with stranger- time spent with empty cup)/(time
spent with stranger + time spent with empty cup).

The novel object recognition (NOR) is an efficient method
to test learning and memory in mice (45). The mouse was
placed in the middle of the rectangular arena (L × W × H;
50 cm × 30 cm × 30 cm) and allowed to freely explore for 5 min
and then removed out of the arena. Then two identical objects
were placed in the central symmetrical positions of the arena.
The mouse was again placed in the center of the arena, freely
exploring the two objects for 5 min, the mouse was transported
to the holding cage. One hour later, one of the training objects
was replaced with a novel object, and the mouse was allowed to
freely explore for 5 min. The discrimination index was expressed
as the time spent exploring the novel object minus the time spent
exploring the familiar object, divided by total exploration time,
reflecting the preference for new objects.

Histological examination

Immunohistochemical analysis was performed on neuron
specific enolase (NSE), myelin basic protein (MBP) and glial
fibrillary acidic protein (GFAP), which are specific biomarkers
for neuronal cell bodies, mature myelinated oligodendrocytes
and astrocytes, respectively (46–48). Formaldehyde fixed brains
were treated with 70% ethanol and xylene, embedded in paraffin,
sectioned at 5 mm on the coronal plane, and air dried. At
the level of anterior thalamus and hippocampus, samples were
taken continuously through the cerebral hemisphere. The slices
were dewaxed, rehydrated in ethanol, and then incubated in
0.01 mol/L sodium citrate (pH 6.0) at 98◦C for 10 minutes. After
cooling, the slices were washed with 0.3% PBS Triton, incubated
with 3% hydrogen peroxide for 10 minutes at room temperature,
and then washed with water. Sections were incubated overnight
at 4◦C against antibodies for NSE (1:500) (GB11376-1), GFAP
(1:1200) (GB12096), or MBP (1:200) (GB11226). After the
slides were washed in PBS, incubated with goat anti-rabbit
IgG HRP, and finally stained with 3,3-diaminobenzidine (DAB)
(DAB chromogenic kit, G1211). Slides incubated without
the addition of primary antibody were used as negative
control. All antibodies and reagents were purchased from

Servicebio technology Co., Ltd. (Wuhan, China). Morphometric
analysis was performed on Image Pro Plus 6.0 system (media
cybernetics. USA) to measure the mean optical density (OD)
of NSE positive neurons, GFAP positive astrocytes and MBP
positive myelinated oligodendrocytes in the cerebral cortex
and hippocampus.

Structure changes in mitochondria and synapses were
determined by transmission electron microscopy according
to description by Rybka (49). Briefly, fresh cerebral cortex
and hippocampus were fixed in glutaraldehyde (2.5%). After
washed by phosphate buffer (0.1 M, pH 7.4), the slices were
postfixed in 1% osmium tetroxide for 2 h. Then, they were
rinsed, dehydrated, saturated and embedded in mixtures of
acetone and SPI-Pon 812 resin (SPI-Chem, USA). Ultrathin
slices were sectioned and poststained with uranyl acetate
and lead citrate in the avoidance of carbon dioxide, and
then washed with ultrapure water and dried. Imaging was
done with a HT7800/HT7700 transmission electron microscope
(Hitachi, Tokyo, Japan).

Ribonucleic acid isolation and
qRT-pCR

Total RNA in tissues was extracted using the RNAiso
Plus (TaKaRa, Kusatsu, Japan) and complementary DNA was
prepared from the total RNA using the All-in-One First-
Strand cDNA Synthesis SuperMix for qPCR (OneStep gDNA
Removal) (TransGen Biotech, Beijing, China) according to
the procedures provided by the manufacturer. The mRNA
expression of targeted genes was measured by real-time qPCR
with a CFX96 TouchTM Real-Time PCR Detection System (Bio-
Rad) using Top Green qPCR SuperMix (Trans Gen), with the
thermocycle program consisting of an initial hot start cycle at
95◦C for 30 s, followed by 40 cycles at 95◦C for 5 s, 60◦C
for 15 s, and 72◦C for 10 s. Based on their involvement in
neural development, neuronal apoptosis, synaptic transmission,
and neuropsychiartric disorders, a total of nine imprinted
genes, Zac1, Ube3a, Peg1, Igf2 (Peg2), Peg3, Snrpn (Peg4),
Ndn, Kcnk9 and RasGrf1 (34), and brain-derived neurotrophic
factor (Bdnf), were included in the present study. The primer
sequences can be found in Supplementary Table 1.

Analysis of mitochondria
deoxyribonucleic acid copy number

Total DNA in the offspring brain was extracted with the
Animal Tissue DNA Kit (catalogue no.3101250; Simegen
Biotechnology Co., Ltd.). Mitochondria DNA (mtDNA)
was amplified using primers specific for the mitochondrial
cytochrome oxidase subunits I (CoxI) gene. Nuclear DNA
was amplified using primers specific for the 18S rRNA gene.
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Primer sequences can be found in Supplementary Table 1. The
RT-PCR was performed on individual DNAs by using CFX96
TouchTM Real-Time PCR Detection System (Bio-Rad). The
relative number of mtDNA copies (mtDNA-CN) was calculated
as the normalized ratio of CoxI/18S rRNA gene.

Deoxyribonucleic acid bisulphite
conversion and sequencing

DNA methylation in differentially methylated region 1
(DMR1) of the Snrpn was determined by bisulphite sequencing.
Briefly, bisulfite conversion of purified DNA of the testis
and brain was treated with sodium bisulfite to convert
the unmethylated cytosine into uracil using the EZ DNA
Methylation Kit (catalogue no. D5002; Zymo Research).
Converted DNA was amplified by nested PCR, and the PCR
products were sequenced directly. The methylation fraction was
calculated from the amplitude of cytosine and thymine within
each CpG dinucleotide [C/(C + T)]. The assays were performed
in triplicate. The primers used and annealing temperature are
shown in Supplementary Table 1.

Statistical analysis

One-way analysis of variance (ANOVA) was used to
compare means in different groups using SPSS 21.0, except
for body weight analysis with repeated measures ANOVA. The
Kolmogorov–Smirnov test was used to evaluate whether the
data is normally distributed. Following ANOVA, a post hoc test
was conducted using either Bonferroni test or Dunnett’s T3 test
for data lacking homogeneity of variance. For data with the non-
normal distribution Kruskal Wallis test was used. P < 0.05 was
considered be statistically significant in differences.

Results

Effects of paternal n-3 PUFA
supplementation on testis fatty acid
composition and sperm vitality in
founder

As shown in Table 2, in founder male mice, testis DHA and
total n-3 PUFAs were increased with both the n-3 N and n-3 H
diet feeding, compared to the n-3 D diet feeding. Consistently,
the sperm vitality was significantly increased by the n-3 N diet
(84.10 ± 3.78%) and the n-3 H diet (82.02 ± 2.78%), compared
with the n-3 D diet (66.62 ± 4.93%). Also, the sperm count
was increased by the n-3 N and n-3 H diet (4.76 × 106/L and
4.78 × 106/L sperm preparations), compared to the n-3 D diet
(3.51 × 106/L sperm preparations).

Effects of paternal n-3 PUFA
supplementation on weight and fatty
acid composition of the brain in
offspring

As shown in Figure 1, The paternal n-3 N or n-3 H diet
increased the hippocampus weight in the offspring, compared
to the paternal n-3 D diet, with no effects on the body weight
and the whole brain weight either in males or females. The n-3
PUFA content in the offspring brain was shown no differences
among the three groups (Table 2).

Effects of paternal n-3 PUFA
supplementation on behavior and
cognition in offspring

The behavioral and cognitive experiments showed that
offspring mice from the paternal n-3 H diet group had more
time spent in central area in the OFT than those from the
paternal n-3 D diet group. Also, they had shorter time spent
in the dark section but higher number of inter-compartmental
transitions in the LDT. The SPT indicated that offspring mice
from the paternal n-3 N or n-3 H diet group had increased
SP value. Results from the TCT exhibited that the sociability
index, reflecting the length of interaction with social partner, was
increased in offspring mice from the paternal n-3 N or n-3 H
diet group, compared with the paternal n-3 D diet group. The
changes in tests of the OFT, LDT, TCT and SPT were similar
between offspring males and females. Furthermore, the NOR
discrimination index was enhanced by both the paternal n-3 N
diet and n-3 H diet in males instead of females in the offspring
(Figure 2).

Effects of paternal n-3 PUFA
supplementation on brain histology in
offspring

Immunohistochemical analyses on brain NSE, GFAP and
MBP in offspring were demonstrated in Figure 3. Compared
to the paternal n-3 D diet group, males from the paternal
n-3 H diet group had an increase in the average optical
density (OD) on area of NSE-positive neurons in the cerebral
cortex and hippocampus, GFAP-positive astrocytes in the
hippocampus, and those from both the paternal n-3 N diet
and n-3 H diet groups had more MBP-positive myelinated
oligodendrocytes in the corpus callosum and hippocampus;
whereas females had similar changes only in the OD on area
of NSE positive neurons in the cerebral cortex, and MBP-
positive myelinated oligodendrocytes in the corpus callosum
and hippocampus.
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TABLE 2 Fatty acid compositions of the founder testis and offspring brain.

Fatty acids (%) Founder testis (n = 12) Offspring brain (female) (n = 8) Offspring brain (male) (n = 8)

n-3 D n-3 N n-3 H n-3 D n-3 N n-3 H n-3 D n-3 N n-3 H

6SFA 51.21 ± 7.34 45.15 ± 5.35a 46.00 ± 7.32a 56.88 ± 0.82 57.77 ± 0.81 59.47 ± 2.49 56.71 ± 2.64 55.46 ± 2.83 56.32 ± 0.99

6MUFA 17.27 ± 6.02 19.80 ± 6.40 18.06 ± 8.43 13.77 ± 0.50 13.60 ± 1.23 13.57 ± 0.96 13.94 ± 1.51 13.63 ± 0.91 14.21 ± 0.80

6n-6 fatty acids 27.13 ± 3.36 24.24 ± 6.25 24.04 ± 6.18 15.52 ± 0.67 15.03 ± 1.02 14.07 ± 2.18 15.64 ± 0.78 17.48 ± 3.64 16.08 ± 0.57

C18:2n-6 (LA) 6.13 ± 3.73 6.36 ± 3.38 4.53 ± 2.80 0.94 ± 0.17 0.99 ± 0.13 0.85 ± 0.10 0.82 ± 0.07 0.91 ± 0.32 0.82 ± 0.09

C18:3n-6 (GLA) – – – 0.37 ± 0.04 0.37 ± 0.15 0.37 ± 0.19 0.42 ± 0.13 0.36 ± 0.08 0.42 ± 0.08

C20:3n-6 (DGLA) 0.84 ± 0.13 1.13 ± 0.20 1.32 ± 0.34a 0.63 ± 0.07 0.60 ± 0.10 0.56 ± 0.15 0.64 ± 0.09 0.57 ± 0.06 0.61 ± 0.08

C20:4n-6 (AA) 9.90 ± 2.06 9.60 ± 1.90 9.91 ± 2.78 11.03 ± 0.55 10.57 ± 0.89 10.12 ± 1.38 11.11 ± 0.63 11.34 ± 0.76 11.41 ± 0.55

C22:4n-6 (ADA) 1.00 ± 0.24 0.93 ± 0.27 0.99 ± 0.28 2.13 ± 0.15 2.13 ± 0.11 2.03 ± 0.37 2.33 ± 0.14 3.58 ± 3.15 2.41 ± 0.16

C22:5n-6 (OA) 9.26 ± 2.20 7.81 ± 1.87 8.11 ± 2.23 0.44 ± 0.23 0.37 ± 0.36 0.13 ± 0.23 0.33 ± 0.34 0.71 ± 0.78 0.41 ± 0.21

6n-3 fatty acids 4.40 ± 1.53 7.42 ± 1.54a 9.26 ± 1.47a,b 13.82 ± 0.51 13.63 ± 0.30 12.89 ± 1.02 13.71 ± 2.06 13.43 ± 1.36 13.38 ± 0.45

C18:3n-3 (ALA) – 0.38 ± 0.28a 0.80 ± 0.92a 0.26 ± 0.04 0.25 ± 0.20 0.23 ± 0.19 0.23 ± 0.19 0.17 ± 0.12 0.30 ± 0.08

C18:4n-3 (STA) 0.05 ± 0.08 0.09 ± 0.09 0.05 ± 0.07 0.28 ± 0.03 0.24 ± 0.19 0.19 ± 0.18 0.30 ± 0.16 0.27 ± 0.07 0.31 ± 0.07

C20:3n-3 (EA) 1.74 ± 0.92 1.78 ± 0.94 1.70 ± 0.75 1.17 ± 0.22 1.49 ± 0.26 1.45 ± 0.35 1.80 ± 1.59 1.26 ± 0.62 1.16 ± 0.31

C20:5n-3 (EPA) – 0.07 ± 0.11 0.07 ± 0.11a 0.22 ± 0.16 0.13 ± 0.22 0.20 ± 0.19 0.22 ± 0.22 0.21 ± 0.21 0.29 ± 0.16

C22:5n-3 (DPA) – – 0.04 ± 0.10a,b – 0.13 ± 0.34 – – – –

C22:6n-3 (DHA) 2.36 ± 0.60 4.77 ± 1.08a 6.16 ± 1.54a,b 11.89 ± 0.52 11.39 ± 0.86 10.82 ± 1.15 11.15 ± 1.09 11.52 ± 1.15 11.32 ± 0.50

C24:5n-3 0.22 ± 0.42 – 0.45 ± 0.46ab – – – – – –

Ratio of n-6/n-3 PUFAs 6.64 ± 1.63 3.26 ± 0.62a 2.60 ± 0.63a,b 1.12 ± 0.07 1.10 ± 0.07 1.10 ± 0.22 1.17 ± 0.22 1.32 ± 0.37 1.20 ± 0.06

Values are means ± SD.
aCompared to paternal n-3 D diet group, P < 0.05.
bCompared to paternal n-3 N diet group, P < 0.05.
6SFA, total saturated fatty acids; 6MUFA, total monounsaturated fatty acids; 6n-6 PUFAs, total n-6 polyunsatuirated fatty acids; 6n-3 PUFAs, total n-3 polyunsaturated fatty acids; LA, linoleic acid; GLA, γ-linoleic acid; DGLA, dihomo-γ-linolenic acid;
AA, arachidonic acid; DDA, decanedicarboxylic acid; ADA, adrenic acid; OA, osbond acid; ALA, α-linolenic acid; STA, stearidonicacid; EA, eicosatrienoic acid; EPA, eicosapentaenoic acid; DPA, docosapentaenoci acid; DHA, docosahexaenoic acid.
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FIGURE 1

Effects of paternal n-3 PUFA supplementation on body and brain weight in offspring. Three to four-week-old male C57BL/6J mice were fed
with a n-3 D, n-3 N and n-3 H diet for 12 weeks, and then mated to 10-week-old virgin female C57BL/6J mice to generate the offspring. Male
and female offspring body weight were monitored weekly (n = 13 per diet intervention on each sex). After sacrificed at the end of experiment,
brains were dissected and weighed (n = 8 per diet intervention on each sex). Values are means ± SD. ∗Compared to paternal n-3 D diet group
within the same sex, P < 0.05; #Compared to paternal n-3 N diet group within the same sex, P < 0.05.

The transmission electron microscopy demonstrated that
the number of synapses was significantly increased in the
hippocampus but not cerebral cortex in males from both the
paternal n-3 N diet and n-3 H diet groups, compared with the
paternal n-3 D diet group. In females, the synaptic number was
increased in the cerebral cortex but not hippocampus in both
the paternal n-3 N diet and n-3 H diet groups. No differences
were observed in the ultrastructure of mitochondria in offspring
hippocampus and cerebral cortex between groups (Figure 4).

Effects of paternal n-3 PUFA
supplementation on the expression of
genes associated with brain function
and mitochondria in offspring

As illustrated in Figure 5, the hippocampus mRNA
expression of Gfap, Mbp, Nse, and Bdnf in the male offspring
was upregulated by paternal n-3 N diet or n-3 H diet, but
only the Mbp expression in female offspring was upregulated
by paternal n-3 H diet. Examination on mitochondria showed

similar changes between the male and the female offspring, in
upregulated expression of genes associated with mitochondria
biogenesis (Pgc-1α, CoxI), fusion and fission (Opa1, Drp1),
and downregulated expression of genes related to mitochondria
autophagy (Pink1) in the hippocampus or cerebral cortex by
paternal n-3 N diet or n-3 H diet. Consistently, mtDNA-CN in
the hippocampus and cerebral cortex was increased by paternal
n-3 N diet or n-3 H diet both in the male and female offspring.

Effects of paternal n-3 PUFA
supplementation on gene imprinting

A total of nine imprinted genes, which have been considered
to be closely associated with brain development and function,
were selected for expression analysis (Figure 6). The expression
of Zac1, Ube3a, Peg1, Igf2, Peg3, Ndn, Kcnk9 and RasGrf1
showed no differences among the three groups, while the Snrpn
was downregulated in mRNA expression by both paternal n-
3 N diet and n-3 H diet in testes of the founder mice and their
offspring. Therefore, the expression of Snrpn was examined in
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FIGURE 2

Paternal n-3 PUFA supplementation impacts behaviors and cognition in offspring. Offspring mice aged 9 weeks were subjected to a series of
behavioral experiments. Time spent in central area in OFT was used to determine level of tension; Time spent in the dark compartment and the
number transitions in LDT indicated anxiety behavior; Sucrose preference index in SPT was used to assess the core symptoms of depression
(anhedonia); Social index in TCT represented sociability. Discrimination ratio in NOR was used to test learning and memory. Values are
means ± SEM, n = 5 per diet intervention on each sex. ∗Compared to paternal n-3 D diet group within the same sex, P < 0.05; #Compared to
paternal n-3 N diet group within the same sex, P < 0.05.

FIGURE 3

Immunohistochemical analysis in the offspring brains. The paraffin sections of the offspring cerebral cortex (CC) and hippocampus (HIP) were
deparaffinized and hydrated, and specifically bound with antibodies for neuron specific enolase (NSE), myelin basic protein (MBP), glial fibrillary
acidic protein (GFAP). 3,3-diaminobenzidine (DAB) staining was used to observe changes in neurons in the hippocampus (CA3 region) and
cerebral cortex (cingulate), astrocytes in the hippocampus (CA1 region), and myelinated oligodendrocytes in the corpus callosum and
hippocampus (CA1 region). Values are means ± SEM; n = 3 per diet intervention on each sex. ∗Compared to paternal n-3 D diet group,
P < 0.05; #Compared to paternal n-3 N diet group, P < 0.05.

the offspring brain, and the results indicated that its expression
was upregulated in the hippocampus by both paternal n-3 N
diet and n-3 H diet either in males or females. In the offspring

cerebral cortex, the Snrpn expression was upregulated by both
paternal n-3 N diet and n-3 H diet in females, and by paternal
n-3 H diet in males.
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FIGURE 4

Ultrastructure changes in synapses and mitochondria in offspring cerebral cortex and hippocampus. Electron microscope photographs of the
cerebral cortex (CC) and hippocampus (HIP) from offspring mice were taken at magnification (×5,000). Numbers of synapses were calculated
based on electron microscope captured image. Arrows and triangles indicated synapses and mitochondria, respectively. Values are
means ± SEM; n = 3 per diet intervention on each sex. ∗Compared to paternal n-3 D diet group, P < 0.05; #Compared to paternal n-3 N diet
group, P < 0.05.

DNA methylation analysis showed that the methylation
fractions of five CpG sites of the Snrpn DMR1 in testes of the
founder were increased by paternal n-3 H diet, and those in
testes of the offspring were increased by paternal n-3 N diet or
n-3 H diet. In the hippocampus, the methylation fractions of the
Snrpn DMR1 were decreased by paternal n-3 H diet in the male
offspring, with no changes in the female offspring (Figure 7).

Discussion

A growing body of evidence suggests that the paternal
diet plays a crucial role in health and disease in offspring’s
adult life through epigenetic modification on sperm (50).
However, the effects of paternal nutrition on offspring brain
development and function are scarcely reported. In the current
study, we found that paternal n-3 PUFA supplementation in
preconception reduced anxiety- and depressive-like behavior
(OFT, LDT, SPT), improved sociability (TCT), learning and
memory (NOR) in the offspring, along with increased synaptic
number, upregulated expressions of NSE, GFAP, MBP, BDNF
in the hippocampus and cerebral cortex, as well as altered
expressions of genes associated with mitochondria biogenesis,

fusion, fission and autophagy. Furthermore, the expression
of imprinted gene Snrpn was consistently downregulated in
testes of the father and their offspring, and was upregulated
in the cerebral cortex and hippocampus by paternal n-3 PUFA
supplementation, with altered DNA methylation in DMR1 of
the Snrpn. Therefore, paternal n-3 PUFA status could impact
offspring brain function and histology.

As well known, adequate nutrition in early life, particularly
during pregnancy and infancy, is critical in supporting healthy
brain development, with long-lasting effects on cognitive, and
socio-emotional skills throughout childhood and adulthood
(51). Recently, the impact of paternal nutrition prior to
conception on offspring brain development and function
has been reported in animal models (22). Paternal methyl
donor deficiency or enrichment in diets lead to alterations in
offspring brain function, including consolidation-conditioned
fear memory and anxiety-like behaviors (52), and hippocampal-
dependent learning and memory (53). Diet-induced paternal
obesity or calorie restriction during pre-conceptional period has
demonstrated impairment in hippocampus-dependent learning
and memory function (54), and anxiety-like behaviors in the
offspring (55). Herein, our results showed that paternal n-3
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FIGURE 5

Effects of paternal n-3 PUFA supplementation on the expression of genes associated with brain function and mitochondria in offspring. RT-PCR
was used to determine the mRNA expression of Nse, Gfap, Mbp and Bdnf in the hippocampus, and the mRNA expression of mitochondria
associated genes (CoxI, Opa1, Drp1, Pink1, and Pgc-1α) and Mt-DNA copies both in the hippocampus (HIP) and cerebral cortex (CC) in offspring
mice. The data were normalized to relative mRNA levels using the 2−1CT method. Values are means ± SD; n = 8 per diet intervention on each
sex. ∗Compared to paternal n-3 D diet group (or with in the same tissue), P < 0.05; #Compared to paternal n-3 N diet group (or within the
tissue), P < 0.05.

FIGURE 6

Effects of paternal n-3 PUFA supplementation on the expression of imprinted genes. RT-PCR was used to determine the mRNA expression of
Zac1, Ube3a, Peg1, Igf2, Peg3, Ndn, Kcnk9, RasGrf1, and Snrpn in testes of the founders and their offspring, and Snrpn in offspring hippocampus
and cerebral cortex. The data were normalized to relative mRNA levels using the 2−1CT method. Values are means ± SD; n = 8 per diet
intervention on each sex. ∗Compared to paternal n-3 D diet group within the same generation or within the same sex and tissue, P < 0.05;
#Compared to paternal n-3 N diet group within the same generation or within the same sex and tissue, P < 0.05.

PUFA supplementation reduced anxiety- and depressive-like
behavior, and improved sociability, learning and memory in
the offspring. Consistently, increased synaptic number and
expressions of NSE, GFAP, MBP in the hippocampus and
cerebral cortex in the paternal n-3 N diet and n-3 H diet
groups indicated that, like maternal n-3 PUFAs (37), paternal n-
3 PUFAs could promote the growth and maturation of neurons,
astrocytes and myelin in the offspring.

The hippocampus is a primary region of the brain
controlling the formation of memories, mood and learned
behaviors. The ability to learn or form a memory requires
a neuron to translate a transient signal into gene expression
changes that have a long-lasting effect on synapse activity
and connectivity (56). The behavioral and neurophysiological
changes in offspring mice induced by paternal methyl-donor
are associated with altered hippocampal expression of genes
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FIGURE 7

Effects of paternal n-3 PUFA supplementation on DNA methylation of imprinted gene Snrpn. Genomic DNA isolated from testes in both
founders and their offspring, and the hippocampus in the offspring was given bisulfite conversion. Converted DNA was amplified by nested PCR,
and the PCR products were sequenced directly for examination of CpG methylation in DMR1 of Snrpn. The methylation fraction was calculated
from the cytosine and thymine within each CpG dinucleotide (C/C + T). Values are means ± SD; n = 6–7 per diet intervention on each sex.
∗Compared to paternal n-3 D diet group within the same CpG site, P < 0.05; #Compared to paternal n-3 N diet group within the same CpG
site, P < 0.05.

including the potassium calcium-activated channel subfamily
M regulatory beta subunit 2, methionine adenosyltransferase II
alpha, calcium/calmodulin-dependent protein kinase II alpha
and protein phosphatase 1 catalytic subunit (52, 53). The
cognitive impairment in the offspring mice caused by paternal
high fat diet is attributable to the reduced expression of Bdnf
(54), which is a key regulator of neural circuit development
and function, mediating neuronal differentiation and growth,
synapse formation, and dendritic plasticity in the mammalian
brain (57). In this study, the mRNA expression of Bdnf was
upregulated by paternal n-3 PUFAs in the hippocampus of male
offspring, which might contribute to the memory enhancement
and the improvement in expressions of Nse, Gfap, Mbp (37). As
well, our previous study demonstrated that the appropriate n-3
PUFA intake during pregnancy and lactation epigeneticly affects
the expression of Bdnf, and thus is beneficial for neurogenesis
and anti-apoptosis in adulthood of the offspring (58).

Mitochondria play a decisive role in brain development, not
only providing energy for cell proliferation and differentiation,
but also determining neural stem cell differentiation and
synaptogenesis (30). The upregulated expression of Pgc-1α,
Cox1, Opa1 and Drp1 with downregulated expression of

Pink1 by paternal n-3 PUFA supplementation indicated the
increased mitochondria biogenesis, dynamics and respiratory
function, with reduced autophagy. The better mitochondria
function is responsible for the memory enhancement and
improvement in the expression of NSE, GFAP and MBP,
and conversely the mitochondria dysfunction is a hallmark
of many neurological diseases, including autism spectrum
disorder, hyperactivity disorder, schizophrenia, Alzheimer’s
disease, Parkinson’s disease, etc. (31). Studies on other nutrients
demonstrate that paternal high fat intake has significant
negative effects on the embryo at a variety of key early
developmental stages, with reduced mitochondria membrane
potential, resulting in delayed development, reduced placental
size and smaller offspring (59).

To note, no differences in the fatty acid profile in
offspring brains among the three groups implied that the
altered behavior and cognition by paternal n-3 PUFAs are
independent of their “direct” action, which is different from
maternal n-3 PUFAs. During pregnancy and lactation, maternal
n-3 PUFAs are transported to the fetus and infants via
the placenta and breast milk and play a directable role
in maintaining proper brain development and function (4).
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The mechanisms by which the paternal nutrition influences
the offspring’s health are poorly understood, but emerging
evidence suggests that it could be transmitted through the
sperm epigenome (DNA methylation, histone modifications
and sncRNAs) (22, 50, 60). Paternal lifestyle and exposures to
environmental factors may alter the sperm DNA methylation
including imprinted genes, and consequently affect both the
embryonic developmental programing and the health of future
generations (47). Several studies have found that paternal
fast food intake and obesity can lead to changes in DNA
methylation and expression of Meg3 and Nnat in sperm
(61), and Igf2/H19 in the offspring (62, 63). In this study,
among the nine imprinted genes selected, just Snrpn was
affected by paternal n-3 PUFA supplementation, with increased
expression in offspring brains and reduced expression in
testes of fathers and their offspring. Correspondently, DNA
methylation fractions of the Snrpn DMR1 were increased
in testes of fathers and their offspring but reduced in the
hippocampus of male offspring. These suggested that the
impact of paternal n-3 PUFAs on the offspring brain might be
mediated by the imprinting of Snrpn, which has been found
to be associated with adult neural stem cell differentiation
and positively correlated with cognitive abilities in childhood
(64). One mechanistic pathway has recently been identified
that proper Snrpn expression directly regulates the expression
of nuclear receptor Nr4a1 which is critical for cortical
neurodevelopment, and that a disruption in Snrpn expression
is linked to developmental brain disorders (65). In addition,
the differential expression of brain mitochondrial genes was
found in mouse models with partial knockout of the Snrpn
promoter, and abnormal mitochondrial number and structure
were found in cardiac and skeletal muscle (66). PWS-IC del
mice exhibit Prader-Willi syndrome, a neurodevelopmental
multifactorial genetic disorder caused by lack of Snrpn
expression, including deficits in energy metabolism, behavior,
cognition, and structure (67). These findings indicate the
regulatory role of Snrpn in mitochondria energy metabolism.
Conversely, the prominent epigenetic process, methyl groups
provided by S-adenosyl methionine, in mitochondria may affect
the methylation of imprinted genes (68). Thus, how Snrpn and
mitochondria interact to affect brain development and function
needs to be explored.

Interestingly, we found that the effects of paternal n-
3 PUFA supplementation on neurobehavioral outcomes and
expression of associated genes are sex-specific in the offspring.
Specifically, anxiety- and depressive-like behaviors (OFT, LDT,
SPT) were reduced and sociability (TCT) was improved both
in offspring males and females; whereas, learning and memory
(NOR) were improved only in offspring males, with paternal
n-3 PUFA supplementation in preconception. Histological
findings showed that the number of synapses was increased in
both the hippocampus and cerebral cortex in male offspring
from the paternal n-3 N diet and n-3 H diet groups, but

increased only in the cerebral cortex in female offspring. In
keeping with other studies, it has been demonstrated that
parental environmental factors including diet, metabolism,
and stress, affect the behavior and cognition of offspring
differently between males and females. For example, adult
female but not male offspring of dams fed the low protein diet
exhibited passive, and perhaps maladaptive coping strategies
in response to stress, accompanied by a marked reduction
in hippocampal 5-HT1A receptor function (69). Nutrient-
restricted female offspring showed improved learning, while
male offspring showed impaired learning and attentional set
shifting and increased impulsivity (70). Chronic consumption
of a high linoleic acid diet during pregnancy, lactation
and post-weaning period increases depression-like behavior
in male, but not female offspring (71). With respect to
the pre-conceptional paternal nutrition, as early as 20 years
ago, sex-specific, male-line transgenerational responses to
paternal nutrition and environment have been found in
humans. Early paternal smoking is associated with greater
BMI at 9 years in sons, but not daughters, and paternal
grandfather’s and grandmother’s food supply was linked to
the mortality risk ratios of grandsons and granddaughters,
respectively (72, 73). Thereafter, male but not female offspring
of fathers fed with a high protein diet exhibited increased
insulin sensitivity and decreased glucose induced insulin
secretion, with preserved β cell mass and plasticity following
metabolic challenge (74). Whereas, when fathers were fed a
high fat diet for 10 weeks before mating, female (but not
male) offspring had impaired pancreatic β-cell function, with
increased bodyweight and glucose intolerance, and reduced
insulin secretion (75).

Although the underlying mechanisms for gender differences
in parental effects on offspring are not completely known,
genetics, epigenetics and gene imprinting, together with
the contribution of distinct gonadal steroid hormones and
associated inflammatory responses and gene expression, may
be involved in this sex dimorphism (76–80). It is acceptable
that the sex-specific, male-line transmissions are mediated by
the sex chromosomes, X and Y (73), and that paternally
expressed genes are generally growth promoting, whereas
maternally expressed genes are growth restricting (81). Also,
the imprinted gene Dio3 in male pups, while H19 and Xist
in female pups, were upregulated by high gestational folic
acid supplementation, accompanied by different expressional
changes in the candidate autism susceptible gene Auts2 between
male and female pups (82). Estrogen has been demonstrated to
produce beneficial effects in brain development and function
as well as cardioprotective effects, and the advances in
understanding the structural, epigenetic and transcriptional
mechanisms mediating sexual differentiation of the brain
have been reviewed (83–86). It is highlighted that a gene
regulatory program activated by estrogen receptor α (Erα)
following the perinatal hormone surge, and sustained sex-biased
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gene expression and chromatin accessibility throughout the
postnatal sensitive period, are of importance (86). Regarding
estrogen cognitive protective effects, women with high estradiol
(E2) show superior spatial reference memory (87). Female
mice have a higher preference index in the NOR paradigm
(62.3 ± 13.0%) than males (52.7 ± 5.9%), and are resistance to
retroactive interference, which is mediated by estrogen signaling
involving estrogen receptor α activation and extracellular signal-
regulated kinase 1/2 in the dorsal hippocampus (88). In
addition, E2 regulates hippocampus-dependent memory by
promoting the synthesis of proteins and their degradation
mediated by the ubiquitin proteasome system, that support
structural changes at hippocampal synapses (89). As well, E2
treatment greatly upregulates the serum levels of Bdnf and
transient receptor potential channels 6, the neuronal excitability
indicated by an elevation in the thickness of postsynaptic
density and the numbers of asymmetric synapses in rat
(90). In the current study, compared to males, females in
offspring from the paternal n-3 D diet group had higher
NOR preference index (63.90 ± 4.30% vs 45.40 ± 3.30%),
along with increased number of synapses (19.63 ± 3.42 vs
17.63 ± 3.02) and expression of Bdnf (0.24 ± 0.03 vs 0.14 ± 0.01)
in the hippocampus, implying protective effects in females.
Further findings showing no changes in these parameters in
female offspring with paternal n-3 N diet and n-3 H diet,
suggest that estrogen brain protective effects might override
or mask any relationship between paternal n-3 PUFAs and
offspring cognition.

The higher ratio of n-6/n-3 PUFAs (20–50:1) in modern
diets, has been considered to be a risk factor for many chronic
diseases (5). Individuals are required to take both series of
PUFAs with the highly recommended n-6/n-3 ratio which is
4–5:1 (91). Considering the ratio of n-6/n-3 PUFAs at 1:1
in the Paleolithic diet, we previously investigated the effect
of a higher intake of maternal dietary n-3 PUFAs during
pregnancy and lactation on offspring and found that dietary
n-6/n-3 PUFA ratio at 1–2:1 has optimal neurogenesis and
maturation of neurons, astrocytes and myelin in the offspring
brain (37, 58). As well, it is reported that diets with a
ratio of n-6/n-3 PUFAs at 1:1 can improve the testicular
development of boars and rats, and thus may more effectively
reduce exogenous oxidative damage in sperm, providing a
more favorable environment for sperm survival (92, 93). In the
present study, the alteration in some parameters was different
between the paternal n-3 N diet and n-3 H diet groups,
indicating that paternal dietary n-6/n-3 PUFA ratio at 1:1
prior to conception might be more beneficial for the offspring
brain development.

Our data indicate that paternal n-3 PUFAs may have
an impact on offspring brain development. However, some
limitations of our study should be addressed. In analyzing
the impacts of paternal diet and other factors on the
resultant offspring, the random effects of the mother and

litter size using a random effects regression model were
considered by some researchers (94–96). Unfortunately, in
the current study, there exist the statistical limitations related
to inability to analyze random effects form mothers and
litter size due to the animal management practices in
our institution, and this factor should be included in our
future work. Therefore, it needs to be emphasized that the
random effects statistical model is used in order to improve
validity and reproducibility of research in developmental
programming studies.

In conclusion, paternal pre-conceptional n-3 PUFA
supplementation reduced anxiety- and depressive-like
behaviors, and improved sociability, learning and memory
in offspring, along with alterations in brain structural
development and mitochondria, as well as the expression
and DMR1 methylation of imprinted-gene Snrpn both in
founder mice and their offspring. These data raise the possibility
that paternal dietary factors may be relevant causal factors for
mental health issues in the subsequent generation.
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