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Several studies indicated that the gut microbiota might participate in the
beneficial effect of inulin on obesity. However, the mechanisms involved were
still largely unknown. Sixteen high-fat diets (HFDs)-induced obese C57BL/6
mice were converted to a normal diet and then randomized into two groups,
OND (obese mice + normal diet) group gavage-fed for 10 weeks with normal
saline and ONDI (obese mice + normal diet + inulin) group with inulin at
10 g/kg/day. The body weight of HFD-induced obese mice showed different
degrees of decrease in both groups. However, the ONDI group lost more
weight and returned to normal earlier. Compared to the OND group, inulin
supplementation significantly shifted the composition and structure of gut
microbiota, such as higher a diversity. The B diversity analysis also confirmed
the changes in gut microbiota composition between groups. At the genus
level, the abundance of Alistipes was considerably increased, and it was
significantly correlated with inulin supplementation (r = 0.72, P = 0.002).
Serum metabolite levels were distinctly altered after inulin supplementation,
and 143 metabolites were significantly altered in the ONDI group. Among
them, indole-3-acrylic acid level increased more than 500-fold compared
to the OND group. It was also strongly positive correlation with Alistipes
(r = 0.72, P = 0.002) and inulin supplementation (r = 0.99, P = 9.2e—13)
and negatively correlated with obesity (r = —0.72, P = 0.002). In conclusion,
inulin supplementation could accelerate body weight loss in obese mice by
increasing Alistipes and indole-3-acrylic acid level.
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Introduction

Currently, public health is threatened by the increasing
occurrence of obesity worldwide. It is reported that 20%
of the adult population will be subjected to obesity by
2030 (1). Obesity is caused by a complex interplay of
genetic and environmental factors and is thought to
result from a chronic imbalance between energy intake
and expenditure (2). Excessive consumption of high-fat
diets (HFDs) can increase adipose tissue (3), predispose
to obesity (4), and induce metabolic and cardiovascular
disorders (5). Meanwhile, a HFD can wreak havoc on the
balance of gut microbiota in the host (6-8). Clinical studies
have found that gut microbiota dysbiosis is closely related
to obesity (9, 10), which can affect the occurrence and
development of obesity by regulating lipid metabolism and
energy homeostasis (11). Growing evidence has shown
that prebiotics, especially inulin, can alleviate glucose,
lipid metabolism disorders, and obesity by modulating gut
microbiota (12-15).

Inulin is a common prebiotic, defined as an indigestible
dietary fiber that is beneficial for the growth of probiotics
(16). The European Food Safety Authority has identified
only one prebiotic: inulin improves intestinal function (17).
It has been widely reported that inulin could alter the gut
microbiota of obese individuals, increase the abundance
of bifidobacteria and Akkermansia muciniphila in obese
(18-22).
Furthermore, inulin supplementation may promote short-

individuals, and improve metabolic disorders
chain fatty acid (SCFA) production in overweight or obese
men (12). Animal experiments have also shown that inulin
supplementation was associated with changes in the colon
SCFAs levels, including acetic acid, propionic acid, and
butyric acid (14). Dietary supplementation of the SCFAs
was shown to significantly inhibit the body weight gain
by enhancing triglyceride hydrolysis and FFA oxidation
in the adipose tissue, promoting beige adipogenesis and
mitochondrial biogenesis, and inhibiting chronic inflammation
(23). Therefore, the effect of inulin on weight loss may
be related to the interaction between gut microbiota and
related metabolites.

However, alterations in metabolite levels were not limited to
SCFAs, and there may be many other inulin-related metabolites
that were not well studied. The development of non-targeted
metabolomics has allowed us to understand better the impact
of a factor on the overall metabolic profile of the host to
find new biomarkers. In this study, we sought to unravel the
important role of inulin in regulating gut microbiota and related
metabolites and in accelerating the weight loss of HFD-induced
obese mice, and further investigate whether the therapeutic
effect of inulin on obesity is associated with gut microbiota and
metabolites. Therefore, we examined changes in body weight,
gut microbiota composition in feces, and metabolites in serum.
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Materials and methods

Animals and study design

In total, 36 male 4-week-old C57BL/6 mice were purchased
from the Experimental Animal Center of Xinjiang Medical
University. Mice were kept in the environmental control room
(25 £ 3°C, 40 &+ 5% humidity, 12 h light/dark cycle) with
free access to food and water. After 1 week of acclimatization,
an experimental design was shown in Figure 1. All mice
were randomly divided into two groups and treated for 12
consecutive weeks. The first group was fed a normal diet
(ND, Kcal%: 10% fat, 20% protein, and 70% carbohydrate;
3.85 kcal/gm, n = 12). The second group was fed a HFD (Kcal%:
60% fat, 20% protein, and 20% carbohydrate; 5.24 kcal/gm,
n = 24). After the obesity model of mice in the HFD group
was established successfully, the surviving mice in the HFD
group were randomly subdivided into two groups (n = 8 per
group) that were fed a normal diet for 10 weeks. Specifically,
(1) obese mice + normal diet (OND) group, obese mice were
fed with a normal diet; (2) obese mice + normal diet + inulin
(ONDI) group, obese mice were fed with a normal diet with
inulin (Cosucra Co., Ltd., Belgium) at 10 g/kg/day by gavage.
All the mice had ad libitum access to diet and water. During
the period of treatment, the body weight and food intake were
recorded weekly. By the end of the experiment, the mice were
sacrificed after 12 h of fasting. Orbital blood sampling was used
to collect plasma of mice in each group, and the feces was
also collected for the follow-up experiments, immediately frozen
in liquid nitrogen, and stored at —80°C. White adipose tissue
(epididymal, retroperitoneal, and perirenal fat) and liver were
weighed.

Gut microbiota analysis

Genomic DNA was extracted from fecal samples using
a TIANamp Stool DNA kit (TIAN GEN Bio-Tech Co.,
Ltd., Beijing, China). The variable V3-V4 region of the
bacterial 16S rRNA gene was amplified by PCR using
primers (F 5-ACTCCTACGGGAGGCAGCAG-3' and R 5'-
GGACTACHVGGGTWTCTAAT-3"). 16S rRNA amplicons
were detected on the Illumina NovaSeq platform by Novogene
(Beijing, China). Paired-end reads from sequencing were
merged utilizing Fast Length Adjustment of SHort reads
(FLASH) (24) to obtain raw tags. Then use fastp software to
carry out quality control on the obtained raw tags to obtain
high-quality clean tags. Finally, the Usearch software is used to
compare the clean tags with the database to detect and remove
chimeras, so as to obtain the final effective tags. For the above-
obtained effective tags, use the DADA2 module in the QIIME2
software to denoise, and filter out sequences with an abundance
of less than 5, so as to obtain the final Amplicon Sequence
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FIGURE 1
Graphical illustration of experimental design. C57BL/6J male mice were fed a normal diet (ND) and a high-fat diet (HFD) for 12 weeks to
establish an obesity model. Subsequently, the diet of the obese mice in the HFD group was switched to a normal diet and supplemented with

inulin.
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FIGURE 2

Effect of inulin on body weight, weight gain, white adipose tissue and liver weight. (A) Changes in body weight of mice fed with a high-fat diet
for 12 weeks. (B) Changes in body weight of obese mice supplemented with inulin for 10 weeks. (C) Weight gain after 12 weeks of HFD
treatment. (D) Weight gain after 10 weeks of inulin treatment. (E,F) White adipose tissue and liver weight after 10 weeks of inulin
supplementation. Each value was expressed as mean + SD. *P < 0.05, **P < 0.01, and ***P < 0.001, HFD or OND compared with ND mice. ND,
normal diet; HFD, high-fat diet; OND, obese mice + normal diet; ONDI, obese mice + normal diet + inulin.
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Effects of inulin supplementation on a and B diversity of gut microbiota in obese mice. (A,B) The Chao index accessed the community richness,
and the community diversity was accessed by the Pielou, Shannon, and Simpson indices. (C,D) Principal coordinate analysis (PcoA) and NMDS
analysis. Each value was expressed as mean + SD. *P < 0.05, **P < 0.01, ***P < 0.001. ND, normal diet; HFD, high-fat diet; OND, obese

mice + normal diet; ONDI, obese mice + normal diet + inulin.
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Variants (ASVs). QIIME2’s class-sklearn algorithm (25, 26) was
used for species annotation for each ASV using a pre-trained
Naive Bayes classifier.

The alpha diversity (within-sample diversity) was assessed
using Shannon, Simpson, Pielou, and Chao 1 indexes.
Beta diversity (between-sample diversity) was measured with
non-metric multidimensional scaling (NMDS) and principal
coordinate analysis (PCoA). ANOSIM analysis with unifrac
distance was applied to test for significant group clusters
differences. Diagrams are visualized using R packages. The
linear discriminant analysis effect size (LEfSe, LDA > 4) was
applied to distinguish the vital bacterial biomarkers of the
differential representation within groups by Qiime2. PICRUSt2
version 2.2.0 was used to predict the gut microbial metabolic
functions based on the 16S sequences. The plot was performed
on the Tutools platform,! a free online data analysis website.

Serum metabolite profiling

Detection of non-targeted metabolites in serum samples
was based on liquid mass spectrometry (LC-MS) by Novogene
(Beijing, China). Take 100 pl of the sample and put it in
an EP tube, add 400 pl of 80% methanol aqueous solution.
Then take a certain amount of supernatant and add mass
spectrometry grade water to dilute to 53% methanol, centrifuge
at 15,000, 4°C for 20 min, collect the supernatant for LC-
MS analysis. Quality Control (QC) samples will be controlled
throughout the process of on-machine testing, namely, before,
during, and after LC-MS/MS sampling. The first three QC
before injection were used to monitor the instrument state and
balance the chromatography-mass spectrometry system. The
following three QC were used for segmental scanning, and the
secondary spectrum obtained from the experimental sample was
used for the characterization of metabolites. QC inserted in the
middle of sample testing is used to evaluate the system stability
during the whole experiment process and conduct data quality
control analysis.

The original files obtained by mass spectrometry were
imported into Compound Discoverer 3.1 (CD3.1) software for
spectral processing and database search, and the qualitative and
quantitative results of metabolites were obtained. Based on high-
resolution mass spectrometry (HRMS) detection technology
combined with the mzCloud database, mzVault database,
and MassList database, the characteristic molecular peaks
were matched and identified to reflect the total metabolite
information to the maximum extent. The metabolite peak was
extracted, and the peak area was relatively quantified by CD3.1
software. Then, the metabolite was identified by comparison
with mzCloud, mzVault, and MassList databases. Finally, the

1 www.cloudtutu.com
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final identification results retain metabolites with a Coefficient
of Variance (CV) of less than 30% (27) in QC samples.

The variable importance for the projection (VIP) values of
the metabolites was obtained by PLS-DA (diagram is visualized
using R package). Differential metabolites were screened
according to VIP > 1, | log,f| > 1.5 and P < 0.05. R was used
to visualize the top 30 differential metabolite levels heatmap.

Statistical analyses

Statistical analyses were performed with SPSS 22.0 (USA).
All data were expressed as the mean £+ SD. A two-tailed
Student’s t-test analyzed the differences between groups. The
correlation was tested by Spearman correlation analyses.
GraphPad Prism Version 8.0 (USA) and R were used for
plotting. *P < 0.05, **P < 0.01, and ***P < 0.001 were
considered statistically significant.

Results

Inulin supplementation contributes to
the treatment of obesity

After 12 weeks of HFD treatment, the final body weight and
weight gain of mice in the HFD group significantly increased
compared with ND group (Figures 2A,C). Subsequently, mice
in the HFD group were switched to a normal diet for 10 weeks,
and we found that both the OND group and ONDI group
showed a tendency to lose weight. However, the weight loss
of the ONDI group was faster, and the body weight in
the ONDI group was significantly lower than that of the
OND group from week 9. By the 10th week, compared with
OND group the weight of the ONDI group first returned to
normal, and the weight loss obviously increased, indicating that
additional inulin supplementation accelerated weight loss in
obese mice (Figures 2B,D). Besides, inulin supplementation did
not significantly change food intake of mice in OND and ONDI
groups (Supplementary Figure 1), the reduction of liver and
white fat weight was closely related to the weight loss of ONDI
group mice (Figures 2E,F).

Effects of inulin on gut microbial
diversity in obese mice

Compared with the ND group, high-fat feeding significantly
reduced the a diversity, including reduced Chao index, Pielou
index, and Shannon index considerably (Figure 3A). Compared
with the OND group, inulin supplementation significantly
increased the a diversity, such as the Pielou index, Shannon
index, and Simpson index (Figure 3B). By using B diversity
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FIGURE 4

Relative abundance of the top 10 phylum-level (A,B) and genus-level top 15 (C,D) most important gut microbial components following inulin
supplementation. Each column represents the composition of the microbial taxa in one group.

analysis based on PCoA and NMDS, the ND and HFD
formed clusters separated from each other, indicating that gut
microbiota composition changed significantly in response to
HFD. Moreover, a similar phenomenon was also observed in the
reaction to inulin supplementation between OND and ONDI
groups (Figures 3C,D).

Effects of inulin on differences of
microbial composition in obese mice

Bar graphs were drawn according to the relative abundance
of the top 10 most abundant gut bacterial phyla (Figures 4A,B)
and the top 15 most abundant gut genera in different
groups (Figures 4C,D). At the phylum level, Firmicutes
and Bacteroidetes were the most abundant gut bacterial
phyla, and their overall mean relative abundance of all
groups was greater than 88%. Compared with the ND group,
the abundance of Firmicutes and Actinobacteriota were
obviously increased, while the abundance of Bacteroidota
was significantly decreased in the HFD group (Figure 5A).
Meanwhile, HFD feeding significantly increased the ratio
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of Firmicutes to Bacteroidetes 5B).

with the OND group, inulin supplementation significantly

(Figure Compared
reduced the abundance of Firmicutes in the ONDI group
(Figure 5D). At the genus level, high-fat feeding significantly
decreased the abundance of Muribaculaceae and Alistipes and
enriched Bifidobacterium, Ileibacterium, Clostridia_UCG-014,
Faecalibaculum, and Colidextribacter compared with the ND
group (Figure 5C). After supplementing with inulin, we found
statistically significant changes in Alistipes, Ruminococcus,
and Colidextribacter in the top 15 most important gut genera
compared to the OND group. Notably, the relative abundance
of Alistipes in the ONDI group was greatly increased to 17.8%,
2.3 times that of the OND group (Figure 5E). At the same time,
Ruminococcus and Colidextribacter were significantly lowered
(Figures 5F,G). Furthermore, Alistipes was strongly negatively
-0.57, P 0.023,
Supplementary Figure 2A) and Ruminococcus (r = —0.55,
P =0.016, Supplementary Figure 2B), while Ruminococcus was
strongly positively correlated with Colidextribacter (r = 0.86,
P =2.2e—05, Supplementary Figure 2C).

correlated with Colidextribacter (r

The LEfSe analysis showed that bacteria from phyla
Bacteroidota (e.g., Alistipes genus and Rikenellaceae family)
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between OND and ONDI groups; (E-G) changes in top 15 gut genus between OND and ONDI groups. *P < 0.05, **P < 0.01, and ***P < 0.001.

were significantly enriched in the ND group and the bacteria
from the phyla Firmicutes were significantly associated with
the HFD group. For example, Ileibacterium, Colidextribacter,
Faecalibaculum, Clostridia_UCG-014 genus from Firmicutes
were mainly linked to the HFD group (Figure 6A). Surprisingly,
inulin supplementation reversed the above phenomenon after
10 weeks. The Alistipes genus and Rikenellaceae family from
phyla Bacteroidota especially distinguished the OND group
from the ONDI group, while phyla Firmicutes were still
significantly related to the OND group (Figure 6B). The
cladogram corresponding to five phylogenetic levels (from
phylum to genus) generated from LEfSe analysis showed the
most relevant bacterial taxa among each group, consistent with
the results mentioned above (Supplementary Figures 3A,B).

Gut microbial metabolic functions

PICRUSt2 predicted a total of 413 function pathways.
According to the abundance distribution of each metabolic
pathway in each sample, the metabolic characteristics of gut
microbiota were predicted after inulin supplementation
for 10 weeks. Compared with the OND group, inulin
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supplementation significantly reduced glycogen biosynthesis I,
NAD salvage pathway I, purine ribonucleosides degradation,
pentose phosphate pathway, starch degradation V, tryptophan
biosynthesis, Calvin-Benson-Bassham cycle, and dTDP-N-
acetylthomosamine biosynthesis; and enhanced superpathway
of menaquinol-8 biosynthesis II, 1,4-dihydroxy-6-naphthoate
biosynthesis I, 1,4-dihydroxy-6-naphthoate biosynthesis II
and L-methionine biosynthesis IIT (Figure 7A). Furthermore,
the three critical gut microbiota, Alistipes, Ruminococcus,
and Colidextribacter, were statistically associated with these
metabolic pathways. The Alistipes were significantly positively
correlated with L-methionine biosynthesis III and significantly
negatively correlated with tryptophan biosynthesis and
NAD salvage pathway I, whereas the Ruminococcus and
Colidextribacter were the opposite (Figure 7B).

Effects of inulin on alterations of serum
metabolites

A total of 421 serum metabolites were detected using

the positive ion mode of LC-MS. To identify the particular
metabolites associated with inulin among thousands of
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FIGURE 6

LEfSe analysis of key phylotypes of mice gut microbiota. (A,B)
linear discriminant analysis (LDA > 4) scores derived from LEfSe
analysis.

variables, a pairwise comparison of the PLS-DA model was
established with satisfactory validation (R”Y = 0.99, Q?Y = 0.94).
There was a significant separation between the OND and
ONDI groups (Figure 8A). According to the screening criteria:
VIP > 1, P < 0.05,and | longC| > 1.5, a total of 113 differential
metabolites were screened out, including 68 increased and 45
decreased metabolites (Figure 8B). The top 30 metabolites were
selected to construct the heatmap (Figure 8C). The samples
were well clustered into OND and ONDI groups, and the level
changes of each metabolite within the group were basically
consistent. The top 30 metabolites mainly include indoles and
derivatives (indole-3-acrylic acid, tryptophan, 5-hydroxyindole,
and methyl indole-3-acetate).

Correlation analysis and regression
analysis

The abundance of Alistipes in the feces of mice on a HFD
was significantly reduced, and inulin supplementation after
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returning to a normal diet significantly increased the abundance
of Alistipes. In addition, LEfSe analysis also showed that only
the Alistipes appeared to have the most evident response to
inulin at the genus level, so we further analyzed the correlation
between Alistipes and inulin by Spearman correlation analysis.
The abundance of Alistipes was shown to have a strong positive
0.002, Figure 9A).
Moreover, univariate linear regression analysis of Alistipes

correlation with inulin (r = 0.72, P =

relative abundance (y) and inulin intervention (x) showed:
y = 0.101x + 0.078 (R? = 0.525, P = 0.001), indicating that
inulin supplementation could significantly increase the relative
abundance of Alistipes. Inulin treatment resulted in significant
changes in metabolites, suggesting a certain association between
metabolites and inulin. We found that the level of indole-3-
acrylic acid was shown to have the strongest positive correlation
with inulin among all the differential metabolites (r = 0.99,

= 9.2e—13, Figure 9B). Besides, it had a strong positive
association with Alistipes (r = 0.72, P = 0.002, Figure 9C) and
a strong negative association with body weight (r = —0.72,
P =0.002, Figure 9D). Surprisingly, we found that the level of
indole-3-acrylic acid was most significantly increased by more
than 500-fold among all differential metabolites after inulin
supplementation compared with the NCD group (Figure 9E).
Meanwhile, indole-3-acrylic acid with the largest VIP value in
PLS-DA had the most obvious response to inulin. The indole-
3-acrylic acid belongs to the indoles and is produced by the
tryptophan metabolism. In our study, inulin supplementation
significantly reduced tryptophan level compared with the OND
group (Figure 9F).

Discussion

Gut microbiota has been considered a key contributing
factor in diet-related obesity. In our study, HFD disturbed
gut microbiota balance and significantly increased the F/B
value. Studies showed that the structure and composition
of gut microbiota could be greatly affected by HFD (28),
and obese individuals have relatively higher F/B values than
normal-weight individuals (29), which is consistent with
our findings. Inulin as food for probiotics can improve
HFD-induced obesity and related metabolic disorders by
modulating gut microbiota (13, 30). When obese mice switched
from an HFD to a normal diet for 10 weeks, additional
inulin supplementation led to faster weight loss and first
return to normal weight compared with the OND group.
In addition, the diversity of gut microbiota was reversed
after inulin supplementation, the abundance of Alistipes was
markedly increased, and the abundance of Ruminococcus and
Colidextribacter was significantly decreased compared with
the OND group. The Alistipes is a relatively new bacterial
genus, mainly isolated from medical clinical samples and
highly associated with dysbiosis and disease (31). A systematic
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FIGURE 7
Predicted metabolic profile of the gut microbiota after inulin supplementation (A) and association of feature gut species and metabolic
profile (B). *P < 0.05, **P < 0.01.

review found that Alistipes was a lean-associated genus (32),
and the HFD could obviously reduce the abundance of
Alistipes (8, 33-36), whose abundance was inversely correlated
to adiposity, serum lipids (including low-density lipoprotein,
triglyceride, and total cholesterol), and glucose homeostasis
parameters (37-39). Notably, the relative abundance of Alistipes
in the ONDI group was significantly increased to 17.8%,
2.3 times higher than that of the OND group, and this
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might be one of the key reasons why inulin promotes
rapid weight loss.

The abundance of Ruminococcus in obese individuals was
higher than that in lean individuals (10), Ruminococcus bromii
and Ruminococcus obeum had a significant correlation with
obesity in the Japanese population (40). In our study, the
abundance of Ruminococcus in the HFD group was higher
than that in the ND group (no statistical difference). In
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Serum metabolic profiles associated with inulin. (A) PLS-DA score plot showed clustering. (B) The volcano plot showed significant metabolites.
(C) The heat map showed the top 30 metabolites clustering.

contrast, the abundance of Ruminococcus obviously decreased
after inulin treatment compared to the OND group. The
Colidextribacter was considered a HFD-dependent taxa, and
some functional foods (such as flavonoids from whole grain-oats
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and partially milled barley) could modulate the perturbation
of Colidextribacter in HFD-induced mice (41, 42). Consistent
with our findings, mice fed an HFD significantly increased the
abundance of Colidextribacter, which was reversed by inulin
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Spearman correlation analysis and changes in key metabolite levels after inulin supplementation. (A) The relationship between Alistipes and
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relationship between indole-3-acrylic acid and body weight; (E,F) indole-3-acrylic acid and tryptophan presented as the ratio of the abundance

in ONDI mice to those in OND mice. *P < 0.05, ***P < 0.001.

treatment compared to the OND group. In addition, Alistipes
showed a clear negative correlation with Colidextribacter and
Ruminococcus, suggesting the significant increase in Alistipes
abundance seems to have an inhibitory effect on Colidextribacter
and Ruminococcus after inulin supplementation. Furthermore,
the LEfSe analysis showed that only Alistipes had a significant
biological association with the ONDI group at the genus level.
These findings suggest that inulin-accelerated weight loss in
obese mice may be associated with the reversal of gut microbiota
disturbances, primarily mediated by Alistipes.

On the other hand, inulin supplementation changed the
overall serum metabolite profile of obese mice. Inulin is known
to mitigate the development of obesity by producing SCFAs,
including acetic acid, propionic acid, and butyric acid (12,
14). However, there are still many metabolites that have not
been studied. We used non-targeted metabolomics techniques
to detect fundamental alterations in the serum metabolite
profile after inulin supplementation. According to the screening
criteria, a total of 113 differential metabolites were screened.
Interestingly, the change in indole-3-acrylic acid level was the
most pronounced among all differential metabolites. Its level
was significantly increased by more than 500-fold compared
with the OND group, and it had the largest VIP value from PLS-
DA. Indole-3-acrylic acid is a tryptophan metabolite secreted
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by gut microbiota (43, 44). A study has shown that tryptophan
can be converted to indole pyruvate acid (IPyA) by the aromatic
amino acid aminotransferase from Lactobacilli, while IPyA is the
critical precursor of indole-3-acrylic acid (44). Indole-3-acrylic
acid is closely related to human health. A study has shown that
several Peptostreptococcus species could produce the tryptophan
metabolite indole-3-acrylic acid, promoting intestinal epithelial
barrier function and reducing inflammation. It has a specific
therapeutic effect in patients with inflammatory bowel disease
(IBD) (43). Metabolites derived from gut microbes (e.g., indole-
3-acrylic acid) may attenuate atherosclerosis development in
ApoE-deficient rats (45). In addition, the gut microbiota-
related metabolite indole-3-acrylic acid was also associated with
immune-related diseases (46). There are few studies on the
relationship between indole-3-acrylic acid and obesity. In our
current study, indole-3-acrylic acid exhibited a strong negative
correlation with body weight.

Significant changes in gut microbiota and serum metabolites
were observed after 10 weeks of inulin supplementation in obese
mice compared to the OND group. Both Alistipes and indole-
3-acrylic acid showed a strong positive correlation with inulin.
The gut microbiota exerts most of its physiological roles mainly
through various metabolites (47-50). A study showed that
the gut microbiota tryptophan metabolite indole-3 carboxylic
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acid could regulate energy expenditure and insulin sensitivity
by regulating the expression of miRNA-181 in white fat and
thus affect obesity (51). Another study found that alternate-
day fasting could change gut microbiota composition in mice,
increase the synthesis of acetic acid and lactic acid, and induce
browning of white adipose tissue (52). Secondary bile acids,
metabolites of gut microbiota, are involved in the regulation
of glucose and lipid metabolism, and can also enhance insulin
sensitivity and promote fat metabolism, which is closely related
to the formation of obesity and diabetes (53, 54). Changes in
serum metabolites may be mediated by altered gut microbiota
after inulin supplementation. Spearman correlation analysis
showed that Alistipes exhibited a strong positive correlation
with indole-3-acrylic acid. According to the taxonomic database
of the US National Center for Biotechnology Information,
the genus Alistipes consists of 13 species, 7 of which can
catalyze the production of indole from tryptophan, including
Alistipes finegoldii, A. onderdonkii, A. shahii, A. senegalensis,
A. timonensis, A. putredinis, and A. inops (31). In our
study, the Alistipes were significantly negatively correlated with
tryptophan biosynthesis pathway. The level of tryptophan was
reduced considerably after inulin supplementation, which may
be due to the rapid metabolism of tryptophan by Alistipes to
produce a large amount of indole-3-acrylic acid. But further
experiments are needed to prove the relationship between
Alistipes and indole-3-acrylic and to clarify which species of
Alistipes genus produces indole-3-acrylic acid.

Conclusion

In the present study, inulin supplementation reversed
the changes in the richness, composition, and diversity of
gut microbiota induced by HFD. The abundance of the
genus Alistipes and the level of indole-3-acrylic acid were
considerably increased in response to inulin supplementation.
Both Alistipes and indole-3-acrylic acid were involved in
tryptophan metabolism, meanwhile, they were also positively
related to inulin supplementation and negatively related
to obesity. These findings suggest that inulin accelerates
weight loss in obese mice, possibly due partly to increased
levels of Alistipes and indole-3-acrylic acid. However, the
interrelationship between Alistipes and indole-3-acrylic acid still
need further experiments to prove.
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