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Our lab’s studies have found that heavy calcium carbonate (CaCO3) with

sodium alginate (SA) can synergistically stabilize Pickering emulsion. However,

there were significant differences in the flow characteristics of the emulsions

obtained by different preparation methods during storage. Herein, in this

current work, Pickering emulsions were prepared by two-step emulsifying

method (SA was added into the primary emulsion stabilized by CaCO3

for secondary shearing, M1) and one-step emulsifying method (oil phase

was added to homogeneous dispersed CaCO3-SA solution for one-step

shearing, M2), respectively. The particle size, microstructure, rheology and

microrheological properties of these two kinds of emulsions and the

interaction of CaCO3 with SA were analyzed. The results showed that the

droplet size of M1 emulsion was 21.78–49.62 µm, and that of M2 emulsion was

6.50–11.87 µm. M1 emulsion had stronger viscoelasticity, and could transform

into a gel state during storage. However, M2 emulsion remained in flow

condition all the time which was related to the interaction between SA and

CaCO3 in the aqueous phase.

KEYWORDS

calcium carbonate, sodium alginate, preparation method, co-stabilized, Pickering
emulsion

Introduction

Because of its unique stability, Pickering emulsion has been considered promising
in the food, medicine, cosmetics industries and the like, which enable the efficiently
carrying and selectively delivering of active ingredients (1–3). Nano or micron sized
solid particles including inorganic particles (4–6), protein particles (7–9), polysaccharide
particles (10–12), protein-polysaccharide complexes (13–15), and lipid crystal particles
(16, 17) were used as stabilizers instead of surfactants to stabilize Pickering emulsion
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(18). Food grade calcium carbonate (CaCO3) is a kind of
inorganic particle approved for use in food. It has the
characteristics of wide source, easy access, low price and
convenient production. Importantly, it can be used as stabilizer
for food grade Pickering emulsion. However, CaCO3 particles
with small particle size have strong interface energy and are
always easy to agglomeration, which is difficult to form stable
emulsion (19). Therefore, the surface of CaCO3 particles is
usually modified to improve its hydrophilicity/hydrophobicity,
such as grafting active groups onto the surface of particles
(20). Meanwhile, the stability of emulsion can be improved to
a certain extent by introducing food-grade polymer stabilizers
such as protein and polysaccharides. Sodium alginate (SA),
as a natural polysaccharide, is often used as thickener, gelling
agent, preservative, or emulsifier in food industry (21). Studies
have shown that SA can effectively promote the interfacial
adsorption and enhance the emulsifying properties of inorganic
particles (22–24). Our laboratory’s preliminary research also
found that SA can synergistically stabilize Pickering emulsion
with CaCO3. However, there were significant differences in
the flow characteristics of the emulsions obtained by different
preparation methods during storage.

Herein, in this paper, Pickering emulsion M1 and M2
stabilized by CaCO3 and SA were prepared by two-step
emulsifying method and one-step emulsifying method,
respectively. Thereinto, the two-step emulsifying method was
to prepare the primary emulsion stabilized by CaCO3 first, and
then added SA solution for secondary shearing to obtain M1
emulsion. The one-step emulsifying method was to first disperse
CaCO3 in SA solution, and then oil phase was added to obtain
M2 emulsion through one-time shearing. The effect of different
preparation methods on the physicochemical properties and
stability of emulsion was explored by measuring the particle
size, microstructure, rheology and microrheological properties
of two kinds of emulsions.

Materials and methods

Materials

Soybean oil was purchased from Yihai Kerry Co., Ltd.
(Shenzhen, China). Heavy CaCO3 was purchased from
Zhengzhou Ruipu Bioengineering Co., Ltd. (Henan, China).
SA was purchased from Qingdao Haizhilin Biological Co., Ltd.
(Shandong, China).

Preparation of emulsion

Preparation of calcium carbonate particles
Before ball milling, food grade heavy CaCO3 was dried in

an oven at 60◦C for 24 h, and then milled by high-energy nano
ball mill (CJM-SY-B, Qinhuangdao Taiji Ring Nano-Products

Co., Ltd., Hebei, China). After 8 h, the sample was taken out
to obtain CaCO3 particles with smaller particle size, which were
named CaCO3-8.

Preparation of emulsion by two-step
emulsifying method

Accurately weighed SA powder (1.5, 2, 2.5, and 3 g) were
dissolved in ultrapure water (50 g). It was dispersed for 2 h at
room temperature with an electric mixer (HD2010W, Shanghai
Sile Instrument Co., Ltd., Shanghai, China) at 800 r/min to
obtain uniform SA solution, and then placed in refrigerator
at 4◦C overnight. Accurately weighed CaCO3-8 (1.7 g) was
dispersed in ultrapure water (15 g) with 8.5 wt% CaCO3. Then
soybean oil (4 g) was added to the aqueous phase, making the
water-to-oil ratio 5:1. A high-speed shearing machine (Ultra-
Turrax T25, IKA Works Guangzhou, Guangzhou, China) was
used to shear it at 12,000 r/min for 1 min to obtain the
Pickering initial emulsion stabilized by CaCO3. Subsequently,
SA solutions (5.15, 5.2, 5.25, and 5.3 g) were added to the initial
emulsion, so that the final concentration of SA in the emulsion
system was 0.75, 1, 1.25, and 1.5 wt% of the aqueous phase.
Finally, the final emulsion was obtained by shearing with a high-
speed shearing machine at 12,000 r/min for 5 min. The Pickering
emulsion prepared by this method was named M1. The prepared
emulsion was stored at room temperature (25◦C) and added
0.02% sodium azide to inhibit the growth of microorganisms
and facilitate subsequent measurement (25).

Preparation of emulsion by one-step
emulsifying method

Accurately weighed SA powder (0.15, 0.2, 0.25, and 0.3 g)
were dissolved in ultrapure water (20 g). A magnetic stirrer
(SP-300, Hangzhou Miu Instrument Co., Ltd., Zhejiang, China)
was used to disperse it at 550 r/min for 1.5 h to prepare
SA solution with concentration of 0.75, 1, 1.25, and 1.5 wt%,
stored at 4◦C overnight. Accurately weighed CaCO3-8 (1.7 g)
was dispersed in SA solutions with different concentrations.
A magnetic stirrer was used to disperse it at 550 r/min for 0.5 h
to obtain an aqueous phase with 8.5 wt% CaCO3. Then soybean
oil (4 g) was added to the aqueous phase as the oil phase to
make the water-to-oil ratio 5:1. A high-speed shearing machine
was used to shear it at 12,000 r/min for 6 min to obtain the
Pickering emulsion stabilized by CaCO3 and SA. The Pickering
emulsion prepared by this method was named M2. The prepared
emulsion was stored at room temperature (25◦C) and added
0.02% sodium azide for further measurement.

Determination of particle size of
emulsion

The particle size distribution and the average particle size
of the emulsion were measured by laser particle size analyzer
(Mastersizer 2000, British Malvern Instrument Co., Ltd., United
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Kingdom). Water (refractive index: 1.333) was selected as
dispersant, soybean oil (refractive index: 1.475) was selected as
sample material. The setting range of laser shading index was
1–20%, and the pump speed was 2,000 r/min (26). The result
of the emulsion particle size was expressed by the volume mean
diameter (D[4, 3]). The calculation formula was as follows:

D[4, 3] = 6nid4
i /6nid3

i

Where di was the droplet diameter of emulsion (µm), ni was
the number of emulsion droplets with a particle size of di.

Determination of creaming index

The degree of emulsification of emulsion was represented
by creaming index (CI) (27). The fresh emulsion was stored at
room temperature and the height of the supernatant layer and
emulsified layer were recorded on the 0th, 1st, 2nd, 7th, 14th,
and 28th days after storage. The computational formula of CI of
the emulsion was as follows:

CI(%) = Hs/Ht × 100

Where Hs indicated the height of the supernatant layer of
the emulsion (cm), Ht indicated the height of the emulsion (cm).

Observation of micromorphology

Optical microscope
The microstructure of emulsion was observed by optical

microscope (OD1400Y, Ningbo Sunny Instruments Co., Ltd.,
Zhejiang, China) under 20 times objective lens, and the
ubiquitous droplet structure was selected to take pictures.

Cryo-scanning electron microscopes
The samples were quickly transferred to the vacuum

preparation room after cryopreservation by liquid nitrogen.
The surface of the droplets was cut by cooling knife to form
a section. It was sublimated at −95◦C for 4 min and sputter
coated with platinum (28). The prepared sample was transferred
to a field emission scanning electron microscope (SEM)
(SU8010, Techcomp Instrument Co., Ltd., Shanghai, China)
with a constant temperature of −130◦C. The microstructure
of the emulsion was observed under the condition of 1.50
and 5.00 k times.

Determination of rheological
properties

The rheological properties of the emulsion at different
storage time were measured on the 0th, 14th, and 28th days by

rheometer (DHR2, TA Instrument Co., Ltd., United States). The
aluminum flat plate with a diameter of 60 mm was selected as
the experimental measuring fixture, and the measuring gap was
set as 500 µm. The dynamic frequency sweep measurement was
carried out in the frequency range of 0.1–100.0 rad/s with 0.06%
strain. The shear rate of the flow sweep was 0.01–100.0 s−1, and
the frequency was fixed at 1 Hz. The measurement temperature
was constant at 25◦C (29).

Determination of microrheological
properties

The microrheological properties of the emulsion were
measured and analyzed by an optical micro-rheometer
(Rheolaser Master, Formulaction Instrument Co., Ltd., France)
on the 0th, 14th, 28th, 42nd, and 56th days. The measurement
temperature was set to a constant temperature of 25◦C, and
the sample information was obtained by scanning every 150 s.
The solid-liquid equilibrium balance (SLB) values, elasticity
index (EI), and macroscopic viscosity index (MVI) were
calculated by RheoSoft Master software through the mean
square displacement (MSD) curve (30).

Interaction of sodium alginate with
calcium carbonate

Stability analysis of turbiscan
The aggregation and dispersion stability of CaCO3/SA

suspension was measured by a multiple-light Scattering
instrument (Turbiscan Tower, French Formulaction Co., Ltd.,
France). According to the method described by Wang et al. (31)
with some modifications. Backscattering was used for sample
analysis, scanned every 150 s from 0 to 30 min and every
30 min from 0.5 to 10 h at 25◦C. Turbiscan stability index
(TSI) was calculated by Towersoft-1.4.0.4 to reflect the overall
stability of suspension.

Observation on particle morphology of
calcium carbonate

The microscopic morphology of CaCO3 particles containing
and without SA was observed by transmission electron
microscope (H-7650, Hitachi Limited, Japan). The newly
prepared suspension was diluted 500 times with pure water
and then attached to a copper net for drying. After that,
the microstructure of CaCO3/SA dispersion was observed by
transmission electron microscope.

Determination and analysis of zeta potential
Zeta potential of CaCO3/SA suspension was measured

by nano-particle size and zeta potential analyzer (Nano ZS,
British Malvern Instrument Co., Ltd., United Kingdom). Water
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(refractive index 1.333) was selected as dispersant, CaCO3

(refractive index 1.658) was selected as the sample material. The
temperature was measured at 25◦C.

Data analysis

Each set of experiments was repeated at least three times,
and each measurement was set to at least three parallels.
The measurement result was the mean ± standard deviation
after three measurements. The drawing software used in this
paper is Origin 9.

Results and discussion

Particle size of calcium carbonate and
emulsion droplets

Seen from the image of TEM, the particle shape was
similar to the irregular cube structure, and more particles were
presented as loose aggregates (Figure 1A). The particle size of
CaCO3-8 was 1.883± 0.09 µm (Figure 1B).

M1 (two-step emulsifying method) and M2 emulsions
(one-step emulsifying method) were prepared by CaCO3-8
and SA. The particle size of emulsion droplets is a critical
parameter, which has great influence on the characteristics,
stability and application. Figures 1C,D were the particle
size distributions of freshly prepared M1 and M2 emulsions.
With the increase of SA concentration, the particle size
of emulsion decreased. It demonstrated that the addition
of SA could enhance the stability of emulsion. Compared
with Figures 1C,D, different preparation methods had great
influence on the particle size. The reason was that the
average droplet diameter of the final emulsion depends on
the initial addition of particles and the their arrangement on
the oil-water interface (32). In the preparation process of M1
emulsion, the Pickering emulsion stabilized by CaCO3 was
first completed. CaCO3 adsorbed on the oil-water interface
and formed a strong adsorption layer. Then SA was added,
when at low SA concentration, the contact between SA and
CaCO3 was weak, which lead to weak synergistic stabilizing
effect. After the shear was stopped, the droplets were aggregated
to reduce the area of the oil-water interface and could not
effectively stabilize the emulsion. However, the dispersion and
dissolution of SA and CaCO3 had been achieved before the

FIGURE 1

Morphology of CaCO3 after 8 h of ball milling: (A) image of scanning electron microscope; (B) image of particle size distribution; particle size
distribution of M1 emulsion (C) and M2 emulsion (D).
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preparation of M2 emulsion. The full contact of SA and
CaCO3 was produced a synergistic emulsification effect, so the
emulsification performance was improved.

Stability of emulsion

Figures 2A,C, respectively showed the change of particle
size of M1 emulsion and M2 emulsion during the 28-day
storage process. The particle size of M2 emulsion had no
significant change during storage, while the particle size of M1
emulsion changed slightly. In addition, the particle size of the
emulsion changed more significantly with the concentration
of SA decreased.

Figures 2B,D, respectively showed the CI changes of M1
emulsion and M2 emulsion during 28-day storage. The CI of
M1 and M2 emulsions increased rapidly from 0 to 2 days
and reached equilibrium at about 7–14 days. There was no
significant difference in CI of M1 emulsion with different SA
concentration at 28 days, while CI of M2 emulsion decreased
with the increase of SA concentration during 28-day storage.
Figure 2B showed that the addition of SA in M1 emulsion
only had an impact on the rate of change in CI, which might
be because the emulsification of CaCO3 played a vital role in
M1 emulsion, while the co-emulsification of CaCO3 and SA
occurred in M2 emulsion. Moreover, there was no oil phase
separation in all the emulsions during 28-day storage.

Micromorphology of emulsion

Figure 3 was an optical microscope image of emulsion
under different storage time. The droplet size of M1 emulsion
was larger than that of M2 emulsion. Under the same
preparation method, the droplet size of emulsion was reduced
effectively with the increase of the concentration of SA. It could
also be seen that M1 emulsion had obvious droplet aggregation,
which may be related to that the SA added in the second
emulsification process was not fully contacted with the CaCO3

on the surface of the emulsion droplets. Therefore, SA molecule
would interact with multiple emulsion droplets at the same
time, resulting in bridging flocculation. In addition, it was
found that M1 emulsion and M2 emulsion kept their original
microstructure throughout storage.

Figure 4 showed the droplet morphology of M1 emulsion
and M2 emulsion observed under cryo-scanning electron
microscope (cryo-SEM). The surface of M1 emulsion droplets
was rough, and there was a three-dimensional network around
the droplets. It was confirmed that CaCO3 and SA had
synergistic effect of stabilizing the emulsion. It also verified the
speculation that SA failed to form full contact with CaCO3 on
the surface of emulsion droplets. M2 emulsion showed a good
spherical shape, the surface was smooth and undamaged, and

there was also a robust three-dimensional network around the
droplets. The results showed that the process of CaCO3 and SA
dispersion in M2 emulsion achieved the full contact between
SA and CaCO3 particles, so that both of them could play a
synergistic stabilizing role effectively.

Rheological properties of emulsion

In order to further analyze the causes of emulsion
gelation, this paper studied the rheological and microrheological
properties of emulsion system during storage, and explored the
effect of emulsion preparation methods on emulsion stability.

Dynamic frequency sweep
Figure 5 showed the results of dynamic frequency sweep

of emulsion at different storage time on the 0th, 14th, and
28th days at 25◦C. The elastic modulus (G′) and viscous
modulus (G′′) of the two emulsions increased with the increase
of the angular frequency, hinting that the three-dimensional
network structure existed in the emulsion. It was speculated
that the reason was that both the adsorbed and excessive
unabsorbed CaCO3 particles on the oil-water interface were
electrostatically adsorbed with SA to enhance the gel network
structure of the emulsion. Moreover, G′ was greater than G′′

in the small frequency range before the intersection, the elastic
behavior of the emulsion system was dominant. However, the
three-dimensional network structure of emulsion was relatively
weak, and it was easy to be destroyed with the increase
of angular frequency. With the extension of storage time,
the values of G′ and G′′ were greatly increased, and the
intersection of G′ and G′′ was constantly delayed. It revealed
that the three-dimensional network structure in the emulsion
was continuously strengthened, which was manifested as the
enhancement of the viscoelastic of the emulsion. The difference
was that G′ and G′′ of M1 emulsion intersected in a higher
frequency range than M2 emulsion, indicating that M1 emulsion
had a strong three-dimensional network structure and gel-
like behavior.

Flow sweep
Figure 6 showed the change in the viscosity of the emulsions

with the shear rate at different storage times on the 0th, 14th, and
28th days at 25◦C. It can be seen that all emulsions exhibited
shear thinning behavior and were non-Newtonian fluids. The
results showed that with the extension of storage time, the
viscosity of M1 and M2 emulsions increased. This may be
because some of calcium ions dissociated from CaCO3 are
continuously released into the system to combine with the G
block in the alginate during the storage process, thereby cross-
linking to form an “egg box structure” (33). Furthermore, the
three-dimensional network structure in M1 and M2 emulsions
was continuously strengthened with the extension of storage
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FIGURE 2

Particle size and CI of M1 emulsion (A,B) and M2 emulsion (C,D) at different storage times. The measurement results were the average values of
triplicate measurements. Different lowercase letters indicated that the particle size of same samples was significantly different during different
storage periods (p < 0.05).

FIGURE 3

Microstructure images of M1 and M2 emulsions at different storage times. D0 and D28 represent emulsions stored for 0 and 28 days.
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FIGURE 4

Cryo-SEM images of M1 and M2 emulsions: (A,C) the images ×1.50 k; (B,D) the images ×5.00 k.

time. Thus, the restriction on the movement of emulsion
droplets increased, which was macroscopically manifested as an
increase in viscosity. At the same time, the three-dimensional
network structure in M1 and M2 emulsions was gradually
destroyed and reduced as the shear rate increases.

Microrheological properties of
emulsion

The micro-rheology method explained the microrheological
properties of the sample by detecting Brownian motion of
scattered particles. Therefore, the viscoelasticity of the emulsion
could be measured without mechanical shear, and the structure
of the sample would not be damaged. The MSD was obtained
by tracking the Brownian motion of the particles in the sample
to analyze microrheological properties of the system. Figure 7
showed the MSD curves of emulsion samples at 0, 14, 28, 42,
and 56 days at 25◦C. MSD curves of M1 and M2 fresh emulsions
rose linearly with time, representing that the emulsion particles
diffused freely in the solution, and they were pure viscous
emulsions. From the 14th day, MSD curves of M1 and M2
emulsions showed different trends. MSD curves of M1 entered
the relaxation platform, which indicated that the movement
of emulsion particles was restricted, and the particles moved
in the “cage” formed by interaction with other particles (34).
These interactions made the sample elastic, that was, M1

showed obvious viscoelasticity. In contrast, the change of M2
emulsion was not obvious, namely its elasticity and viscosity
were lower than M1 emulsion. In addition, the slope of MSD
curve decreased with the increase of storage time, the de-
correlation time of MSD curve gradually became longer, and the
viscosity of M1 and M2 increased continuously. These results
were consistent with the flow sweep results of rheology.

It could be seen fromTable 1 that the SLB value of the freshly
prepared emulsion was between 0.5 and 1, indicating that the
emulsion system was dominated by liquid behavior at this time.
The SLB value showed a decreasing trend with the prolongation
of storage time, indicating that the emulsion system gradually
changed from the liquid property to the elastomer property.
After storage for 28 days, the SLB value of M1 emulsion
decreased significantly and the SLB value was <0.5, indicating
that the movement rate of droplets in M1 emulsion system
was limited, and the formation of three-dimensional network
structure led to elastic behavior dominating in emulsion.
Extending the storage time, the SLB value of M1 emulsion
decreased gradually from 0 to 0.5, while the SLB value of M2
emulsion always ranged from 0.5 to 1. It turned out that M1
emulsion was more easily changed into gel state during storage,
and M2 could maintain its fluidity for a long time. It was
confirmed that the different preparation methods of CaCO3/SA
emulsion would affect the structure of emulsion during storage.

As shown in Table 2, the EI value continuously increased
with the extension of storage time. It indicated that the
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FIGURE 5

Dynamic frequency sweep images: M1 emulsions stored for 0 (A1), 14 (A2), and 28 (A3) days; M2 emulsions stored for 0 (B1), 14 (B2), and 28
(B3) days.

elasticity of the emulsion system increased with time, and
this phenomenon was consistent with the results of dynamic
frequency sweep. Comparing the EI value of M1 and M2
emulsions, the EI value of M1 emulsion was always higher than
that of M2 emulsion. After storage for 28 days, there was a great
difference. The EI value of M1 emulsion increased significantly,
and the network structure increased significantly. The EI value
of M2 emulsion changed little during the monitoring time. The
results could be predicted that gelation would occur earlier

in M1 emulsion, and M2 emulsion would retain its original
fluidity in a long time.

As shown in Table 3, the MVI value was similar
to the change trend of EI value. The viscosity of M1
emulsion and M2 emulsion increases in different degrees
during storage, indicating that the emulsion structure was
constantly changing during this process. When storage time
was extended from 0 to 56 days, the MVI value of M1
emulsion added 0.75% alginate was 0.04 × 10−2 nm−2 s
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FIGURE 6

Flow sweep images: M1 emulsions with 0.75% SA (A1), 1% SA (A2), 1.25% SA (A3), and 1.5% SA (A4); M2 emulsions with 0.75% SA (B1), 1% SA (B2),
1.25% SA (B3), and 1.5% SA (B4). D0, D14, and D28 represent emulsions stored for 0, 14, and 28 days.

increased to 157.78 × 10−2 nm−2 s, so its viscosity increased
with the increase of storage time. The increase in MVI
value was due to the gradual formation of the dense gel
network in the emulsion structure, which brought higher
movement resistance between droplets. It was manifested
as an increase in viscosity and elasticity in a macroscopic
view. In addition, comparing the MVI value of M1 and
M2 emulsions, it was found that M1 emulsion increased
significantly during the monitoring period, while the MVI

value of M2 emulsion changed relatively little. It showed that
the viscosity of M1 emulsion increased with the increase of
storage time, and M2 emulsion tended to maintain its original
viscosity during storage.

To sum up, the preparation methods of emulsion had an
important effect on the rheological properties of emulsion. It
showed that M1 emulsion could reach solid-liquid equilibrium
earlier, and had stronger viscoelasticity, while M2 emulsion had
better fluidity.
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FIGURE 7

Mean squared displacement curve: M1 and M2 emulsions containing 0.75% SA (A1–A5), 1% SA (B1–B5), 1.25% SA (C1–C5), and 1.5% SA (D1–D5)
were stored for 0, 14, 28, 42, and 56 days. D0, D14, D28, D42, and D56 represent emulsions stored for 0, 14, 28, 42, and 56 days.

TABLE 1 Solid liquid balance values of M1 emulsion and M2 emulsion of different storage time.

Emulsion SA concentration (%) SLB

D0 D14 D28 D42 D56

M1 0.75 0.93± 0.11 0.73± 0.08 0.46± 0.01 0.42± 0.00 0.42± 0.01

1 0.67± 0.02 0.71± 0.05 0.45± 0.02 0.42± 0.01 0.42± 0.01

1.25 0.69± 0.02 0.65± 0.06 0.46± 0.02 0.46± 0.00 0.42± 0.00

1.5 0.67± 0.01 0.64± 0.01 0.49± 0.02 0.43± 0.01 0.43± 0.02

M2 0.75 0.64± 0.02 0.52± 0.01 0.53± 0.01 0.51± 0.01 0.52± 0.00

1 0.62± 0.04 0.55± 0.01 0.56± 0.03 0.54± 0.00 0.54± 0.00

1.25 0.61± 0.01 0.59± 0.01 0.61± 0.02 0.55± 0.01 0.55± 0.00

1.5 0.63± 0.01 0.64± 0.01 0.61± 0.01 0.56± 0.00 0.55± 0.00

D0, D14, D28, D42, and D56 represent different storage times of emulsions.
SA represents sodium alginate and SLB represents the solid liquid balance values.
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TABLE 2 Elasticity index of M1 emulsion and M2 emulsion under different storage time.

Emulsion SA concentration (%) EI (×10−3 nm−2)

D0 D14 D28 D42 D56

M1 0.75 3.19± 0.43 6.27± 0.62 23.01± 1.18 29.99± 2.80 33.72± 0.74

1 5.97± 0.64 6.51± 0.40 23.96± 1.76 27.92± 1.29 33.40± 0.98

1.25 7.47± 0.74 12.65± 1.01 33.91± 2.37 33.36± 0.18 37.94± 0.25

1.5 8.16± 0.79 10.44± 0.61 22.92± 1.69 29.55± 2.17 33.23± 3.10

M2 0.75 2.53± 0.07 3.61± 0.06 4.17± 0.12 4.48± 0.20 5.34± 0.23

1 2.61± 0.23 3.72± 0.08 4.69± 0.21 4.95± 0.13 5.66± 0.19

1.25 3.43± 0.09 5.35± 0.09 5.69± 0.50 7.43± 0.13 7.50± 0.17

1.5 3.93± 0.18 4.79± 0.18 4.81± 0.39 7.12± 0.16 8.37± 0.18

D0, D14, D28, D42, and D56 represent different storage times of emulsions.
SA represents sodium alginate and EI represents the elasticity index.

TABLE 3 Macroscopic viscosity index of M1 and M2 emulsion under different storage time.

Emulsion SA concentration (%) MVI (×10−2 nm−2 s)

D0 D14 D28 D42 D56

M1 0.75 0.04± 0.02 0.15± 0.03 4.06± 2.58 6.97± 2.82 157.78± 40.97

1 0.33± 0.06 0.18± 0.05 3.86± 1.02 7.07± 3.72 48.27± 26.98

1.25 0.35± 0.06 0.34± 0.03 5.44± 1.09 11.27± 3.74 60.02± 48.17

1.5 0.53± 0.09 0.43± 0.05 3.02± 0.26 17.52± 3.50 48.27± 26.98

M2 0.75 0.05± 0.01 1.40± 0.26 0.46± 0.09 4.33± 1.42 29.25± 2.32

1 0.16± 0.05 0.50± 0.05 0.88± 0.15 1.84± 0.24 7.78± 1.51

1.25 0.34± 0.05 0.29± 0.03 0.47± 0.12 3.33± 0.27 4.10± 0.26

1.5 0.33± 0.06 0.46± 0.04 0.46± 0.09 2.27± 0.13 6.73± 0.44

D0, D14, D28, D42, and D56 represent different storage times of emulsions.
SA represents sodium alginate and MVI represents the macroscopic viscosity index.

FIGURE 8

TEM images of CaCO3 suspension (A,B) and CaCO3/SA suspension (C,D). Zeta potential (E) of CaCO3 suspension and CaCO3/SA suspension.
The measurement results were the average values of triplicate measurements.
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FIGURE 9

Turbiscan stability index (A) and photograph after 10 h of storage (B) of CaCO3/SA suspensions of different SA concentrations.

Interaction of calcium carbonate and
sodium alginate in aqueous phase

The different behavior of M1 and M2 emulsions might be
related to the interaction between SA and CaCO3 in water phase.
In order to further analyze the reasons for the good storage
stability of M2 emulsion, TSI and Zeta potential of CaCO3/SA
in aqueous phase were measured and the microstructure of
that were observed.

It could be seen from Figures 8A,B that CaCO3 particle
without SA was a cube. Figures 8C,D showed the microscopic
morphology of CaCO3 particle after the addition of SA, and
it could be observed that SA uniformly covered the surface of
CaCO3. It illustrated that CaCO3 had sufficient contact with SA.

As shown in Figure 8E, the addition of SA could
significantly improve the absolute value of Zeta potential. The
Zeta potential reflects the stability of the dispersion system,
that is, the stability of the dispersion system reduces with
the decrease of the absolute value of Zeta potential (35). It
confirmed that the addition of SA enhanced the stability of
CaCO3 suspension. It might be due to the electrostatic repulsion
of CaCO3/SA suspension was enhanced, which prevented the
agglomeration and settlement of particles and facilitated the
dispersion of CaCO3 particles in water phase. As previously
described, the improved anti-aggregation stability of CaCO3/SA
suspension and M2 emulsion could be attributed to the
interaction between CaCO3 and SA.

Turbiscan stability index is also an important parameter
to characterize the stability of CaCO3 suspension. Figure 9A
showed the change of TSI index within 10 h after suspension
preparation. The TSI value of CaCO3 suspension without SA
increased rapidly in a short time and was significantly higher
than that of CaCO3 suspension with SA. As shown in Figure 9B,
the CaCO3 suspension without SA was completely stratified
after storage for 10 h, and CaCO3 particles were deposited
at the bottom. The CaCO3 suspension with SA still showed
good dispersibility. These results indicated that the CaCO3

suspension without SA was very unstable. In addition, the
TSI value decreased with the increase of SA concentration.
Especially when SA concentration was 1.5%, the TSI value
was close to zero (Figure 9A). From a macro perspective,
CaCO3 particles tended to be suspended in the aqueous phase
rather than deposited at the bottom with the increase of SA
concentration (Figure 9B). Therefore, the addition of SA was
beneficial to improve the stability of CaCO3 suspension, and
the increase of SA concentration further deepened this stability.
Figure 10 showed the delta backscattering profiles of CaCO3/SA
suspensions with different SA concentrations. It can be seen
that 1BS of the CaCO3/SA suspensions decreased with the
increase of SA concentration in the measurement cell height
range of 0 mm to 3 mm. In the middle of the measuring
cell, 1BS tended to 0 with the increase of SA concentration.
In the upper of the measuring cell, 1BS showed a downward
trend. These phenomena indicated that the precipitation of the
suspension was reduced and had better dispersion. It is also
confirmed that the addition of SA was beneficial to improve the
stability of CaCO3/SA suspensions. The reason might be due
to the addition of SA decreased the surface energy of CaCO3,
which was more conducive to its dispersion in aqueous phase.
Moreover, SA increased the viscosity of aqueous solution and
limited the aggregation and settlement of CaCO3.

Conclusion

This paper studied the effects of two-step emulsifying
method and one-step emulsifying method on the
physicochemical properties of M1 emulsion and M2 emulsion
stabilized by CaCO3 and SA. Our results demonstrated that
the droplet size of M1 emulsion was 21.78–49.62 µm, the
droplet size of M2 emulsion was 6.50–11.87 µm. Additionally,
the droplet size of the emulsion decreased with the increase
of SA concentration. By observing the microstructure of the
emulsion, it is clear that M1 emulsion and M2 emulsion always
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FIGURE 10

Delta backscattering profiles of CaCO3/SA suspensions with
different SA concentrations: the suspension without SA (A); the
suspension with 0.75% SA (B), 1% SA (C), 1.25% SA (D), and 1.5%
SA (E).

maintain their original microstructure during storage from 0
to 28 days. The rheological and microrheological properties
of the emulsion showed that M1 emulsion reached the solid-
liquid equilibrium earlier and had stronger viscoelasticity. In
addition, the network structure would gradually form during
storage, which made the emulsion gradually show a gel-like
behavior. However, M2 emulsion could maintain good fluidity

in storage, which was related to the interaction between SA
and CaCO3 in the aqueous phase. To sum up, Pickering
emulsion with better stability can be achieved in a simple way
by adjusting the method of making emulsion and the order
of adding materials. Different emulsification methods have a
certain impact on the physicochemical properties and stability
of the emulsion. It provides a new idea for regulating the
physicochemical properties and storage properties of Pickering
emulsion in the future.
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