
fnut-09-976818 November 19, 2022 Time: 15:3 # 1

TYPE Original Research
PUBLISHED 24 November 2022
DOI 10.3389/fnut.2022.976818

OPEN ACCESS

EDITED BY

Daniel Moore,
University of Toronto, Canada

REVIEWED BY

Maria Montserrat Diaz Pedrosa,
State University of Maringá, Brazil
Chris McGlory,
Queen’s University, Canada
Tyler A. Churchward-Venne,
McGill University, Canada

*CORRESPONDENCE

Gianni Biolo
biolo@units.it

†These authors have contributed
equally to this work and share first
authorship

SPECIALTY SECTION

This article was submitted to
Clinical Nutrition,
a section of the journal
Frontiers in Nutrition

RECEIVED 23 June 2022
ACCEPTED 09 November 2022
PUBLISHED 24 November 2022

CITATION

Vinci P, Di Girolamo FG, Mangogna A,
Mearelli F, Nunnari A, Fiotti N,
Giordano M, Bareille M-P and Biolo G
(2022) Early lean mass sparing effect
of high-protein diet with excess
leucine during long-term bed rest
in women.
Front. Nutr. 9:976818.
doi: 10.3389/fnut.2022.976818

COPYRIGHT

© 2022 Vinci, Di Girolamo, Mangogna,
Mearelli, Nunnari, Fiotti, Giordano,
Bareille and Biolo. This is an
open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution
or reproduction is permitted which
does not comply with these terms.

Early lean mass sparing effect of
high-protein diet with excess
leucine during long-term bed
rest in women
Pierandrea Vinci1†, Filippo Giorgio Di Girolamo1,2†,
Alessandro Mangogna3, Filippo Mearelli1, Alessio Nunnari1,
Nicola Fiotti1, Mauro Giordano4, Marie-Pierre Bareille5 and
Gianni Biolo1*
1Department of Medical Surgical and Health Sciences, Medical Clinic, Cattinara Hospital, University
of Trieste, Trieste, Italy, 2Hospital Pharmacy, Cattinara Hospital, Azienda Sanitaria Universitaria
Giuliano Isontina, Trieste, Italy, 3Institute for Maternal and Child Health, Istituto di Ricovero e Cura a
Carattere Scientifico (IRCCS) Burlo Garofolo, Trieste, Italy, 4Department of Advanced Medical
and Surgical Sciences, University of Campania L. Vanvitelli, Naples, Italy, 5Institute of Space
Physiology and Medicine (MEDES), Toulouse, France

Muscle inactivity leads to muscle atrophy. Leucine is known to inhibit protein

degradation and to promote protein synthesis in skeletal muscle. We tested

the ability of a high-protein diet enriched with branched-chain amino acids

(BCAAs) to prevent muscle atrophy during long-term bed rest (BR). We

determined body composition (using dual energy x-ray absorptiometry) at

baseline and every 2-weeks during 60 days of BR in 16 healthy young women.

Nitrogen (N) balance was assessed daily as the difference between N intake

and N urinary excretion. The subjects were randomized into two groups: one

received a conventional diet (1.1 ± 0.03 g protein/kg, 4.9 ± 0.3 g leucine

per day) and the other a high protein, BCAA-enriched regimen (1.6 ± 0.03 g

protein-amino acid/kg, 11.4 ± 0.6 g leucine per day). There were significant BR

and BR × diet interaction effects on changes in lean body mass (LBM) and N

balance throughout the experimental period (repeated measures ANCOVA).

During the first 15 days of BR, lean mass decreased by 4.1 ± 0.9 and

2.4 ± 2.1% (p < 0.05) in the conventional and high protein-BCAA diet groups,

respectively, while at the end of the 60-day BR, LBM decreased similarly in

the two groups by 7.4 ± 0.7 and 6.8 ± 2.4%. During the first 15 days of BR,

mean N balance was 2.5 times greater (p < 0.05) in subjects on the high

protein-BCAA diet than in those on the conventional diet, while we did not

find significant differences during the following time intervals. In conclusion,
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during 60 days of BR in females, a high protein-BCAA diet was associated

with an early protein-LBM sparing effect, which ceased in the medium and

long term.

KEYWORDS

lean body mass, high-protein diet, branched-chain amino acids, leucine, long-term
bed rest

Introduction

Physical inactivity or bed rest (BR) frequently occurs in
patients affected by several diseases, but also during physiologic
aging (1–3). Muscle inactivity leads to muscle atrophy, loss of
bone mineral density and decreased insulin sensitivity (2, 4–
10). Beyond its well-known functional-motor structural role,
skeletal muscle represents a homeostatic “organ,” fundamental
for the maintenance of whole-body metabolic control (11).
Indeed, skeletal muscle mass regulates the amino acid balance
of organs and tissues, as well as the availability of nutrients
and metabolic precursors (11–13). Moreover, it has a central
role in maintaining the general energy balance, through
complex interplay mechanisms, and contributes to preserve the
individual’s state of health and quality of life (11).

Together, with physical activity, nutrition has a fundamental
role in homeostatic regulation and maintenance of muscle mass
and function (14–16). Among nutrients, essential amino acids,
occupy a central place, linked not only to the formation of
proteins, but also to the control of numerous and complex
subcellular pathways, fundamental for maintaining cellular
energy balance and, ultimately, for survival itself (17–19). The
action of essential amino acids on muscle, in addition to being
of a direct type on specific regulatory factors (i.e., mammalian
target of rapamycin, mTOR, complex 1), is also mediated by
hormonal control (i.e., insulin, glucagon, cortisol), involved
in anabolic and catabolic processes, through the regulation of
transcriptional sequences (19, 20). Evidence indicates that high-
protein diets and essential amino acid supplementation may
ameliorate muscle protein loss in healthy volunteers during
experimental BR (21, 22). In addition, protein/amino acid
intake has been reported to modulate insulin signaling and
β-cell function in “in vivo” experiments (23, 24). Branched-
chain amino acids (BCAAs), i.e., leucine, valine, and isoleucine
are essential amino acids, exhibiting selective effects not
only on stimulation of muscle protein synthesis, but also
on insulin mediated glucose uptake, moreover they play an
important role in several metabolic and signaling functions,
particularly via activation of the mTOR signaling pathway
(25, 26). Among BCAAs, the most noteworthy effects have
been observed with leucine (26). In particular, leucine: (a) is
a constituent of proteins (27); (b) regulates protein synthesis

translation initiation in skeletal muscle (28–30); (c) modulates
insulin/phosphoinositide 3-kinase (PI3K) signal cascade (31);
(d) is a fuel for skeletal muscle cells (32); (e) is a primary
nitrogen donor for the production of alanine and glutamine
in skeletal muscle (33); (f) modulates the pancreatic β-cell
insulin release (34). All these diverse metabolic roles allow
leucine to influence the rate of muscle protein synthesis,
insulin secretion and glucose homeostasis (25, 35). Evidence
indicates that leucine alone may exert and anabolic response
(36), while no such data exists for isoleucine or valine, although
isoleucine could potentially increase muscle growth by up-
regulating the protein expression of GLUT1 and GLUT4 in
muscle (26).

The aim of the present study was to assess the
effects of a high-protein diet enriched with BCAAs on
progression of lean body mass (LBM) atrophy over
2-months experimental BR in healthy young female
volunteers as an experimental model of long-term physical
inactivity. LBM was assessed approximately every 2 weeks
by dual-energy X-ray absorptiometry (DXA). Whole-
body protein kinetics were evaluated by nitrogen (N)
balance before and during BR. Healthy volunteers who
underwent a prolonged BR represent a good model to
investigate the effects of muscle unloading on physiological
functions (37).

Materials and methods

Subjects and study design

Sixteen medically and psychologically healthy females, aged
25–40 years (32 ± 4 years), participated in the Women’s
International Space Simulation for Exploration (WISE)—2005
BR study. The study was completed in two campaigns (February
2005–May 2005, September 2005–December 2005). Non-
smoking volunteers were recreationally active but athletically
untrained, thus competitive athletes were excluded from the
study. Included volunteers met the following criteria: a body
mass index between 20 and 25 kg/m2, regular menstrual
cycles, no intake of oral contraceptives in the 2 months
before the study, no family history of chronic diseases
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or psychiatric disorders, and absence of musculoskeletal,
orthopedic, blood clotting, and cardiovascular disorders. Mean
weight and height of the subjects were 59 ± 4 kg and
166 ± 7 cm, respectively.

The procedures were conducted in accordance with the
ethical principles stated in the Declaration of Helsinki 1964.
The protocol was reviewed and approved by the local ethics
committee (Comité Consultatif de Protection des Personnes
dans la Recherche Biomédicale, CCPPRB—Toulouse 1: dossier
n◦1-04-16: 20/07/04—avis n◦2: p.1), by the University of
California, San Diego Institutional Review Board and by the
Institutional Review Boards of the National Aeronautics and
Space Administration, Johnson Space Center Committee for the
Protection of Human Subjects. The whole study procedures was
explained to the volunteers both verbally and in writing. All
participants provided a written informed consent. The study was
performed at the Institute for Space Medicine and Physiology
in Toulouse, France. The whole study protocol is discussed in
detail elsewhere (38, 39), briefly, it consisted in a long-term BR
which included a 20-day ambulatory control period followed by
60 days of strict 6◦ head-down-tilt (HDT) BR (40). A 20-day
ambulatory recovery period followed the BR period.

After a 20-day ambulatory adaptation to a controlled
diet (i.e., conventional diet), subjects were randomized into
two eucaloric diet groups (n = 8, each): a control group
who continued the conventional diet and a protein group
on a high protein diet enriched with BCAA. During the
20 days pre-BR (ambulatory period, AMB), resting metabolic
rate was determined by indirect calorimetry using Deltatrac
II (General Electric, Indianapolis, IN) according to the
manufacturer. The prescribed caloric intake for the two
groups was 140% of their resting metabolic rate during the
pre-BR. During BR, energy intake was adjusted downward
to 110% of resting metabolic rate both in the control
(conventional diet) and protein (high protein-BCAA diet)
groups. In the control group on the conventional diet, the
prescribed daily protein intake was 1.1 ± 0.03 g·kg−1

·day−1

of body weight; while, in the group on the high protein-
BCAA diet, dietary protein content was increased to about
1.45 g·kg−1

·day−1 and enriched with 0.15 g·kg−1
·day−1

of BCAAs (leucine/valine/isoleucine = 2/1/1). Free BCAAs
(3.6 g/day free leucine, 1.8 g/day free isoleucine, and 1.8 g/day
free valine) were added as a supplement (Friliver, Bracco, Italy)
during the three main meals. Thus, the total protein/amino
acid daily intake for this group was of 1.6 ± 0.03 g·kg−1 body
weight. To compensate for the additional increase in energy
intake from protein in this group, carbohydrate content was
reduced during the BR period. Fat mass was monitored every
15 days and maintained at basal levels by changing energy
intake, if necessary. All subjects were always restricted to the
HDT position except for mealtime when they were allowed to
elevate on one elbow. Body weight, urine production, intake of
fluids and body temperature were regularly monitored.

Body mass and composition

Body weight was measured daily during pre-BR and during
BR. Lean and fat mass were determined by DXA with a Hologic
QDR 4,500 W, Software Version 11.1 (Hologic, Bedford, MA).
At baseline, measurements were obtained twice, respectively, on
days −14 and −2 before the start of BR in each group. In the
ambulatory condition DXA measurements obtained at days −14
and −2 were averaged. DXA scans were performed four times
during the 60-day BR, respectively, on days 15, 31, 43, and 60
(days BR 15, BR 31, BR 43, and BR 60). DXA scans were executed
in the morning in the fasting state. The bladder was emptied
before the scan. The subjects had nothing to eat or drink after
dinner the night before.

Nitrogen balance during the bed rest

Nitrogen (N) balance reflects the equilibrium between
protein N intake and N losses to define anabolic and catabolic
conditions of whole-body protein kinetics (i.e., difference
between rates of synthesis and degradation). N balance is
calculated as the difference between N intake and N losses. In
this study, N balance was estimated from the difference between
N protein/amino acid intake and urinary N excretion (41),
with the addition of a constant value of 4 g/day to account
for N losses from the skin and feces (41, 42). A total of 24-
h urine samples were collected, aliquoted in 10 mL samples
and at −20◦C. Urinary N from these aliquots was measured
by chemo-luminescence (Antek 7000, Antek Instruments, U.S.)
in an accredited laboratory (Central Biochemical Laboratory,
Université de Lyon, Lyon, France). Protein intake was assessed
by entering all food eaten including all ingredients used to
prepare complex recipes, into the Nutrilog Edition Expert
software, version 2.0 (Marans, France). All food and leftovers
were weighed individually. N balance [g] was then calculated
daily according to the following equation: N balance = (24-h
protein/BCAA intake / 6.25) – (24-h urinary urea N + 4). In
the ambulatory condition N balance of days −1 and −2 were
averaged. During the BR period the average daily N balance
values were calculated in the time intervals between consecutive
LBM measurements. Values of N balance were expressed as
mg/kg LBM per day.

Data and statistical analysis

The numerical data are presented as means ± standard
deviation (SD). The differences between pre-BR and during 60-
days BR were analyzed by repeated-measures ANCOVA with
time (AMB or BR days) and diet (conventional or high protein-
BCAA diet) as the two factors using ambulatory values as
covariates. Post hoc analysis was performed, when appropriate,
by using paired t-test or Mann-Whitney test with Bonferroni’s
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adjustments. Levene’s test showed normal distribution and equal
variance of ambulatory values of LBM, N intake, N excretion
and N balance in the two groups. All p-values were considered
significant when < 0.05. All analyses were performed using the
IBM SPSS statistic 21 software (Version 21.0, SPSS Inc., Chicago,
IL, USA).

Results

Table 1 shows mean values of nutrient intakes in the AMB
and BR periods in the conventional and high protein-BCAA diet
groups. During BR, energy intake decreased by about 8% in both
groups. Protein intake increased during BR by about 11 and
53% in the conventional and high protein-BCAA diet groups,
respectively. Leucine intake increased by about 100% during the
BR period in the high protein-BCAA diet group.

Changes in body weight and composition during the 60-day
BR are shown in Table 2. Body weight significantly decreased
following BR. At the end of the BR period body weight decreased
by 5.9 ± 1.1% in the conventional diet group and by 4.1 ± 1.7%
in the high protein-BCAA diet group (p = 0.01). Fat mass did
not change significantly during the BR period in both groups.
Lean mass significantly decreased during the first 31 days of BR
and did not change during the following 29 days of BR, both in
the high protein-BCAA and the conventional diet groups. There
were significant BR effect and BR × diet interaction on changes
in LBM.

After 15 days from the beginning of the BR, the decrease
in lean mass was about twice greater in the conventional diet
group than that in the high protein-BCAA diet group (Figure 1).
Nonetheless, at the end of the 60 days of BR the total changes in
LBM were similar in the two groups.

As shown in Table 3, during the BR period N intake and
urine N excretion were 55 ± 8 and 52 ± 1% greater in subjects on
the high protein-BCAA diet than in those on the conventional
diet. There were significant BR effect and BR × diet interaction
on N balance in both groups. Between the 1st and the 15th day
of BR, N balance was significantly greater in the high protein-
BCAA diet group than in the conventional diet group, while
we did not find significant differences during the following time
intervals.

Discussion

We have studied healthy young women during 60 days
of BR in eucaloric conditions at different levels of protein
intake. In the high protein-BCAA and conventional diet
groups protein/amino acid intakes were about 1.6 and
1.1 g·kg−1

·day−1, respectively. The high protein diet was
enriched with 0.15 g·kg−1

·day−1 of BCAAs with the following
BCAA proportions, leucine/valine/isoleucine: 2/1/1. The diet
high in protein and BCAA caused a slowing down of the loss of
lean mass secondary to BR of about 42%, only in the first 15 days
of inactivity. This lean mass saving effect was abolished in the
later stages of BR. In fact, at the end of long-BR the total changes
in LBM were similar in the two groups. The results of N balance
agreed with changes in LBM.

The subjects were in energy balance during the whole
study period as demonstrated by the absence of significant
changes in fat mass. This finding is important as our previous
studies showed that a positive or negative energy balance
accelerated BR-induced muscle atrophy (43, 44). In fact, we
have demonstrated that during 5 weeks of BR a positive energy
balance was associated with greater loss of LBM and activation

TABLE 1 Summary of dietary intake in ambulatory condition and during 60-days of bed rest.

AMB BR p
BR effect

p
BR × diet

Energy intake (kcal·kg−1
·day−1) Conventional diet 32.3 ± 3.1 29.3 ± 2.0* <0.001 0.12

High protein-BCAA diet 31.7 ± 1.1 29.9 ± 1.1*

Carbohydrate intake (% energy intake) Conventional diet 58 ± 0.6 56 ± 0.8* <0.001 <0.001

High protein-BCAA diet 57 ± 0.6 50 ± 1.1*§

Lipid intake (% energy intake) Conventional diet 30 ± 0.3 30 ± 0.6* <0.001 <0.001

High protein-BCAA diet 30 ± 0.3 28 ± 0.3*§

Protein/amino acid intake (% energy intake) Conventional diet 13 ± 0.6 14 ± 0.6* <0.001 <0.001

High protein-BCAA diet 13 ± 0.6 21 ± 1.1*§

(g·kg−1
·day−1) Conventional diet 1.0 ± 0.03 1.1 ± 0.03* <0.001 < 0.001

High protein-BCAA diet 1.0 ± 0.03 1.6 ± 0.03*§

Leucine intake (g·day−1) Conventional diet 5.2 ± 0.4 4.9 ± 0.3 <0.001 <0.001

High protein-BCAA diet 5.7 ± 0.4 11.4 ± 0.6*§

AMB, ambulatory; BR, bed rest. All data were expressed as means ± SD. All data were analyzed by repeated-measures ANCOVA with time (AMB or BR days) and diet (conventional
or high protein-BCAA diet) as the two factors using AMB values as covariates. Post hoc analysis was performed, when appropriate, by using paired t-test with Bonferroni’s adjustment.
*p < 0.05, BR vs. AMB. §p < 0.05, high protein-BCAA vs. normal protein, conventional diet); SD, standard deviation.
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TABLE 2 Body composition in ambulatory condition and during 60-days of bed rest.

AMB BR
15 days

BR
31 days

BR
43 days

BR
60 days

p
BR effect

p
BR × diet

Total mass Conventional diet 55.6 ± 3.9 54.1 ± 4.0* 52.9 ± 4.1* 52.6 ± 4.0* 52.3 ± 3.8 <0.001 0.02

High protein-BCAA diet 61.0 ± 4.4 60.1 ± 3.9* 59.1 ± 4.0* 58.8 ± 4.0 58.5 ± 4.1

Lean mass Conventional diet 38.8 ± 3.0 37.2 ± 3.2* 36.1 ± 3.1* 36.1 ± 2.9 35.9 ± 2.9 0.008 0.012

High protein-BCAA diet 42.8 ± 5.2 41.7 ± 4.2* 40.3 ± 4.6* 40.6 ± 4.3 39.8 ± 4.1

Fat mass Conventional diet 14.7 ± 3.8 14.7 ± 3.9 14.7 ± 3.8 14.3 ± 3.6 14.3 ± 3.5 0.57 0.08

High protein-BCAA diet 15.9 ± 2.1 16.1 ± 2.0 16.5 ± 2.1 15.9 ± 2.0 16.4 ± 2.0

Body composition measurement with dual-energy X-ray absorptiometry (DXA). Units are kg. Data are means ± SD. AMB, ambulatory; BR, bed rest. AMB values are means of
measurements at –14 and –2 pre-bed rest days. All data were expressed as means ± SD. All data were analyzed by repeated-measures ANCOVA with time (AMB or BR days) and diet
(conventional or high protein-BCAA diets) as the two factors using AMB values as covariates. Post hoc analysis was performed, when appropriate, by using paired t-test with Bonferroni’s
adjustment. *p < 0.05, vs. the preceding AMB or BR day of assessment; SD, standard deviation.

of the systemic inflammatory response and antioxidant defenses
(44–48). Several pieces of literature provide evidence to support
the role of inflammation in impairing muscle homeostasis with
a consequent loss of skeletal muscle (49–51). We have also
shown that a negative energy balance (hypocaloric nutrition)
during 2 weeks of BR leads to a greatest wasting of LBM by
increasing protein catabolism in the postabsorptive period and
by impairing postprandial anabolic utilization of free amino
acids (43).

Muscle atrophy depends on an imbalance between muscle
protein synthesis and breakdown. It has been suggested that
disuse atrophy in humans is caused mainly by a decreased basal
protein synthesis, with no changes in protein degradation, at
least in the early stages of BR or immobilization (52–54). In
fact, the rate of basal protein synthesis declines immediately
after unloading and stays at a suppressed level for the duration

FIGURE 1

Effects of high protein-BCAA diet on lean body mass (LBM)
during the first 15 days and during entire bed rest (BR) period of
60 days. All data were expressed as means ± SD. Individual data
are additionally shown. All data were analyzed by
repeated-measures ANCOVA with time (BR 1–15 days or BR
1–60 days) and diet (conventional or high protein-BCAA diet) as
the two factors. BR effect, p < 0.001; BR × diet interaction,
p = 0.036. Post hoc analysis was performed by using
Mann-Whitney test with Bonferroni’s adjustment. ∗p < 0.05,
high protein-BCAA vs. normal protein (conventional diet); SD,
standard deviation.

of the disuse (52–59). The most important role in the loss
of muscle mass during a period of disuse has been explained
elsewhere (60, 61) as a decline in both post-absorptive and
postprandial muscle protein synthesis rates. This response now
called anabolic resistance, is a state of diminished muscle protein
synthesis, despite provision of an adequate amount of essential
amino acids to elicit an appropriate synthesis response (54,
60–66). In addition, during limb immobilization and BR, a
decreased post-absorptive muscle protein synthesis has been
reported (55, 60, 62, 67, 68).

In our study, we speculated that the beneficial effect of a
high protein-BCAA diet on LBM in the early phase of BR was
due to leucine supplementation while maintaining an adequate
intake of protein and of the other BCAAs, valine and isoleucine.
In fact, several studies have shown that leucine, considered a
strong stimulator of protein synthesis (30, 69, 70), has anabolic
effects on protein metabolism by increasing the rate of protein
synthesis and by decreasing the rate of protein degradation in
resting human muscle (26, 30, 35, 71–73). On one hand, leucine
increases muscle protein synthesis by modulating the activation
of mTOR signaling pathway (25, 74, 75), on the other it reduces
protein degradation by regulating autophagy through the acetyl-
coenzyme on mTOR complex 1 and by diminishing oxidative
stress (76, 77).

In the current study, we have demonstrated that an anti-
catabolic action of the high protein-BCAA diet ceases after
15 days (Figure 1). In agreement with our study, English et al.
have demonstrated that a diet with leucine supplementation
(0.06 g/kg per meal) protected against muscle loss after 7-
day BR but not after 14 days in middle-aged males; showing
that the beneficial effects of leucine supplementation may not
be maintained through a prolonged muscle disuse (78). It
is not clear why the anabolic action on protein metabolism
by chronic leucine supplementation, is not maintained for
prolonged periods, despite its powerful effect on acute muscle
protein synthesis.

Among several potential mechanisms, including a leucine
“desynchronization effect” (63) one possibility is that beyond
a certain level, excess of leucine may stimulate key enzymes in
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TABLE 3 Nitrogen (N) intake, loss and balance.

AMB BR
1–15 days

BR
16–31 days

BR
32–43 days

BR
44–60 days

p
BR effect

p
BR × diet

N intake Conventional diet 241 ± 17 234 ± 20 239 ± 20 240 ± 17 233 ± 11 <0.001 < 0.001

High protein-BCAA diet 268 ± 31 359 ± 23* 370 ± 20* 373 ± 20* 363 ± 23*

N loss Conventional diet 276 ± 43 329 ± 19 327 ± 15 321 ± 16 322 ± 24 <0.001 < 0.001

High protein-BCAA diet 309 ± 38 416 ± 30* 427 ± 21* 441 ± 21* 421 ± 28*

N balance Conventional diet –35 ± 44 –95 ± 14 –88 ± 17 –81 ± 17 –89 ± 15 <0.001 0.01

High protein-BCAA diet –41 ± 44 –57 ± 19* –56 ± 27 –68 ± 30 –58 ± 28

AMB, ambulatory; BR, bed rest. Units are mg N × kg LBM−1
× d−1 . All data were expressed as means ± SD. Values of N balance were not significantly different from zero (p > 0.15) in

AMB conditions but were significantly negative (p < 0.01) in all BR conditions (paired t-test with Bonferroni’s adjustment). All data were analyzed by repeated-measures ANCOVA with
time (AMB or BR days) and diet (conventional or high protein-BCAA diet) as the two factors using AMB values as covariates. Post hoc analysis was performed by using unpaired t-test
with Bonferroni’s adjustment. *p < 0.05, high protein-BCAA vs. conventional diet. LBM, lean body mass; SD, standard deviation.

BCAA catabolism (i.e., BCAA aminotransferase and branched-
chain alpha-keto acid dehydrogenase) thus increasing the
oxidation of serum leucine (79, 80). Moreover, a surplus in
leucine intake can decrease the plasma concentration of the
other EAAs, an effect called BCAA antagonism (81–83). Further
investigations are needed to confirm the “desynchronization
effect” hypothesis. During immobilization/BR or aging, another
important mechanism explaining a reduced muscle protein
synthesis, and subsequent smaller increases in lean mass in
response to protein feeding, may be due to a decreased
amino acid transporter expression. Among them, the large
neutral amino acid transporter 1 (LAT1), which preferentially
transports leucine and the other BCAAs into the cells, together
with the sodium-coupled neutral amino acid transporter
2 (SNAT2), have been shown to activate mTOR signaling
(84). In physiological condition, these important amino acid
transporters (LAT1 and SNAT2) are sensitive to changes in
nutrient status and are associated with activation of mTOR
signaling and muscle protein synthesis (85). In fact, mRNA
expression and protein content of LAT1 and SNAT2 are
increased by EAAs and resistance exercise (86, 87). However,
Drummond et al. also found that the EAA-induced increase
in LAT1 and SNAT2 proteins was abolished by 7 days
of BR (88). Therefore, we hypothesized that the loss of
effectiveness of the high protein-BCAA diet could be associated
with a decreased muscle protein synthesis by a mechanism
involving reduced mTOR signaling pathway, and amino acid
transporter expression, thus causing a “desynchronization
effect” of leucine in the first 15 days of inactivity. Taken together,
these findings suggest limited effect of increasing protein
supplementation with EAAs, leucine or BCAAs in offsetting
muscle loss in states of long-term BR or leg immobilization,
as disuse models.

N balance has been traditionally used to estimate whole
body protein balance in response to nutritional interventions
(41). In this study, we have shown a consistency of the results
obtained every 15 days with DXA scan measurements with
those obtained with daily monitoring of the N balance. In order
to compare N balance and DXA results, the average daily N
balance values were calculated in the time intervals between

consecutive LBM measurements. Results of N balance were
consistent with those of DXA. During the first 15 days of BR, as
compared with the conventional diet group, the high protein-
BCAA group exhibited 42% lower LBM loss and 2.5 times
greater N balance. During the remaining part of the study, no
significant differences were observed between the two groups
in both lean mass loss and N balance. Koyama et al. have
previously compared changes in lean tissue mass measured by
DXA with N balance studies in obese women, studied over two
periods of treatment with a very low-energy diet (89). There
was a moderate correlation between the changes in lean mass
measured by the two methods (r = 0.40, p < 0.05) (89).

Limitations of our study are that only women were
investigated and that sample size for each group was small
(n = 8 per group, conventional vs. high protein-BCAA diets).
Therefore, further studies should have a cross design and
include larger sample sizes to investigate if there is a difference
between sex that could affect the potential ergogenic benefit
provided by leucine supplementation during BR. The results
of the WISE—2005 study in women, were compared to those
derived from many studies on long-term BR (55 days and
more) in males (90–95). This is important to evaluate any
sex differences in muscle atrophy and in the effectiveness
of countermeasures. In a recent review, Gao and Chilibeck
examined the results of previous nutritional interventions
during BR for prevention of muscle loss (96). Findings were
mixed, among the 11 protein/amino acid supplementation
studies included in the review, 4 failed to find any beneficial
effects on muscle mass (96). These discrepancies have been
attributed to differences in dietary protein quantity and quality
(96). Therefore, the difference between diet groups in our study
may be due to differences in leucine content or in protein intake
between groups (1.1 g·kg−1

·day−1 vs. 1.45 g·kg−1
·day−1).

In fact, we believe that the apparent heterogeneity between
studies (especially in short-term BR) could be the consequence
of differences in the diet composition (quantity of protein),
experimental models (i.e., leg immobilization vs. bed rest) and
bed rest duration rather that to sex-related factors and age
(Table 4) (38, 41, 78, 97–106). In addition, as referred by Stein
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TABLE 4 Effects of amino acid and protein supplements on muscle mass and function in different models of muscle unloading in healthy
volunteers of different ages and sex.

References Subjects Nutritional intervention Muscle unloading Time Results Outcomea

Kilroe et al. (97) Young males High-protein intake, 1.6 g/kg/day Leg immobilization 3 days No effects on muscle mass (MRI)
and protein synthesis (stable
isotopes)

–

Dirks et al. (98) Older males Protein supplement, 40 g/day Leg immobilization 5 days No effects on muscle mass (CT)
and strength

–

Backx et al. (99) Young males Leucine supplement, 7.5 g/day Leg immobilization 7 days No effects on muscle mass (CT)
and strength

–

Edwards et al.
(100)

Young males Leucine supplement, 7 g/day Leg immobilization 7 days No effects on muscle mass
(DXA), strength and protein
synthesis (stable isotopes)

–

Holloway et al.
(101)

Young males Essential AA supplement,
70 g/day (BCAA 24 g/day, 50%
leucine)

Leg immobilization 7 days Preservation of muscle mass
(MRI). No effects on muscle
strength

+

Reidy et al.
(102)

Older adults Protein supplement, 17 g;
neuromuscular electrical
stimulation

Bed rest 5 days Preservation of muscle mass
(DXA); no effects on muscle
strength

+

Stein et al. (41) Young males BCAA supplement, 12 g/day
(33% leucine)

Bed rest 6 days Preservation of nitrogen balance +

English et al.
(78)

Middle-aged male
adults

Leucine supplement, 13 g/day Bed rest 7 days Preservation of muscle mass
(DXA)

+

Arentson-Lantz
et al. (103)

Older men and women Leucine supplement, 15 g/day Bed rest 7 days Preservation of muscle mass
(DXA); no effects on muscle
strength

+

Present study Young females High-protein-BCAA intake,
1.6 g/kg/day (BCAA 22 g/day,
50% leucine)

Bed rest 7 days Preservation of muscle mass
(DXA) and of nitrogen balance

+

Deutz et al.
(104)

Older men and women β-hydroxy-β-methylbutyrate
supplement, 3 g/day

Bed rest 10 days Preservation of muscle mass
(DXA)

+

English et al.
(78)

Middle-aged male
adults

Leucine, 13 g/day Bed rest 14 days No effects on muscle mass (DXA) –

Rudwill et al.
(105)

Young males High-protein intake, 1.8 g/kg/day
(33% whey protein)

Bed rest 21 days No effects on muscle mass (DXA) –

Present study Young females High-protein-BCAA intake,
1.6 g/kg/day (BCAA 22 g/day,
50% leucine)

Bed rest 60 days No effects on muscle mass (DXA)
or nitrogen balance

–

Owen et al.
(106)

Young males High-protein intake, 1.8 g/kg/day
(33% whey protein); resistive
vibration exercise

Bed rest 21 days Preservation of muscle mass
(MRI)

+

Dorfman et al.
(38)

Young females High-protein-BCAA intake,
1.6 g/kg/day (BCAA 22 g/day,
50% leucine)

Bed rest 60 days Preservation of myocardial mass
(MRI)

+

This table reports selected studies describing the effects of protein and amino acid supplements on muscle mass and function in experimental models of muscle inactivity, in young and
elderly male and female subjects. The various experimental models of physical inactivity are not physiologically equivalent. Unilateral immobilization of the lower limb is associated to
complete mechanical unloading of the affected muscles. In contrast, bedridden subjects maintain residual movement and muscle contraction while they are carrying out all the daily
activities lying in bed. Previous observations clearly demonstrate that the anabolic effects of proteins and amino acids on muscle mass and function are directly proportional to the level of
contractile activity (59, 66). It is therefore predictable that the anabolic action of amino acid and protein supplements is reduced in conditions of complete muscle unloading as in the leg
immobilization model. The amino acid leucine has a particular direct effect of stimulating muscle protein synthesis compared to other amino acids (30). However, the activation of protein
synthesis requires in addition the presence of all amino acids in optimal proportions. The administration of leucine causes the induction of the branched-chain α-ketoacid dehydrogenase
enzyme, which irreversibly catabolizes all three BCAAs (79, 80). An excess of leucine can therefore determine a relative reduction of the other BCAAs, valine and isoleucine, resulting in a
lack of stimulation of protein synthesis. The optimal action of a leucine supplementation is achieved when it is administered in addition to the other BCAAs and in combination with an
adequate protein/amino acid intake (65, 83). These considerations may explain the muscle mass saving effect obtained during 7 days of leg immobilization by administering high doses of
leucine in combination with the other essential amino acids including the other BCCAs. In contrast to leg immobilization studies, short-term bed rest (BR) studies (i.e., 5–10 days), which
also include our present observation, consistently demonstrate a muscle-sparing effect associated with leucine, BCAA, β-hydroxy-β-methylbutyrate (a leucine metabolite) or protein
supplementation. In contrast, leucine, BCAA, or protein supplementation was not associated with skeletal muscle-saving effects in middle- (i.e., 14–21 days) or long-term (i.e., 60 days)
BR studies. Except for the conditions in which the nutritional supplement were associated with resistive vibration exercise or with the myocardium contractile activity. The effects of
leucine, amino acid and protein supplementation on muscle mass during muscle unloading do not appear to depend on age and sex. AA, amino acids; BCAA, branched-chain amino
acids; MRI, magnetic resonance imaging; CT, computed tomography; a , + outcome: preservation of muscle mass and/or nitrogen balance; –outcome: no effects on muscle mass and/or
nitrogen balance.
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and Blanc, baseline protein intake was different between studies
failing to report a beneficial effect and those finding a positive
effect (107).

From the results of our study, it can be assumed that it
is useful to administer a high-protein diet with BCAAs in
the short-term BR, such as in acute illness of short duration,
whereas in long-lasting pathological conditions, this nutritional
approach appears useless. Nevertheless, a limitation of this study
is that it has been carried out in healthy participants free of
medical conditions that may exacerbate muscle loss. Prolonged
immobility is harmful with rapid reductions in muscle mass,
bone mineral density and impairment in other body systems.
These effects are further exacerbated in individuals with critical
illness. From the results of our study, we believe that if BR is
absolutely recommended, as clinical intervention for a variety
of health problems, a high-protein diet strategy could be helpful
in mitigating short-term disuse muscle atrophy.
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