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Rusu AV, Bobiş O, Nayik GA,
Jagdale YD, Saeed F, Afzaal M,
Mostashari P, Khaneghah AM and
Regenstein JM (2022) Consumer
acceptance of new food trends
resulting from the fourth industrial
revolution technologies: A narrative
review of literature and future
perspectives. Front. Nutr. 9:972154.
doi: 10.3389/fnut.2022.972154

COPYRIGHT

© 2022 Hassoun, Cropotova, Trif,
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The growing consumer awareness of climate change and the resulting food

sustainability issues have led to an increasing adoption of several emerging

food trends. Some of these trends have been strengthened by the emergence

of the fourth industrial revolution (or Industry 4.0), and its innovations and

technologies that have fundamentally reshaped and transformed current

strategies and prospects for food production and consumption patterns. In

this review a general overview of the industrial revolutions through a food

perspective will be provided. Then, the current knowledge base regarding

consumer acceptance of eight traditional animal-proteins alternatives (e.g.,

plant-based foods and insects) and more recent trends (e.g., cell-cultured

meat and 3D-printed foods) will be updated. A special focus will be given

to the impact of digital technologies and other food Industry 4.0 innovations

on the shift toward greener, healthier, and more sustainable diets. Emerging

food trends have promising potential to promote nutritious and sustainable

alternatives to animal-based products. This literature narrative review showed

that plant-based foods are the largest portion of alternative proteins but
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intensive research is being done with other sources (notably the insects

and cell-cultured animal products). Recent technological advances are likely

to have significant roles in enhancing sensory and nutritional properties,

improving consumer perception of these emerging foods. Thus, consumer

acceptance and consumption of new foods are predicted to continue growing,

although more e�ort should be made to make these food products more

convenient, nutritious, and a�ordable, and to market them to consumers

positively emphasizing their safety and benefits.

KEYWORDS

alternative proteins, edible insects, culturedmeat, consumer perception, plant-based

food, 3D food printing, personalized nutrition, industry 4.0

Introduction

The global challenges for economic, social, and

environmental sustainable development are currently more

acute than ever before and call for immediate actions to develop

a healthier and more sustainable future of food (1–3). Food

production systems, mainly the production of animal-sourced

food through livestock farming, have been a significant

contributor to climate change and unsustainable development.

Therefore, a search is underway worldwide to find alternative

technologies and production methods that provide food with

a lower environmental footprint while nutritional and sensory

characteristics are similar or even better than that of animal

products (4–8).

Plant-based sources have been investigated and established

for use as food and feed throughout human development,

but consumer interest in plant-based proteins has recently

increased, which is reflected in a growing number of vegans,

vegetarians, or flexitarians. A variety of plant-based meat, fish,

milk, and egg analogs are being introduced to the market as

a promising, sustainable approach to reduce the consumption

of meat and other animal-based proteins (9, 10). While wild-

harvested insects have been a traditional food source in many

countries for centuries (11), insects’ cultivation is relatively

new, with some small-scale insect farming projects being

launched in some countries (12). Apart from these traditional

sources (i.e., plant-based foods and insects), other more

innovative solutions, especially cell-cultured and 3D printed-

foods, are being evaluated. Cell-cultured food production

(e.g., meat, seafood, and poultry) is being studied owing to

its potential to achieve environmental sustainability, due to

low land and water requirements and reduced greenhouse

gas emissions as well as improved animal welfare (13–15).

3D printing is a new technique that has become part of

many scientific fields and industrial areas, including the food

industry, allowing the production of on-demand, complex,

and customized foods. In addition, the technique may be

used for personalized diet (or personalized foods) to print

products that specifically meet an individual’s health-nutritional

needs (16, 17). Another emerging application of 3D printing is

cultured meat (18).

Innovative technologies have the potential to improve food

production and enhance the quality of new food products

to improve consumer acceptance. Gene editing is one of the

emerging technologies that have opened up many possibilities

for generating crops and animals with improved properties

and desired traits (19–21). Additionally, highly productive

food production systems (e.g., hydroponics, aquaponics, and

aeroponics) have received attention as alternative farming

systems, taking advantages of innovations and advancements

in science and technology (22–24). Increased concerns about

environmental sustainability are driving the growing interest

in better uses of food wastes, by-products, and ugly produce.

Food wastes is one of the major challenges for the global food

system as approximately one-third of food produced in the

world for human consumption is either lost or wasted each year.

Valorization of food by-products and ugly produce (e.g., food

products with an abnormal appearance) using smart solutions

and technologies can constitute a promising strategy to tackle

this challenge (25–27).

The evolution of consumers’ demands for the

aforementioned eight food trends, namely, plant-based,

insect-based, cell-based, 3D-printed, personalized, and gene-

edited foods, as well as foods resulting from by-products and

ugly produce and new production systems (Figure 1) has

resulted in a complexity that requires advanced technologies

and innovative solutions. There is a growing literature on these

selected food trends as can be seen in Figure 2. These trends

have been further fueled by recent technological innovations

accompanied by the advent of the fourth industrial revolution

(or Industry 4.0) technologies. Due to its complexity, it is

difficult to provide a single, concise definition of Industry 4.0

that will be universally accepted. However, Industry 4.0 can

be seen as a combination of smart and advanced technologies

in the digital, physical, and biological fields that enables more

advanced intelligence to be brought to manufacturing and

the transition from mass to customized production (28, 29).

The main Industry 4.0 enablers in the food industry include
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FIGURE 1

The food trends reviewed in this manuscript and the main enablers of the fourth industrial revolution.

artificial intelligence (AI), big data, the Internet of Things

(IoT), blockchain, smart sensors, robotics, digital twins, and

cyber-physical systems (30, 31).

Plant-based foods have been thoroughly reviewed in recent

publications (10, 32–35). Detailed review papers reporting

on insects protein (11, 36–38), cell-cultured (13–15), and

3D printed (39–41) food products have also been published.

Other publications reported on personalized diet (16, 17, 42,

43), gene editing technologies (19, 20, 44), valorization of

food by-products and ugly produce (45–48), and new food

production systems (22, 24, 49). However, the applicability of

Industry 4.0 concepts with each of these food trends has not

been reviewed. Therefore, the main objective of this narrative

review is to highlight the important scientific and technological

advances that are being used to improve sensory, nutritional,

and technological qualities of emerging food trends (shown in

Figure 1), and enhancing their acceptance by consumers.

Overview of the industrial
revolutions through a food
perspective

The ever-increasing population is putting pressure on

natural resources and depleting them rapidly. Technological,

environmental, social, and political changes across the globe are

creating many new opportunities and challenges for humans.

The global population increase is significantly affecting food and

water sources (50). The overall industrial revolutions have had

a great impact on the many different components of the food

industry. The food industry has been continuously updating

its processes and products to meet each new revolution (51).

Industry 4.0 comprises a diversity of new enabling technologies,

as previously mentioned that includes smart sensors, big data,

AI, IoT, blockchain, cloud computing, automation, among

others. These technologies have important roles in creating

modern production processes. The food industry is adopting

a customer-orientation as part of a dynamic supply chain.

An adaptation of innovative technologies in the different food

sectors is important for the sustainability of the production

process. New technologies are often also more efficient

economically (52, 53).

The United Nations is striving to make the environment and

food production more sustainable for upcoming generations.

The industrial revolutions are important factors for sustainable

food production and the environment (54–56). Industry 4.0 has

a direct impact on food manufacturing and the food supply

chain. Industry 4.0 is integrating human actors and intelligent

machines with product and process lines. Consumer demand

for healthy food will best be provided by adopting Industry
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FIGURE 2

Number of publications per year (until March 2022) dealing with emerging food trends (data obtained from Scopus).

Frontiers inNutrition 04 frontiersin.org

https://doi.org/10.3389/fnut.2022.972154
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Hassoun et al. 10.3389/fnut.2022.972154

4.0 changes. For example, thermal food processing is being

replaced with non-thermal technologies to minimize nutrient

losses (56). The use of non-thermal technologies (e.g., high-

pressure processing (HPP), cold plasma (CPL), and pulsed

UV-light) are improving processing to produce safe and more

nutritious food products (57).

Automation is having an increasingly important role in

manufacturing to achieve maximum productivity. The use of

AI with automated processes is increasing in the food industry

(54). AI helps monitor the supply chain and overall production

process. IoT includes many technologies that will also affect

existing production processes. IoT could also be implemented

in the food supply chain to make food safer (58). IoT connects

different devices to ensure effective communications between

people and things (59). The use of sensor technology and cloud

computing devices are important in increasing the efficiency

of the food supply chain (60, 61). The application of Industry

4.0 technologies (e.g., IoT, blockchain, and smart sensors) is

also important in reducing food wastage (62). Generally, the

digital revolution currently occurring in manufacturing and

the food industry, accompanied by greater automation and

advanced monitoring methods and processing technologies is

likely to have significant roles in enhancing sensory quality and

nutritional properties of foods, leading to improved consumer

perception and acceptance of these foods.

Consumer acceptance of emerging
food trends

Plant-based foods

Current food production practices have been linked to a

high prevalence of various chronic diseases as well as significant

environmental damage (63, 64). Over the past century, the

modern food and agricultural sectors have contributed to a

considerable reduction in world malnutrition and hunger by

producing a bountiful supply of inexpensive, safe, and tasty

foods. To feed a rising and wealthier global population, more

food of higher quality is required. Large-scale production of

animal products such as milk, fish, meat, eggs, and their

derivatives have been identified as a major contributor to the

modern food supply’s negative impact on global environmental

sustainability (63). Raising cattle for food causes significantly

more pollution, water and land use, greenhouse gas emissions,

and biodiversity loss than growing plants (and in some cases

other animals) for human use (65).

Plant-based (PB) diets are becoming increasingly popular

as a strategy to lessen the diet’s environmental footprint while

simultaneously improving human health and animal welfare.

In comparison to omnivores, vegetarians and vegans make

up a small percentage of the population, but their numbers

have risen in recent years. A side from meat alternatives, non-

animal food products are becoming more popular, which creates

a business opportunity for the food industry (66). Concerns

over the consumption of animal-based food products and their

harmful effects on the environment and health have led to an

increase in the PB protein business, particularly for innovative

items that can replace traditional dairy, egg, and meat products.

More people are declaring themselves “flexitarians (vegetarians

who occasionally eat animal products),” or opting to consume

less dairy, eggs, and meat in favor of more PB meals to help the

environment, improve health, or both. According to consumer

market research, up to 5 million Americans will have given up

meat totally between 2019 and 2020, becoming vegetarians or

vegans (67) although data confirming this is not yet available.

Functional PB foods are produced from unprocessed or

natural, as well as biotechnologically modified plants. They

are considered to have a significant impact on health and

wellbeing by reducing disease risks. Many of these functional

foods have been related to lower incidences of a variety of health

conditions, including diabetes, cardiovascular disease, gout, and

cancer. As a result, there is rising interest in functional PB

food research and development (68, 69). Individual PB foods,

such as nuts, vegetables, fruits, legumes, whole grains, and

coffee, have been shown to be beneficial to the cardiovascular

system (70). Significant evidence, on the other hand, links

particular animal foods, such as processed and red meat, to

an elevated risk of cardiovascular diseases (71, 72), although

these results remain controversial. Consumers are increasingly

turning to PB milk replacements for health reasons such as

lactose intolerance, cow’s milk protein allergies, or as a lifestyle

choice. PB milk substitutes are generally water-soluble extracts

of oilseeds, legumes, pseudo-cereals, or cereals that resemble

bovine milk in appearance. As a substitute for cow’s milk, they

are manufactured by reducing the raw material’s size, extracting

it in water, and then homogenizing it. Cow’s milk replacers

can be used as a straight replacement for cow’s milk or in

some animal milk-based recipes (73) although their nutritional

profiles may be quite different and this remains a concern.

Furthermore, there is growing concern that animal waste

lagoons and industrial meat production runoff would pollute

natural resources such as rivers, streams, and drinking water

although manure also represents a potential natural fertilizer.

There is also concern that excessive livestock farming may

result in the loss of critical carbon sinks such as forests

and other regions, as well as increased greenhouse gas

emissions, which will exacerbate current environmental and

climate-related issues. For human health and natural resources

reasons a sustainable food system that shifts the world

population toward less animal-based foods and more PB foods

is potentially beneficial. Dietary patterns rich in minimally

processed whole grains, vegetables, fruits, nuts, and legumes

have been recommend for increased sustainability and human

health. Meanwhile, a variety of other PB food products have
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been developed to replace traditional animal-based foods such

as meat alternatives, e.g., sausages, burgers, and other meat-like

products made primarily from highly processed PB components.

Even though these products provide more PB alternatives, they

may or may not be intended to imitate the sensory experience of

eating meat (65, 71, 72).

The number of people consuming PB diets is rapidly

expanding, according to many vegan organizations and

consulting firms, although some recent reports suggest that the

rate of growth of this market segment may be slowing down

as repeat purchases decrease. It is claimed that vegans in the

United States increased by 500% from almost 4 million in 2014

to 19.6 million in 2017 (66). According to a national survey

done in the United States in 2018, Americans had been reducing

their meat consumption in the previous 3 years (74). In the

United Kingdom, flexitarians account for 21% of the population,

whereas vegetarians and vegans account for one in every eight

people. In Germany, vegetarians went from 1% (2005) to 7%

(2018); the meat-free population expanded by 94.4% from 2011

to 2016 in Italy, and flexitarians increased by 25% in 2 years in

Spain (66). Furthermore, according to global research done in

2019, 40% of consumers are attempting to reduce animal protein

consumption, with 10% having completely stopped eating red

meat (75). PB meat substitutes are predicted to expand in value

from USD 1.6 billion in 2019 to USD 3.5 billion by 2026. The

top-selling meat replacement foods in 2019 were burgers (USD

283 million), hot dogs and sausages (USD 159 million), and

patties (USD 120 million). Other figures show that sales of meat

in the United States fell by 5% between 2015 and 2019 (66, 75).

Due to an increase in information about chronic diseases

and the numerous health claims presently associated with

various foods, consumer interest in wellness and better health

is expanding. Nowadays, many consumers drink PB milk

substitutes because they want to rather than because they have

an allergy (76). PBmilk substitutes are often regarded as healthy,

owing to their established health claims, such as those relating

to vitamins, fiber, or no cholesterol. The market is being driven

by both these positive attributes as well as people’s negative

perceptions about cow’s milk. The possibility of cow’s milk

contributing to a variety of human ailments, as well as its high-

fat content, are among the concerns (76). Themarket for PBmilk

replacements has also grown significantly, more than tripling

its global sales from 2009 to 2015 and reaching 21 billion USD

(73). According to the Plant Based Foods Association, sales of

PB yogurts have increased by 55%, PB cheeses by 43%, and PB

creamers by 131% in the United States (66).

The Industry 4.0 food processing technologies improve

functional, nutritional, and sensory properties of new PB foods.

Non-thermal technologies such as PEF, HPP, high-pressure

homogenization, and ultrasound modify the permeability of

the cell membrane in numerous fruits and vegetables. This

has been connected to microstructural changes in the whole

matrices and reduced particle size in liquid matrices. In general,

this increases the bioavailability of phenolic and carotenoids

compounds by promoting their release (77). Furthermore, this

type of processing might be effective in addressing the obstacles

that come with processing PB drinks on a larger scale (69).

An innovative drying processing technique–intermittent drying,

is a method of changing the drying conditions by varying the

humidity, temperature, pressure, velocity, or even the heat input

mode. Longer drying durations and case hardening decrease

energy efficiency, and lead to poor quality attributes that have

been successfully addressed with this drying procedure in

different PB foods (78).

The 3D-printing of PB foods has the potential to produce

better quality PB foods. The purpose of 3D printing is to turn a

computer-aided design model into a three-dimensional object.

4D printing is a relatively new technology that complements

3D printing by allowing the printed material to alter over time.

Food 3D printing has the unique ability to create geometrically

complex structures that can be mass produced while also saving

money and the environment. It allows for the customization of

foods based on nutritional needs, calorie consumption, texture,

a precise shape, flavor, or color. For example, extrusion, selective

sintering, binder jetting, and inkjets are the four types of 3D food

printing technologies currently being studied for PB foods (79).

Insect-based foods

In response to the increase in the world’s population, the

existing production of food will have to treble to fulfill the

rapidly rising demand for food. Insects are being researched

as a new source of animal feed and human food to help meet

global food security challenges. Human consumption of insects

has several reported advantages including comparable protein

levels (80), relatively high levels of unsaturated fat and different

nutrients, and a lesser environmental effect due to decreased

greenhouse gas emissions (80, 81). Insects are regarded as more

sustainable since they utilize fewer natural resources such as

water, feed, and land, and they generate far fewer greenhouse

gases and ammonia than bovine and non-bovine animals. They

have a high feed conversion ratio because they are cold-blooded,

implying that they are particularly efficient at bio-transforming

organic resources into insect biomass (82, 83).

As a result, insect production for human food is increasing

in several countries (84). Around 2,000 edible insect species

have been identified worldwide. They have been collected from

the wild including from Africa, East Asia, and South America,

and are used in traditional diets (37). Beetles (31%), caterpillars

(18%), ants, wasps, and bees (14%), cricket, locusts, and

grasshoppers (Orthoptera) (13%), planthoppers, cicadas, scale

insects, true bugs (Hemiptera), and leafhoppers (10%), termites

(Isoptera) (3%), dragonflies (Odonata) (3%); flies (Diptera)

(2%); and other orders (5%) are the most commonly consumed

species globally (85). For example cricket powder was added
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to pasta to increase its content of protein and minerals and

improved the culinary properties and texture (86).

Insect-based food production has been influenced by recent

advances and innovations offered by Industry 4.0 technologies.

One of them is exploiting the possibilities for engineered

insect tissue in cellular culture. Cellular agriculture is a rapidly

emerging field that allows for the preparation of such a food

system without necessitating changes in customer behavior. The

use of insect cell culture in cellular agriculture offers the promise

to overcome technical limitations and produce low-input, high-

volume, and nutritious food. Insect cells are good candidates

for incorporation into cultured meat and other innovative food

products due to the robustness of established techniques for

culturing insect cells and their ease of immortalization, serum-

free growth, have a high-density proliferation, transfection, and

a good suspension culture adaptation compared to mammalian

cells (87).

Despite their apparent feasibility as a long-term alternative

to conventional protein sources, there are still several barriers

to their widespread utilization as human food in the West

(81). In many Western countries, consumer acceptance remains

a hurdle, and insects are usually viewed as unpleasant, even

though their flavor has been shown to be mild and tolerable.

Consumer disgust can be explained in numerous ways, including

social, cultural and religious reasons (84). Therefore, product

development to create new insect-based foods, as well as

acceptance-boosting strategies, are required (88).

Consumer acceptance of insect-based food has been studied

(89–91). For example, food neophobia, or a fear of trying

new foods, emerges as an evolutionary response to prevent

potential hazards from being tried. Many aspects of human

eating behavior, including dietary preferences and food choices,

are influenced by this attitude. Consumers in countries where

there has been no recent insect intake history have a particularly

neophobic attitude toward edible insects, which influences

their apprehension to consume unusual and perhaps repulsive

foods like insects (89). For example, the Chinese had more

favorable attitudes and reported a higher willingness to eat

insects compared to the Germans (90). Sensory aversion was

discovered to be one of the commonly recognized risks of

insect intake, which affects both Indians and Americans (89).

Consumer acceptance of insect-based foods remains a hurdle

in many cultures, where religious prohibitions rule out many

insects. The role of context (social companions and location)

in the acceptance of insect-based foods was studied (91). The

results showed that eating with friends and eating in pubs

enhanced the acceptance of insect-based foods. In another study

(92), names and visual presentations were found to be important

factor that affect consumer acceptance of insect-based foods.

Many strategies have been suggested to reduce food

neophobia and increase acceptance of insect-based foods,

among which processing seems to be the most promising (38,

83). Appropriate food processing and preparation techniques

must be designed and implemented to obtain the benefits

of insects. At all levels, including large-scale industrial,

restaurants, cottage industries, and professional cuisine, as

well as households, the processing is an important aspect

of any meal or food item for the assimilation of insects

into more standard cuisines. Processing preserves or improves

the nutritional, organoleptic (texture, aroma, taste, etc.), and

functionality of raw materials converted into food ingredients,

while also destroying or removing potential safety hazards (93).

Insect biomass processing is becoming increasingly necessary to

meet the safe edible biomass standards while also developing

effective techniques to reduce chemical and biological risks.

Current insect biomass processing technologies rely on thermal

(blanching, drying, boiling, freezing, chilling, and freeze-

drying), mechanical (crushing, grinding, and milling), and

fractionation processes (extraction, separation, purification, and

centrifugation). These are well-developed and well-established

in the food and feed industries (94). For example, the use of

cold atmospheric pressure plasma processing in the postharvest

chain for edible insects could aid in the creation of safe

and high-quality insect-based products for the food and feed

industries (95). Various food processing technologies such as

oven, smoke, conventional air, freeze, microwave-assisted, and

fluidized-bed drying methods, and ultrasound-assisted aqueous

extraction, sonication, supercritical CO2 extraction, and dry

fractionation can be used to improve the overall quality of insect-

based products as well as helping in extracting nutritionally rich

compounds from the insects for its application in developing

new food products (96).

Cell-cultured meat

To satisfy the growing demand for protein for an ever-

increasing population, cultured meat is being considered a good

substitute for meat. Cellular agriculture is an emerging field for

the production of different products. Cultured meat, also known

as clean meat or laboratory-grown meat, is a part of cellular

agriculture and does not involve any livestock for the production

of meat once the initial cells are obtained (13, 97, 98) although at

some point new initial cells are needed.

Cell-cultured meat is produced using tissue-engineering

techniques. Different aspects of cultured meat give it an edge

over traditional meat such as a lower use of environmental

resources, higher nutritional value, lower risk of food-borne

diseases, as well as avoiding issues associated with the

slaughtering of animals (13, 99) In the cell-cultured meat

process, a biopsy is taken from any living animal from which

the stem cells are obtained. The stem cells can proliferate into

different types of cells. These cells are cultured in a nutrient

medium containing all the required growth factors, nutrients,

and hormones. The cells, if directed to muscle growth, continue

to grow and form myotubes with a length of about 0.3mm.
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FIGURE 3

Process for the production of cellular meat with its pros and cons.

These myotubes are then placed in a ring that grows into a small

piece of muscle tissue. A schematic diagram for their production

is shown in Figure 3. These muscle tissues can further multiply

to formmore than a trillion strands. These muscle cells continue

to grow in size and need to be attached to a scaffold that provides

support and orientation (14, 100, 101).

The production process for cultured meat has various

pros and cons. Cultured meat requires only a few animals to

produce a large amount of meat through cell proliferation.

The production process for laboratory-grown meat is rapid

compared to natural processes. In addition, cell-cultured meat

offers promising sustainability benefits. However, the cultured

meat uses the blood of dead calves which is a controversial

societal issue and negates the claims of being animal free

and violates the religious traditions that do not permit the

ingestion of blood or blood derivatives. The second major issue

is that the use of this serum is expensive and increases the

cost of production of laboratory grown meat. Currently only

a limited range of meat cuts are available. Furthermore, the

sensory quality of the meat is naturally affected by the type of

animal including breed, growing conditions, feed, and many

other factors, and to date has not fully imitated the flavor

of the product it means to imitate. Additionally, laboratory-

grown meat does not offer such diversification in terms of

sensory quality. Therefore, there is a need to resolve the technical

issues in the production of cultured meat. Additionally, there

is a need to understand the safety aspects, optimization of cell

culture methodology, and increase consumer acceptability. The

acceptability of cultured meat by some religious authorities is

still in question (14, 102, 103). A recent study showed that 35%

of meat-eaters and 55% of vegetarians felt disgusted by cultured

meat, as it is perceived as not being natural (104).

Despite the current limitations, the cell-cultured meat

industry has recently been growing, especially in the past two

years, with many companies being founded in North America,

Asia, and Europe (105). Emerging innovations and Industry 4.0

technological advances (e.g., advances in biotechnology and 3D

printing) are driving this trend, making it possible to accelerate

the industrialization and commercialization process for cell-

based products (4, 105). Among Industry 4.0 components, the

role of 3D printing has been particularly highlighted, leading to

many applications in different manufacturing fields, including

cultured meat production (18, 106).

3D-printed foods

3D printing is being positively applied in different sectors of

food production. The basic objective of 3D food production is to

provide a highly structured food to the consumer. The main 3D

food applications are based on the use of alternative ingredients,

including different isolates from microorganisms, insects, food

waste, and algae (107, 108). 3D printing can even be used to

give a second life for plastic wastes (109), making it a promising
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TABLE 1 Di�erent types of 3D printed foods and consumer

perception.

Product Consumer response Reference

Chocolates The texture is too soft (116)

Higher levels of cocoa solids

Deliciousness

A very clever way of presenting tasty food

Capsaicin candy Nutritionally rich (117, 118)

Different shapes

Different flavors

Suitable for everyone

Helps in the prevention of numerous diseases

Various types of

meat products

Delicious (18, 119)

Different sizes

Rich protein source

Pizzas Highly delicious (120)

Healthiness

Beef meat, hybrid

meat analogs

3D printed meat (18, 121, 122)

Sustainable

Environmentally friendly

More durable

High cost

Potentially unappealing

approach for achieving sustainability and circular economy

goals for food packaging. The major research on 3D food

printing is being done in the USA, China, and Australia (108,

110, 111). The first use of 3D was for the creation of engineering

prototypes, while the first 3D food was introduced commercially

in 2015 (108, 112, 113). Presently, many technologies for 3D

food printing are being used (39, 114, 115).

Different types of 3D-printed foods are available as shown

in Table 1. The major 3D printed food-producing countries are

China, the United Kingdom, Canada, Spain, the United States,

and Poland (108). Three important categories of ingredients

for food printing include native non-printable, printable, and

alternative ingredients. The native printable materials (e.g.,

chocolate, icing, and butter) can be extruded from a syringe.

In the case of non-printable traditional food materials (e.g.,

fruits vegetables, meat, and rice) different viscosity enhancers

(e.g., starches, gums, and gelatin) are added after grinding for

a smooth extrusion process. Proteins and fibers isolated from

insects, agricultural waste, and algae are considered alternative

ingredients and have different functional properties (108, 110,

113).

3D food printing technologies are producing demand-based

foods that can address food-related diseases (e.g., diabetes and

obesity) and personal nutritional habits (e.g., vegetarian and

vegan). 3D food printing technologies can also have a role

in the production of customized food products, eliminating

undesirable substances, and making foods that are pleasant for

the consumer. Other advantages include food waste reduction,

innovation, and process digitalization (17, 107, 108, 110,

123).

3D printing can be considered one of the most important

enablers of Industry 4.0. Recent advances and technological

developments have accelerated innovation and strengthened the

use of 3D printing for different applications. Improvements

in simulation, modeling, software, and materials have led to

the extension of 3D printing to 4D, 5D, and 6D printing

(41). 4D food printing refers to the response of 3D-printed

foods integrated with smart materials to external or internal

environmental/human stimuli (e.g., temperature and pH),

resulting in physical or chemical changes (e.g., color, flavor, or

nutritional changes) in the products over time (17, 40, 41). An

example of the application of 4D printing in food was recently

given by Ghazal and others (124) who used red cabbage juice and

vanillin powder for their 4D product to change color and flavor

in response to an external or internal pH stimulus. Recently,

more advanced and innovative printing technologies, including

5D and 6D printing have emerged, presenting new possibilities

in food manufacturing (41). Compared to 3D printing that is

based on three axes (X, Y, and Z) of movement, 5D printing

allows products to be printed from five axes by adding two

additional rotational axes (i.e., the rotation of extruder head

and the rotation of print bed), enabling printing of complex

shapes having curved surfaces. 6D printing combines 4D and

5D printing techniques, making it possible to print complex

structures using smart materials (41).

However, there are many issues associated with the

production of printed foods. Among different issues, the unusual

appearance of 3D food is a significant concern. The acceptability

of the 3D-printed foods is another important challenge that

should be addressed (108). Several survey-based studies were

not always encouraging (120). In addition, the safety aspects

of 3D-printed food must be addressed. Production of 3D

foods includes cooling and heating which make the food more

susceptible to microbial growth. The sanitization process for the

printer is important to reduce the microbial load in the final

product (110, 114).

The market for 3D food printers is expanding for

the production of various types of foods. This technology

has various advantages in terms of health, economic, and

environment aspects, with a potential to revolutionize food

manufacturing. 3D printing technology could be a way to

alleviate hunger through a more efficient use of the available

foods and the use of alternative food sources. Further

improvement in functional and nutritional properties of printed

foods is expected with the advent of Industry 4.0 innovations,

enhancing consumer acceptance. However, before large scale

commercialization, the consumer confidence and safety aspects

of 3D-printed food must be addressed.
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Use of by-products, ugly produce, and
other sources (e.g., seaweeds and
jellyfish) as food

Extensive research has been done to investigate new

approaches to valorize food wastes and by-products and to

explore new sources of food. Due to the growth of population

and economic advances, larger amounts of agricultural and food

wastes are produced at different stages of food production and

consumption, causing different environmental problems (125,

126). Food wastes resulting from different food groups along the

food supply chain were assessed and results showed that cereals,

fruit, and vegetables were the food groups responsible for the

highest amount of food wastes that occurred especially at the

consumption stage (127).

Food waste valorization has garnered global attention as

an effective approach in line with circular economy principles.

Different strategies have been developed to reduce the waste

resulting from the food industry and transform these wastes into

resources (125, 128, 129). Food wastes and by-products can be

rich in bioactive compounds and present important economic

and environmental benefits. Different functional compounds

may be extracted from food wastes and redirected to the food

industry as ingredients or value-added compounds, to enrich

products (47, 130). Proteins and amino acids, carotenoids and

tocopherols, fatty acids, starches, oligosaccharides, soluble fibers,

flavonoids, aromatic compounds, and different vitamins are

examples of functional compounds extracted from different

by-products and “ugly” produce and used to enrich different

foods (131–134).

However, most of the current waste valorization strategies

are developed only at laboratory scale (127). Additionally,
consumer acceptance remains one of the main barriers

that prevent commercialization of products and compounds

extracted from food wastes and ugly produce. Research shows
that abnormal appearance and nearing expiration date of
food products can reduce consumer willingness to accept

these products (48). In a recent study, the main drivers of
intention to purchase products with a by-product, namely grape
pomace powder, were evaluated (135). The results indicated

that informing consumers positively of the presence of this by-

product in food formulation enhanced the consumer acceptance

of the product.

Jellyfish and seaweed have been highlighted in many

studies as potential future foods (136–145). Jellyfish are

marine invertebrates that are capable of growing in various
environments (such as cold and warm waters, along coastlines,
and in deeper waters) to form large blooms (146, 147).
Interestingly, many reports indicated that the availability of
jellyfish seems to increase with climate change, such as global

warming (137, 147). These sustainable marine bioresources are
valued for their reported health benefits showing high potential

for use in food, feed, pharmaceutical, and other biotechnological

applications, promoting their cultivation (146). Seaweeds are

plant-like organisms that belong to brown (Phaeophyta), red

(Rhodophyta), and green (Chlorophyta) algae (147, 148). These

renewable sources of food have gained increased research and

consumer interest in recent years due to their nutritional

properties (e.g., high content of proteins, vitamins, minerals, and

bioactive compounds) and their sustainability characteristics

(e.g., fast growing with no fertilizer or pesticides), making them

significant contributors to global food security (141, 142, 147).

Valorization of food wastes and by-products and

exploitation of novel food sources take advantage of recent

technological advances and the rapid spread of the concept

of Industry 4.0. IoT, digital technologies, such as AI and

digital twins, and other Industry 4.0 components are being

applied to reduce or valorize food wastes and by-products,

providing important environmental and economic benefits

(62, 149–152). For example, emerging innovations in the field

of algae biotechnology enable the development of low-cost

production with exciting opportunities of automation through

the application of IoT and other technological advances (145).

Developments in nanotechnology have provided many

promising applications in the food industry, such as the use

of food wastes and by-products in different sustainable food

packaging strategies (153). Nanotechnology was used to reduce

wine waste in obtaining new food ingredients and sustainable

packaging with improved stability and bioavailability of the

phenolic compounds (154). Grape pomace and broken wheat

were used as printing material to produce functional cookies

with enhanced nutritional value and antioxidant properties

(155). The results showed that this sustainable approach led to

food products with customized shapes and a higher content of

proteins and dietary fiber.

Most of the extractionmethods that are available industrially

possessed several bottlenecks, such as using strong acidic

solutions and high temperatures, including boiling water,

leading to negative impacts on the sensory and nutritional

quality of the extracted compounds and decreased consumer

acceptance. Moreover, these extraction methods depend

on different factors such as solvent properties, reaction

temperature, pH, time of reaction, and the ratio between solvent

and solid material (156–158). One the other hand, emerging

green technologies, such as supercritical fluids, cold plasma,

pulsed electric field, ultrasound, and high pressure processing

have been studied and suggested as alternatives to conventional

extraction methods. These techniques have a high potential

to improve or maintain sensory and nutritional properties of

foods, thus increasing their positive perception by consumers

(25, 125, 158).

Personalized diet

A person’s state of health can be improved through an

individualized or personalized dietary approach. Healthy

dietary choices may help to substantially reduce the
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occurrence of obesity and non-communicable diet-related

diseases such as cancer, type-2 diabetes mellitus, metabolic

syndrome, and cardiovascular diseases (159). Existing policy

emphasizes prevention through personalized health promoting

interventions, which have been shown to be successful

in changing healthy behavior of consumers (160, 161).

Digital technologies sustain individualized health promoting

interventions by providing a personalized approach to health

supporting activities that are easily accessible and cost effective

(161). With the current breakthroughs in the decoding of

the human genome and various applications of genomics,

epigenomics, proteomics and metabolomics in medicine

and nutrition, the modern personalized diet goes far beyond

previous customized nutritional advice based on diet, age,

sex, body mass index (BMI), physical activity and the clinical

picture (160, 162). An individual’s response to any food and/or

food component is assigned to a number of factors including

overall state of the health, the genetic profile and physiological

environment (163). To minimize side-effects arising from the

consumption of physiologically unsuitable food products by

an individual, identification of the factors that may predispose

the individual to specific diseases as the result of the diet leads

to a proposed customized diet. Knowing the sequence of the

human genome, it is feasible to develop a personalized diet

regime that can be used by each individual based on his/her

genetic make-up.

Personalized diet is important for the development of

foods that may be used as a “drug” for the prevention of a

specific disease affecting that individual. The use of personalized

diet will make dietary interventions more efficient by simply

changing the diet that have been proven ineffective in certain

genotypes (16, 164). The first documented attempt to develop

personalized nutrition practices was the ancient medicine

system of Ayurveda, that goes back to 1500 B.C.E. Ayurveda as

a traditional medicine system, represents a set of comprehensive

healthcare practices involving medicine, nutrition, science, and

philosophy (165). According to Ayurveda, predisposition to a

disease depends on an individual’s basic constitution (Prakriti)

which requires a certain diet and health practices to avoid (166).

With help from modern predictive medicine, Ayurveda’s efforts

have been directed toward personalized nutrition based on

prospective disease andmarkers for their conditions. Individuals

from the three basic constitution types as defined by Prakriti

type do showmajor differences for each type at the genome-wide

expression level, as well as their biochemical and hematological

parameters including lipid profiles, liver function tests, and

hemoglobin content (165). Since the genetic expressions are

strongly affected and may be altered by diet, an unhealthy

lifestyle and environmental factors, the dietetic principles of

Ayurveda have been claimed to helpmaintain genetic expression

(167, 168).

A modern relook into the basics of Ayurveda dietetics had a

strong relation to epigenomics, proteomics and metabolomics,

which led to the emergence of the concept of personalized

nutrition called Ayurnutrigenomics (168). This emerging field of

research may show the possibilities of smart dietary choices that

will help to prevent non-communicable diseases and lifestyle

disorders caused by gene alteration through a fresh insight into

specific dietary recommendations based on the genotype of

individuals (167–169).

The ability of food components to interfere with molecular

mechanisms on a genetic lever has raised consumer interest

in considering personalized diet. The consumers are becoming

more intent on matching their own genotypes and phenotypes

to a diet that will help achieving desired physiological outcomes

(16). Personalized diet can, therefore, be viewed as a solution to

consumers’ needs for health promoting diets and dietary advice

(170). However, personalized nutrition needs the development

of personalized food products. Working with the variations

in individual needs based on biological characteristics of the

body, personalized nutrition provides recommendations on

types of foods and their optimal intakes. Personalization of food

products requires knowledge of their nutrient composition and

greater understanding of all possible interactions and impact of

micro- and macronutrients on the individual’s health (43).

To make personalized diet efficient for an individual,

relevant personalized food products must be developed and

made available. Current production of personalized products

includes not only knowing the genomics of consumers, but

also characteristics of nutrients in a food matrix, development

of food products with specific functional properties (43),

and application of advanced technologies that incorporate

elements of Industry 4.0 (30). Therefore, mass production of

personalized food products is currently not feasible without

wider applications of Industry 4.0 technologies, since it

is a comprehensive, laborious, and time-consuming process

requiring specific knowledge in the fields of medicine, genomics,

nutrition, and food technology. The involvement of Industry 4.0

is required for wider use of the information technologies needed

to model and describe the biological processes in medicine and

nutrition, including statistics and data processing, genomics,

epigenomics, proteomics and metabolomics, which would help

to accelerate the development and spread of personalized foods,

as well as increase consumer awareness and acceptance of

personalized foods. Therefore, personalization will also require

consumer input to define food preferences within potential

choices (43). Several attempts have been taken to develop

personalized foods that couldmatch the genetics of an individual

with direct involvement of that consumer. During these trials,

European consumers, particularly with health issues, showed

an openness and interest in the food personalization research

(171). There were also attempts to develop personalized foods

by selecting and combining food ingredients in accordance

with personal requirements and preferences, thus enabling

consumers to contribute to the personalization of food while

feeling satisfied and socially involved in the process (172, 173).
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Thus, personalization of food is a complex process that

requires the development of personalized food products based

on the nutritional profile of raw material and genomics of

a specific individual, taking into account all the interactions

between nutrients and other compounds in the food matrix

during processing and storage, and their influence on health and

consumer acceptance of the final products.

Fortification and gene editing of foods

Food fortification is a widely used strategy to address the

problem of nutrient deficiency and prevent malnutrition. As

traditional fortification approaches, i.e., the direct addition

of nutrients (e.g., vitamins and minerals) to foods during

processing, can be challenged by bioavailability issues,

the development biofortification has been accelerated in

recent years. The development of fortification techniques,

microencapsulation and stabilization technologies, and the

intervention of genetic engineering and breeding pave the way

to develop various foods (especially staple food crops, such as

rice and dairy products, such as cheese) with a higher nutritional

value and/or a greater content of health-promoting compounds

compared to traditionally fortified foods (174–176).

Genome editing has been applied as an alternative approach

to improve the nutrient contents of crops and livestock products.

Figure 4 shows the process for the production of cellular meat

with its pros and cons. Scientists starting in 2003 have developed

gene-editing (GE), which allowed them to develop modified

crops and livestock with high performance across a variety

of features including both abiotic and biotic stresses (20). GE

is the capacity to make exact alterations to a live organism’s

DNA sequence, thereby modifying its genetic composition.

This method works by using enzymes, notably nucleases,

designed to target a specific DNA sequence. These enzymes

function like scissors, cutting the DNA at a specific spot, and

allowing the removal of existing DNA and the insertion of

replacement DNA (21). Among the effector nucleases used

for GE are meganucleases (MegN), transcription activator-like

effector nucleases (TALEN), and zinc-finger nucleases (ZFN).

Discovered in 2012 (21), clustered regularly interspaced short

palindromic repeats (CRISPR-Cas9) allowed molecular scissors

to precisely target a gene in the genome. The procedure

first requires identifying a gene responsible for a particular

function that requires editing. To edit DNA, a guide RNA

(ribonucleic acid) is constructed and the Cas9 enzyme cuts the

specified sequence at a designated spot. After the cut, certain

functionalities may be added or modified, and the cell can be

restored using enzymes.

In an organism, the alterations are accomplished once the

guide RNA and Cas9 enzyme are eliminated (177). Overall, GE

breeders achieve a particular genotype that occurs naturally at

a low frequency, and Cas9 is a crucial differentiator for both

breeders looking to establish new lines of animals and regulators

who understand that the results are similar to natural mutations.

The use of GE methods has opened up many possibilities for

generating crops and animals that can better deal with the issues

of food and nutrition security. A few examples:

Rice has been a staple for more than half the world’s

population. Therefore, the first study using CRISPR-Cas9

technology focused on rice GE (178). Drought and salt are

two critical abiotic factors that influence rice that GE might

address. The use of CRISPR-Cas9 to knockout OsRR22, a

gene linked to salt sensitivity in rice increased its success with

high saline conditions (0.75% NaCl) without reducing grain

production, plant biomass, or grain quality. These GE lines were

19% shorter, whereas wild-type plants were 32% shorter with

salt. Likewise, GE plants had no significant changes from the

unedited plants in the absence of saline and had considerably

less severe biomass decreases due to salt exposure. Saline tests

were done in greenhouses, and overall agronomic performance

was assessed in the field. Compared to wild-type plants, GE

plants had substantially less severe biomass losses due to salt

exposure (179). Other rice editing efforts have resulted in early

maturing rice that is more suitable for cultivation in the northern

hemisphere, where it needs a longer growing period and colder

temperatures (180). Rice plants were GE using CRISPR-Cas9

to target the flowering-related genes Hd2,4, and 5, resulting

in plants that bloomed considerably quicker than their wild-

type counterparts.

In the future, when temperatures and other climatic

conditions in tropical areas make agriculture less productive,

early flowering plants may be better suited. Aside from being

adapted to water shortages, the early blooming may also reduce

the amount of cumulative water needed to grow to harvest. GE

technologies may assist with knock-ins as well as knockouts. To

improve drought tolerance, researchers used CRISPR-Cas9 to

place a promoter into a particular maize gene. An alternative

maize promoter was placed before ARGOS8, a drought-tolerant

gene. This precise insertion resulted in higher grain yields with

water stress during flowering while preserving normal growth

conditions. This method is an intragenic strategy using GE in

which a native maize genetic sequence was placed at a new locus

to improve plant tolerance to the abiotic stressor (181).

The development of disease resistance in pigs has also

benefited from GE. Two genes, CD163 and CD1D were knocked

out (182). The former is essential for PRRS viral infection,

whereas the latter is involved in innate immunity. The Cd163

knockout pigs were tested for PRRS resistance and had no

symptoms when infected. On the other hand, the wild-type

offspring had severe symptoms and had to be euthanized (182).

By using CRISPR-Cas9 GE to knock out CD163, pigs might

become immune to PRRSV (183). CRISPR-Cas9 has been used

to knock-in resistance to the classical swine fever virus (CSFV)

at the Rosa26 gene. This locus is a suitable target for transgenic

insertion because of its widespread and high expression, and

Frontiers inNutrition 12 frontiersin.org

https://doi.org/10.3389/fnut.2022.972154
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Hassoun et al. 10.3389/fnut.2022.972154

FIGURE 4

Process for the gene-editing with its pros and cons.

the absence of any gene-silencing effects (184). The gene-edited

pigs were CSFV-resistant, but all wild-type pigs died each time.

The C. elegans fat-1 gene was inserted into the Rosa26 locus

in pigs, providing a proof-of-concept to illustrate the feasibility

of concurrently boosting the nutritional value of pork while

raising general disease resistance since fat-1 is involved in

both disease resistance and the nutritive quality of meat (184).

Also, the ANPEP (aminopeptidase N) gene was knocked out

using CRISPR-Cas9 GE to impart resistance to coronavirus

infections (185).

Consumers’ acceptance or rejection of food produced from

GE crops may have significant economic consequences at all

stages of the food system. Global agreement on the safety and

regulation of GE crops is non-existent, and this is a serious

and significant problem. GE in food production is accepted

by many nations and areas, while Europe and New Zealand

have adopted a more cautious approach (186). In a study of

around 10,000 individuals done by the University of Tokyo, 40

to 50% of respondents said they did not want to eat GE crops

or animal products (186). Another study investigated people’s

attitudes towardGE in food plants and animals. People tended to

showmore positive attitudes toward GE plants than GE animals.

Their acceptance was stronger for biotechnology medical

applications than agri-food applications (44). Consumers have
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TABLE 2 New food production systems.

Type of

agriculture

technique

Definition Advantages Disadvantages

Hydroponic Cultivation of plants without soil

using mineral nutrient solutions in

aqueous solvents

No soil involved and no need for soil preparing

or testing

Optimal use of location (20% less space for

growing)

Complete control over climate

Conserving water by reusing it (20% less water

than traditional agriculture)

Optimal use of nutrients

Zero weeding, mulching, etc.

Faster growth rate

Total control over the nutritional balance

Fewer pests and ailments since the environment

is sterile

Constant monitoring is required

Water-based microorganisms may readily

infiltrate the system

All plants in the system will be impacted if a

disease emerges

If the system fails without soil to act as a buffer,

plant death will ensue quickly

Risks of water and electricity failure

Requires a high level of technical knowledge

Some plants are difficult to grow hydroponically

(such as potatoes)

Could be expensive

Aquaponics A food production system integrating

aquaculture and hydroponics to grow

fish and plants together in one system

Efficient use of water and nutrients

Organic fertilization

Environmentally friendly

Produce the highest yield on a field

Smart vertical farming

Consistent with circular agriculture

Limited crops

High initial cost

High consumption of electricity

Unsustainable fish food

The system must be professionally installed

Unexpected failure

Aeroponics A method of growing plants without

any growing medium where the roots

are suspended in the air, and nutrient

solutions are delivered to the plant

using a fine mist or spray

Completely controlled environment

Uses fewer resources, e.g., 90% less water than

traditional farming

Saves considerable space and soil

Fast growth and high yield

As roots grow in the air, there is no physical

medium inhibiting a plant’s expansion

Growth environment can be pest-

and disease-free

Requires advanced machinery and equipment to

operate

Expensive initial investment

Dependency on electricity

Requires more monitoring and maintenance

compared to the other systems

Nutrient content of the solution must be

monitored carefully and constantly

Extremely sensitive system

historically reacted negatively to genetically modified products

(GMO) because of their perceived “unnaturalness,” and GE

foods may encounter the same problems. Food that is more

nutrient-dense, environmentally and animal welfare-friendly

and cost-effective may be created by GE and overtime become

consumer acceptable.

GE discussions need to be framed so as to enable the public

to participate in the discussion, manage any misunderstandings,

and maintain consumer trust. GE products may also need

labeling that is clear and accurate.

Hydroponics, aquaponics, and other
indoor vertical food production systems

Agriculture-based food production growth is now much

lower than the rate of population expansion, which is a

concern. As a result, more agricultural production systems

must be implemented to improve and achieve expected future

food supply needs. Alternative forms of farming systems have

become more popular. Hydroponics, aquaponics, and other

indoor vertical farming systems are some of the primary

sectors where global agricultural output may be improved as

growing conditions can be better managed. Table 2 shows the

pros and cons of hydroponics, aquaponics, and aeroponics

systems. Hydroponics is a type of horticulture and a subset

of hydroculture that includes mineral fertilizer solutions in

an aqueous solvent to grow plants, mainly crops, without soil

(187). Any crop may be grown hydroponically, but the most

frequent are leaf lettuce, celery, cucumbers, peppers, tomatoes,

strawberries, watercress, and various herbs (24). Aquaponics

is an indoor vertical farming system combining aquaculture

(fish farming) and hydroponics. In aquaponics, farmed fish

waste provides nutrients for hydroponically grown plants, which
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in turn clean the water for the fish. This ensures a closed-

loop, long-term feeding supply. Because few pesticides and

herbicides are non-toxic to fish, aquaponics production relies on

organic pest and weed management (22, 188, 189). Aeroponics

is a soilless revolutionary farming system that allows growing

plants in the air, where plants’ roots are suspended in a mist

of nutrient solution (49, 190). This system is well suitable to

automation, digitalization, and other advanced technologies.

For example, an automated IoT-based aeroponics system,

with remote data monitoring, including sensors measuring

temperature, humidity, pH value of the water, and the light

exposure, has been developed (23).

Integration of Industry 4.0 technologies to food production

systems is termed smart farming or precision farming (190–

192). Application of Industry 4.0 innovations (e.g., robotics, IoT,

drones, satellite imagery, and smart sensors) in food production

systems can improve productivity and enable data collection

and aggregation, providing further improvements of precision

technology and possible solutions to various problems, which

could not be solved with traditional farming systems (24, 191,

192). A few examples:

The application of drones is now being investigated across

various production sectors, including agricultural supply chains,

providing relevant opportunities to overcome challenges (193).

The application of Industry 4.0 technologies to aquaponics

is termed Aquaponics 4.0, referring to a digital aquaponics

farm that involves remote monitoring and control of ecosystem

parameters, a high degree of automation, and intelligent

decision-making to ensure high crop yields and quality (22, 188).

Despite the global spread of these alternative farming

systems, only a limited number of studies discuss the overall

health of the plants grown using hydroponics, aquaponics,

and aeroponics, and the consumer acceptance of these foods.

A study of hydroponics and aquaponics cultivation showed

that >60% of consumers are generally unfamiliar with these

systems and their products (194, 195). Overall, three major

categories of features allow classifying consumers’ attitudes and

beliefs, and identifying prospective buyers of these farming

products. These factors include (i) the consumers’ personal and

sociodemographic characteristics and their prior knowledge;

(ii) the consumers’ willingness to pay some percentage

for locally produced or pesticide/herbicide and antibiotic-

free products before the concept of these cultivations was

introduced; and (iii) the consumers’ willingness to pay some

percentage for products after the concept of these systems

was introduced and it meets consumers’ main values regarding

those products.

Conclusions

The potential of the Industry 4.0 revolution technologies to

enhance eight food trends (namely, plant-based, insect-based,

cell-based, 3D-printed, personalized, and GE foods, as well as

foods resulting from by-products and ugly produce, and new

production systems) were explored in this narrative review.

According to the Scopus database, there has been a significant

increase in the number of publications and citation on these food

trends. The role of emerging technologies in promoting more

acceptability and consumption of proteins from these traditional

(such as plant- and insect-based foods) and innovative (such as

GE foods, cell-based meat, and 3D printed products) alternative

sources has been highlighted. The main outcome of this review

paper is to broaden readers understanding of the applicability of

emerging and innovative techniques to achieve a shift to digital

and ecological transitions toward greener, healthier, and more

sustainable diets.

The first, second, and third industrial revolutions were

characterized by mechanization, electrification, and information

advances, respectively, while automation, digitalization,

hyperconnectivity, as well as fusion between physical, digital,

and biological worlds are the main features of the ongoing

fourth industrial revolution, called Industry 4.0. Industry 4.0

is a huge umbrella term that includes artificial intelligence,

big data, smart sensors, robotics, and block chain, to name

a few.

Traditional food production systems, such as livestock

farming, have been identified as a contributor to climate change

and unsustainable development. There is therefore a search for

alternative proteins that have comparable health and sensory

characteristics to traditional animal-based products but with a

lower environmental footprint. PB sources have traditionally

been the most investigated, especially PB proteins from oilseeds

(e.g., rapeseed and hemp), legumes (e.g., lentils, beans, and peas),

and cereals (e.g., wheat and rice), as well as fruits and vegetables

for use as food and feed. Although in use since antiquity, an

increased consumer interest in these foods has recently emerged

with a growing number of vegans, vegetarians, and flexitarians.

In addition, a variety of PB meat, fish, milk, and egg analogs

have been seen as a promising sustainable approach to reducing

the consumption of meat and other animal-based proteins

(10, 34, 35). A challenge to consumption of PB foods is many

of their poor nutritional and functional properties. However,

this issue can be solved by blending different types of proteins

from various sources and optimizing processing conditions,

thus improving protein quality, digestibility, and bioavailability

(32, 33). Additionally, current research shows that Industry 4.0

innovations and emerging processing technologies could help

to improve their nutritional and technological functionality as

well as their sensory perception. The recent innovations and

advancements could be a major driver in convincing consumers

to rely more on PB diets.

The popularity of insect-based diets has been increasing

spurred by the increased awareness and demand of consumers

for sustainable alternatives to animal proteins. Insects could

be the food of the future, but currently most consumers do
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not seem willing to adopt the consumption of insect proteins.

Therefore, continued efforts will be required to change the

minds and behaviors of consumers. Industry 4.0 technologies

and new innovations in processing technologies and analytical

approaches such asmetabolomics (36) could help to improve the

sensory and techno-functional properties as well as digestibility

of insect-based foods, enhancing their acceptability and making

themmore appealing to consumers.Many insect-based products

(e.g., insect flour, insect protein powders, and insect protein

hydrolysates) can be prepared from numerous edible insect

species (especially crickets and mealworms) and can be used

as snacks or ingredients to produce other food or feed.

Insect foods are nutritious, cheap, and sustainable as less

food, land, and water are required for insect breeding than

raising cattle or other livestock. Although positive aspects of

insect proteins regarding both nutritional and environmental

issues has decreased entomophobia, intensive studies on safety,

hygiene and toxicity, marketing strategies, and governmental

regulations should be done to accelerate consumer acceptance

of these alternative portion sources.

Cell-cultured meat and related products (e.g., seafood

and poultry) seem to be one of the most promising and

revolutionary strategies to achieve environmental sustainability

and improve animal welfare, hence the large number of patents

and publications (13). As the process of production occurs

in the laboratory, water and land requirements as well as

greenhouse gas emissions are low. Although the technique has

the potential to disrupt and transform the whole agricultural

and food industry, it is still costly and production at a large

scale has not yet been implemented. Moreover, concerns about

the naturalness, ethical issues, and safety of cultured meat and

related products still exist among consumers, while studies on

health benefits, funding resources and appropriate regulatory

pathways are still required (14, 196).

3D printing has been accepted by many scientific and

industrial areas, including the food industry. This technique

could enable producing on-demand, complex, and customized

(e.g., shapes, sizes, tastes, texture, and nutritional properties)

food products to satisfy a range of consumer preferences. Several

3D printing techniques have been developed, with extrusion-

based printing being the most common. The last few years have

seen significant progress in this field, with the emergence of new

smart materials, new technologies, and significant innovations,

accelerating the move toward more advanced and innovative

additive manufacturing technologies, including 4D, 5D, and 6D

printing (40, 41). Although the scope of current application is

limited to the decoration and fabrication of a few food products

such as chocolates, cookies, and cakes (39), further improvement

in functional and nutritional properties of printed foods is

expected with the advent of Industry 4.0 innovations, enhancing

consumer acceptance. Owning a personal food printer at home

is probably likely in the not so distant future. One of the

possible applications of food printing is personalized foods

(or personalized nutrition) as food can be specifically printed

to meet an individual’s health-nutritional needs, including

medicinal and nourishment requirements (16, 17).

Industry 4.0 technologies should be considered to reduce

the environmental impact of food production systems and

achieve zero-waste. According to FAO, a huge amount of

food by-products and ugly produce are wasted or lost every

day. Increased concerns about environmental sustainability are

driving the growing interest in better uses of food waste and

by-products, and ugly produce. Technological innovations and

scientific advances along with education could help consumers

accept the hidden beauty of ugly food, thus reducing food waste

and contributing to food sustainability.

Gene editing methods have opened up many possibilities

for generating crops and animals with desired traits. New

gene editing tools (e.g., CRISPR-Cas9-based GE) are being

rapidly developed, taking advantages of recent progress in

genetic engineering. GE is efficient and can enhance product

quality and increase resistance against diseases and pests with

a low risk of off-target effects. GE could bring about new

possibilities in agriculture and biomedicine but consumer

acceptance of GE products is still low. High-productivity food

systems, including hydroponics, aquaponics, and other indoor

vertical farmingmethods, are occurring in smart controlled food

production environments. These smart or precision farming

methods are becoming better understood to fulfill future

food demands.

Future perspectives

While this review is not an exhaustive overview of all

emerging food trends, eight of the more pertinent ones, from

food technological advances perspectives, were discussed. Each

of these emerging food trends has been fostered by the greater

use of Industry 4.0 technologies and recent advances in many

fields of food science and technology. Innovative solutions

based on Industry 4.0 enablers (such as AI, smart sensors,

and robotics) can be used to increase agriculture productivity,

optimize production conditions, and reduce waste and loss,

accelerating the green and digital transition of future food

production systems. The interest in traditional animal-proteins

alternatives, including plant-based foods and insects and more

recent food trends, such as cell-cultured meat, 3D-printed,

fortified, and gene-edited foods are likely to continue growing in

popularity in response to the increasing consumers’ awareness

regarding the environmental impact of food choices. With the

ongoing rapid technological advances in physical, biological,

and digital worlds, other food trends are expected to emerge in

the future.

Although the concept of Industry 4.0 may have

previously had greater significance to other industries, the

opportunities for the agriculture and food industry sectors
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are also enormous. Wider applications of Industry 4.0

technologies in the agriculture and food industry could

enable the production of foods with higher quality and

affordability, and lower environmental impact. Innovative

technologies provide opportunities for improving sensory and

nutritional properties of foods, thus increasing their positive

perception by consumers, which in turn could enhance food

sustainability and contribute to addressing the issue of global

food insecurity.
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