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Alzheimer’s disease (AD) is a neurodegenerative disease characterized by

the accumulation of amyloid-β (Aβ) plaques and neurofibrillary tangles in

the brain accompanied by synaptic dysfunction and neurodegeneration.

No effective treatment has been found to slow the progression of

the disease. Therapeutic studies using experimental animal models have

therefore become very important. Therefore, this study aimed to investigate

the possible neuroprotective effect of D-cycloserine and L-serine against

aluminum chloride (AlCl3)-induced AD in rats. Administration of AlCl3
for 28 days caused oxidative stress and neurodegeneration compared to

the control group. In addition, we found that aluminum decreases α-

secretase activity while increasing β-secretase and γ-secretase activities by

molecular genetic analysis. D-cycloserine and L-serine application resulted

in an improvement in neurodegeneration and oxidative damage caused

by aluminum toxicity. It is believed that the results of this study will

contribute to the synthesis of new compounds with improved potential

against AlCl3-induced neurodegeneration, cognitive impairment, and drug

development research.
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Introduction

Alzheimer’s disease is marked by a gradual loss of neuronal
and synaptic functioning, resulting in memory and cognition
problems. The major histological hallmarks of Alzheimer’s
disease are the deposition of amyloid beta peptides (Aβ) in
neuronal cells and the creation of intracellular neurofibrillary
tangles (1). The etiology of Alzheimer’s disease is complex;
the main pathogenic processes in the disease include oxidative
stress, amyloidogenesis, and neuroinflammation (2).

Aluminum (Al), an environmental contaminant, has been
implicated in the development of Alzheimer’s disease (3, 4). Al
has a neurotoxic-like effect on neuronal structure (5, 6), blood-
brain barrier (BBB) permeability, and cholinergic/noradrenergic
neurotransmission (7–9). Several investigations have shown
that exposure to solid aluminum chloride and its decomposed
form (ion metal Al3+) can change the BBB, influence axonal
transport, and cause inflammatory responses as well as synaptic
structural abnormalities, resulting in significant memory loss
(4, 7–9). Furthermore, the metal ion Al3+ hastens the dynamic
process of Aβ aggregation, hence increasing neurotoxicity in
neuronal cells as a result of significant changes in the biophysical
characteristics of the Aβ peptide, which leads to its accumulation
in the cortex and hippocampus (4, 9, 10).

Furthermore, Al causes cytoskeletal proteins to misfold,
resulting in the production of amyloid plaques and
neurofibrillary tangles in the brain (11, 12). As a result,
using Al to induce neurodegenerative changes in animals to
mimic Alzheimer’s disease is generally recognized.

A disruption in glutamatergic neurotransmission via the
N-methyl-D-aspartate (NMDA) subtype of glutamate receptors
may be implicated in the etiology of Alzheimer’s disease,
according to many lines of evidence (13–15). NMDA receptors
are diminished selectively and variably in parts of the brain
associated with Alzheimer’s disease (16, 17), suggesting that
Alzheimer’s disease may be linked to the loss of NMDA
receptors in specific brain regions. Treatment with memantine,
an NMDA receptor antagonist, was recently found to minimize
clinical deterioration in moderate-to-severe Alzheimer’s disease
patients, implying a role for NMDA receptors in the
pathogenesis of the disease (18). D-serine has been found to act
as an endogenous ligand for the NMDA receptor’s strychnine-
insensitive glycine sites (19). Furthermore, free D-serine levels
in the frontal cortex of Alzheimer’s patients were comparable
to those in the normal brain (20). D-cycloserine, a partial
agonist of the NMDA receptor glycine site, has improved
memory-related activities in Alzheimer’s patients (21, 22).
L-serine is a precursor of D-serine, the synaptic NMDAR’s
major coagonist, which is necessary for synaptic activity and
plasticity. Therefore, it would be of great interest to clarify
the potential contribution of L-serine and D-cycloserine to the
pathophysiology of Alzheimer’s disease. Along these lines, the
current work focuses on the neuroprotective effects of L-serine

and D-cycloserine against AlCl3-induced Alzheimer’s disease
in vitro and in vivo. It investigates the effects of L-serine
and D-cycloserine on cognitive decline and oxidative stress
in animals, as well as histopathological examinations. This
research aids in slowing disease development and identifies
viable therapeutic targets for treating Alzheimer’s disease.

Materials and methods

Cell cultures and cellular
differentiation

SH-SY5Y cells of human neuroblastoma origin were
cultured in Dulbecco’s modified Eagle medium F12 (Gibco R©,
New York, United States) supplemented with 10% fetal bovine
serum (Gibco R©, New York, United States), 1% penicillin and
streptomycin at 37◦C in 5% CO2. Cells were seeded onto plates
and passaged when they reached 70–80% confluence. For the
differentiation of SH-SY5Y cells, the medium was replaced with
DMEM: F12 medium containing 1% FBS and 10 µM retinoic
acid (RA, Sigma–Aldrich R©, Milan, Italy). The media of the cells
were renewed every 3 days with a medium containing 1% FBS
and 10 µM RA. The differentiation process of the cells was
observed for 11 days with light microscopy (23).

In vitro treatments

WST-8 assay
Cell viability was measured by using a CVDK-8 (Ecotech

Biotechnology R©) kit according to the manufacturer’s manual.
Briefly, 1 × 104-1 × 105 cells were seeded in 96-well plates and
kept under appropriate culture conditions (37◦C, 5% CO2) for
24 h for cell attachment. Then, the cells were incubated with
different concentrations (0-800 µg/ml) of D-cycloserine (DCS)
or L-serine (LS, Sigma–Aldrich, St. Louis, MO, United States)
against AlCl3 (200 µM) for 24 h. After incubation, CVDK-8
reagent was added to each well and incubated for 3 h. At the
end of the incubation period, the absorbance of each sample
was measured at 450 nm in a microplate reader (Synergy-HT;
BioTek Winooski, VT, United States). As a positive control, cells
were treated with 0.1% (w/v) Triton X-100.

LDH assay
Following the provider’s instructions, the LDH assay was

performed using the CytoSelectTM LDH Cytotoxicity Assay
Kit (Cell BioLabs, San Diego, CA, United States). Briefly, the
cells were treated as mentioned above, and at the end of the
culture period, 90 µL of supernatant was transferred to a
new plate, and 10 µL of the reaction mixture was added to
each well. The reaction was incubated for 30 min at room
temperature in the dark. Eventually, the optical density was
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measured at a wavelength of 450 nm in a microplate reader
(Synergy-HT; BioTek Winooski, VT, United States). As a
positive control, cells were treated with 0.1% (w/v) Triton X-
100 (24).

Animals and in vivo experimental
design

Adult male Wistar rats weighing 230 ± 20 g were
procured from ATADEM, Ataturk University (Turkey). In
the Experimental Animals Housing Unit facility in Atatürk
University’s Faculty of Pharmacy, animals were maintained at
room temperature (25◦C) with a 12-h light/dark cycle. Rats were
given a regular pellet diet and had unlimited access to food and
water ad libitum. Before starting the medication therapy, the rats
were allowed to acclimatize for a week.

The animal ethics committee of Ataturk University
authorized the experimental protocol for the care of
experimental animals (approval number 77040475-000-
E.1800140631-1851, date of approval 26 April 2018). Animal
handling and all procedures were performed in accordance
with and strictly adhered to the "Guide for the Care and Use of
Laboratory Animals" 8th edition.

Chronic administration of AlCl3 at various levels in mice has
been utilized in various investigations to mimic the physiology
of Alzheimer’s disease (25). In our study, AlCl3 was used at a
dose of 5 mg/kg/i.p. for four weeks. This dosing regimen of
AlCl3 was selected based on previous reports because of the high
rate of induction and low mortality (26, 27).

A total of 39 rats were randomly divided into six groups:
(1). The control group (CG, n = 5) received saline

(1 mL/kg/day, i.p.) for four weeks.
(2). The AD model group (n = 10) was injected daily with

AlCl3 (5 mg/kg/day, i.p.) for four weeks.
(3). DCS group (n = 6): Rats in this group received DCS

(3.6 mg/kg/day i.p.) for four weeks.
(4). LS group (n = 6): Rats in this group received LS

(3.6 mg/kg/day i.p.) for four weeks.
(5). AlCl3 + DCS group (n = 6): Rats in this group

were induced with AlCl3 and subsequently received DCS
(3.6 mg/kg/day i.p.) for four weeks.

(6). AlCl3 + LS group (n = 6): Rats in this group
were induced with AlCl3 and subsequently received LS
(3.6 mg/kg/day i.p.) for four weeks.

Four days before the study’s end date, rats were trained
in the Morris water maze. On the last day of the study,
animals received the last treatment dose, and the passive
avoidance test was later performed. After 24 h, all animals
were anesthetized with isoflurane and sacrificed. The blood
samples were collected in both EDTA anticoagulant tubes
and no anticoagulant tubes. The plasma was separated by
centrifugation at 3000 rpm for 10 min at 4◦C. The serum was
separated from the blood. Whole blood samples were used for

the hematological test, while plasma and serum samples were
used for the biochemical analysis.

The brains were taken immediately, frozen in liquid
nitrogen, and stored at –80◦C. The brains were stored in neutral
buffered formalin (pH-7.4) for histological investigations.

Neurobehavioral studies

Morris water maze
Morris water maze procedures were used to test rats’

spatial memory and learning (28, 29). In this study, a circular
swimming pool with a diameter of 150 cm and a height of 40 cm
was divided into four quadrants (NW, NE, SE, and SW), with an
escape platform located in the NW quadrant that remained 2 cm
below the water level during the acquisition trials. External cues
were set all over the pool and stayed the same throughout the
trial. During the training days, the rats were taught to find this
concealed platform by performing four acquisition trials each
day for four days in a row (up to 90 seconds). The time needed
for each rat to reach the platform was graphically recorded as
the escape latency. Successful rats were permitted to stay on the
platform for 10 s before being removed; however, if the rat did
not find the platform within 60 s, it was gently directed to it
and allowed to stay for another 15 s. The animals underwent
four acquisition trials per day for four days in a row. The animal
was placed in each quadrant during each experiment to remove
quadrant effects. The trial time was reported as 2 min in the
trials when the rats failed to reach the platform. On the fifth
day, each rat was given a 90-s probe experiment in which the
platform was withdrawn from the pool. The amount of time
spent swimming in the target quadrant (within 90 s of the probe
test time) was tracked.

Passive avoidance task
The passive avoidance task (PAT) is a widely used method

for assessing the preservation of avoidance memory in mice. As
reported in a prior study, a step-by-step PAT was carried out
(30). The device had two bright and dark chambers, divided
by an automatic door. The animal was placed in the light
chamber for the acquisition session. The door was lifted after
30 s of acclimatization, and when the animal entered the dark
compartment, a modest electric shock of 0.5 mA was provided
for 3 s. After a 24 h acquisition trial, a retention trial was
conducted using the same approach as the acquisition trial but
without the use of electric shock. Each mouse’s transfer latency
time (sec) was collected in both the acquisition and retention
trials. The test was stopped if the rat did not enter the dark room
during the 5 min test period, and the step-through latency was
recorded as 300 s (31).

Histopathological examination
Brain tissues of treated and control rats were fixed in

10% buffered formalin solution in labeled bottles. Tissues were
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stained with hematoxylin-eosin (H-E) and examined under
a microscopic imaging system (Leica Microsystems GmbH,
Wetzlar, Germany).

Biochemical and hematological assays
An automated analyzer (Archem, BM240, Istanbul, Turkey)

was used to assay for biochemical and hematological parameters.

Total oxidative stress and total antioxidant
capacity analysis

Total antioxidant capacity (TAC) assays and total
oxidant status (TOS) assays were conducted to measure
antioxidative/oxidative capacity in the brain using commercially
available TAC and TOS assay kits (Rel Assay Diagnostics R©,
Gaziantep, Turkey). Ascorbic acid (10 µM) and hydrogen
peroxide (25 µM) from Sigma–Aldrich were used as
positive control treatments to determine TAC and TOS
levels, respectively (32).

Real-time PCR analysis
RNA isolation was performed by homogenizing brain

tissues with a Pure LinkTM RNA Mini Kit (InvitrogenTM,
Carlsbad, CA, United States) following the provider’s manual.
Then, cDNA synthesis was conducted using 10 µL of RNA
with a High-Capacity cDNA Reverse Transcription Kit (Applied
BiosystemsTM, United States) following the provider’s manual.
qPCR was carried out using Sybr Green Master Mix (Applied
BiosystemsTM, United States) on a Real-Time PCR Detection

System (Qiagen Rotor-Gene Q). The qPCR program was 50◦C
for 2 min, 95◦C for 10 min x 40 cycles, 95◦C for 15 s, and
60◦C for 1 min (33). mRNA expression levels were normalized
to ACTB mRNA expression levels. A list of the primers used is
given in Supplementary Table 1.

Statistical analyses
Statistical analysis was conducted using the SPSS R© 21.0

program. The results are given as the mean ± standard
deviation. Duncan’s test was used as a post hoc test followed by a
one-way analysis of variance (ANOVA). P < 0.05 was set as the
minimal level of significance.

Results

D-cycloserine and L-serine protect
differentiated SH-SY5Y cells from
damage induced by AlCl3

The results of the WST-8 assay showed that the treatment
of differentiated SH-SY5Y cells with DSC or LS at different
concentrations (0-800 µg/ml) for 24 h had no significant
effect on cell viability (data not shown). In differentiated
SH-SY5Y cells, treatment with AlCl3 at a concentration
of 200 µg/ml dramatically reduced the cell viability rate
(P < 0.05). Cotreatment with DCS or LS, on the other hand,

FIGURE 1

Effects of DCS and LS against AlCl3-induced neurotoxicity in differentiated SHSY-5Y cells. (A) Viability of differentiated SHSY-5Y cells after 24 h
of DCS (0-800 µg/ml) and AlCl3 treatment. (B) LDH activity of cells after 24 h of DCS (0-800 µg/ml) and AlCl3 treatment. (C) Viability of
differentiated SHSY-5Y cells after 24 h of LS (0-800 µg/ml) and AlCl3 treatment. (D) LDH activity of cells after 24 h of LS (0-800 µg/ml) and
AlCl3 treatment. All values are expressed as the mean ± standard deviation. Significance difference between groups indicated by: # between
control and AlCl3, * between AlCl3 and treatment groups.
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FIGURE 2

(A) Escape latency in the MWM test of each training day. (B) Mean time spent in the target quadrant in the MWM test. The behavioral analysis
(A,B) was compared to the control group. Significance difference between groups indicated by: # between control and AlCL3, * between AlCl3
and treatment groups.

resulted in a substantial increase in percent cell viability,
showing that DCS and LS have a neuroprotective impact
(Figures 1A,C) (P < 0.05). The LDH assay confirmed
the WST-8 results that demonstrated that cell membrane
integrity was affected by ALCl3 in a similar pattern.
LDH activity was increased in the supernatant of AlCl3-
treated cells compared with untreated cells. The protective
effect of DCS and LS against AlCl3-induced toxic effects
was also confirmed in the LDH assay (Figures 1B,D)
(P < 0.05).

D-cycloserine and L-serine attenuated
AlCl3-induced learning and memory
deficits

The AlCl3-treated group displayed a significantly (P < 0.05)
longer escape latency than the untreated control group in
the Morris water maze test. In contrast, when compared to
the disease-control group, DCS or LS treatment significantly
(P < 0.05) reduced the rise in escape latency brought on by
aluminum chloride treatment (Figure 2).

The transfer delay for each mouse was assessed during the
passive avoidance test for both the acquisition and retention
phases. In the acquisition test, there was no noticeable difference
in the transfer latency between any of the experimental groups,
according to one-way ANOVA statistical analysis. However,
in the retention test, the aluminum chloride-treated group
showed a highly significant decline compared to the healthy
control group. The DCS treatment demonstrated a considerable
improvement in retention latency compared to the disease

control group. Compared to DCS, treatment with LS had more
notable results (Figure 3).

D-cycloserine and L-serine attenuated
the generation of neurofibrillary
tangles in the AlCl3-induced AD rat
brain

Figure 4 displays the results of the histopathological tests
performed on the brain tissues of the rats in the control and
experimental groups using hematoxylin and eosin staining. The
figure depicts the accumulation of neurofibrillary tangles in the
brains of rats exposed to AlCl3 (indicated by arrows). Recovery
in the pathogenic alterations in the brain tissue was seen after
treatment with DCS or LS.

D-cycloserine and L-serine attenuated
aspartate aminotransferase, alanine
aminotransferase, and creatine kinase
levels

The toxicology results for the hematological parameters
are shown in Supplementary Table 2. According to the
findings, there was a statistically significant increase in aspartate
aminotransferase (AST) and alanine aminotransferase (ALT)
and a significant decrease in creatine kinase (CK) and uric
acid values (P < 0.05) in AlCl3-treated animals. Additionally,
cotreatment with DCS or LS led to amelioration of these
negative changes caused by AlCl3 in rats.
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FIGURE 3

Performance in the passive avoidance test. The training latencies (A) and the retention latencies (B) to enter the dark chamber during sessions
are shown. All values are expressed as the mean ± standard deviation. Significance difference between groups indicated by: # between control
and AlCl3, * between AlCl3 and treatment groups.

D-cycloserine reduces AlCl3-Induced
inflammation

As depicted in Supplementary Table 3, AlCl3 led to a
significant increase in the level of neutrophils and a decrease
in basophils compared to the control group (P < 0.05). Most
importantly, DCS treatment opposed the effect of ALCl3 and
lowered neutrophil levels compared to the AlCl3-treated group.

Additionally, the mRNA expression of TNF was markedly
increased by AlCl3 incubation relative to the control group
(Figures 5C,D). Compared with the AlCl3-treated group, DCS
and LS treatment significantly decreased the mRNA expression
of TNF-a.

D-cycloserine and L-serine attenuated
the decreased levels of TAC

Total antioxidant capacity and total oxidative status were
measured in brain tissue samples from the rat groups, and
the results are shown in Figure 5. The results revealed that
both DCS and LS support TAC levels. As a positive control,
DCS, LS and ascorbic acid (10 µM) increased TAC levels by
approximately 2. 37-, 2.16- and 2.75-fold, respectively. At the
TOS level, hydrogen peroxide (25 µM), used as a positive
control, caused an approximately 3.12-fold increase, while AlCl3
caused a 2.8-fold increase. However, the DCS- and LS-treated
groups did not exhibit changes in TOS levels compared to the
untreated group. The results showed that AlCl3 exposure caused
a significant (P < 0.05) decrease in TAC levels and an increase
in TOS levels. In addition, it has been shown that the negative
change in TAC levels caused by ALCl3 is alleviated by DCS and

LS applications. LS was found to be more effective at alleviating
oxidative stress induced by AlCl3 than DCS.

D-cycloserine and L-serine decreased
amyloid-beta production in the AD rat
model

To further analyze the protective roles of DCS and LS against
AlCl3-induced neurotoxicity, the levels of Aβ metabolism-
related genes, such as APP, BACE 1, NCTSN, PSEN1, PS,
ADAM10, and APH1A, were evaluated by RT–PCR. RT–PCR
analysis revealed that exposure to AlCl3 significantly increased
the mRNA expression of APP, BACE 1, NCTSN, and PSEN1
and inhibited the mRNA expression of ADAM10 relative to
the control group (P < 0.05). Additionally, treatment with
DCS or LS showed a significant (P < 0.05) beneficial effect in
counteracting the effect of AlCl3 in the treated brain tissues
(Figure 6).

Discussion

The current findings show that DCS and LS protect rats
from AlCl3-induced Alzheimer-like pathology. One of the most
common clinical signs of Alzheimer’s disease is cognitive loss,
and aluminum causes most of the disease’s symptoms (34–36).
Aluminum causes behavioral, physiological, and neurochemical
changes, which eventually contribute to cognitive impairment,
as seen in Alzheimer’s disease (37–39). We found that DCS
and LS reduced behavioral, biochemical, and neurochemical
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FIGURE 4

Representative histopathology images in the rat brain (n = 3) (hematoxylin-eosin, original magnification 200×) Arrows indicate neurofibrillary
tangles.

abnormalities in AlCl3-treated rats, indicating that they might
have a neuroprotective function in Alzheimer’s disease.

Chronic exposure to AlCl3 resulted in a significant reduction
in memory retention and spontaneous memory impairment
as measured by passive avoidance and the Morris water maze
(MWM) test, respectively. The results were in agreement with
previous studies (26, 27). DCS or LS coadministration reduced
the cognitive impairment caused by chronic AlCl3 exposure,
demonstrating that DCS and LS are powerful neurostimulators
and memory enhancers. In the case of aluminum and oxidative
stress, it has been established that oxidative damage is
responsible for the etiology and cognitive dysfunctions in
Alzheimer’s disease (40). The total oxidant status (TOS) is
usually used to estimate the overall oxidation state of the
sample. Similarly, the total antioxidant status (TAS) is used to
measure the overall antioxidant status of the sample. Because
the measurement of different antioxidant molecules separately
is not practical and their antioxidant effects are additive, we
preferably measured the total antioxidant capacity and the total
oxidant status (41). According to this study, chronic aluminum
exposure reduces TAC levels in rat brain homogenates. It
has been previously reported that aluminum treatment causes
neurochemical changes in various brain areas as well as changes

in the brain’s oxidative state, which is in line with our findings
(42). Thus, prolonged aluminum exposure disrupts the balance
between antioxidants and oxidative processes, a condition that is
most likely responsible, at least in part, for the observed memory
impairment in rats.

We then examined blood parameters to determine whether
there were any changes in the hematological and biochemical
systems. The value of CK was found to be significantly lower
in AlCl3-treated rats. Creatine kinase, which is vulnerable to
oxidative damage and is significantly diminished in AD brains
(43), causes a shift in glutamate concentrations and cellular
toxicity. In contrast, oxidative damage to creatine kinase may
affect energy equilibrium in the brain. The findings also revealed
that DCS or LS therapy significantly increased CK activity,
which was inhibited by AlCl3 treatment. The reason could
be the antioxidant characteristics of L-serine, as previously
documented (44). L-serine is likely implicated in the cellular
antioxidant defense system because its downstream metabolites
glycine and cysteine are precursor amino acids necessary for the
formation of the antioxidant glutathione (GSH), which shields
cells from oxidative damage (45, 46) L-serine treatment has been
found to have promising therapeutic benefits on brain damage
and ischemic stroke in preclinical investigations (47, 48).
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FIGURE 5

(A) Total antioxidant capacity (TAC) and (B) total oxidative stress
(TOS) levels in all groups. The data are expressed as the
mean ± standard deviation. Significance difference between
groups indicated by: # between control and AlCl3, * between
AlCl3 and treatment groups.

Alzheimer’s disease is characterized pathologically by
inflammation, and immune cells have been implicated in
the pathophysiology of the disease. Neutrophils, well-known
players of the immune system, perform a variety of tasks,
such as producing reactive oxygen species (ROS), phagocytosis,
degranulation, and releasing neutrophilic extracellular traps
(NETs) (49–51). Neutrophils have a role in the pathophysiologic
processes of AD, and the disease process itself may cause
an increase in neutrophil count, according to a number
of suggested pathways. Tumor necrosis factor-alpha (TNF-
α) is a cytokine that is significantly increased in Alzheimer’s
disease (AD) and is closely associated with the development of
neuropsychiatric symptoms (52). Additionally, it is known that
TNF promotes neutrophil survival by releasing IL-9 through an
NF-ß-dependent mechanism (53). This might be the reason why
people with AD have higher neutrophil levels. Basophils express
the high-affinity IgE receptor FcRI and contain histamine (54–
56). Additionally, it has been shown that AD patients have
higher quantities of histamine, a neurotransmitter with anti-
inflammatory properties, in their brains and serum. However,
it is still unclear how AD affects the quantity and functionality
of basophils (57).

In previous investigations, NMDA neurotransmission
enhancers have been shown to ameliorate behavior and memory
symptoms (58, 59). However, there is disagreement regarding

whether D-cycloserine (a partial agonist of the NMDAR-
glycine site) might enhance cognitive performance in dementia
patients (21, 22, 60, 61). Clinical investigations have found
that using significant amounts of D-serine and D-cycloserine
as adjuvant therapy in schizophrenia patients can help with
positive, negative, and cognitive symptoms (62, 63). Several
studies have examined the link between AD and D-serine levels
in serum or CSF. The outcomes were contentious. According
to a previous study with a smaller sample size, d-serine serum
levels in Alzheimer’s patients were somewhat lower than those
in normal controls (64). In more recent research, D-serine levels
were shown to be increased in postmortem AD brains and
CSF of probable AD patients, although the findings were not
validated in other studies (65, 66). In contrast to previous studies
that enrolled medicated AD patients, a newly published cohort
study with a larger sample size that enrolled the entire clinical
spectrum of drug-free AD patients revealed indistinguishable
CSF and serum D-serine levels and D-serine/total serine ratios
compared to controls (67).

The liver enzymes in the animal model of Alzheimer’s
disease showed significant elevations. The aminotransferases
AST, OT1, and ALT (PT1), released into the bloodstream
when the liver is damaged, are the most sensitive and widely
used diagnostic liver enzymes. As a result, an increase in
these enzymes indicates widespread hepatocyte death (hepatic
necrosis), which is seen in many inflammatory illnesses (68, 69).
In 90% of ischemia or toxic liver injury cases, high levels of
aminotransferases have been observed (70). According to one
study, blood AST levels increased 6–7 times in 98% of alcoholic
hepatitis patients compared to normal values (71).

The amyloid cascade hypothesis establishes that aberrant Aβ

aggregation in the brain is the primary cause of Alzheimer’s
disease, which arises when Aβ production and clearance are out
of balance. In the amyloidosis route, Aβ1-42 is generated when
APP is sequentially cleaved by β and γ secretases; however, in
the non-amyloid pathway, APP is cleaved by α and γ secretases,
which avoids Aβ production and seems to be a protective
process (72). Previous studies have found that prolonged
exposure to AlCl3 increased the expression of APP, Aβ1-42, β

and γ secretases, which accelerated Aβ formation and decreased
its degradation (35, 73). Aluminum has been shown to accelerate
Aβ production and aggregation, cause structural changes in Aβ,
and promote the creation of Aβ oligomers (74–76). Exley (77)
found that Al raises the Aβ burden in experimental animals
by affecting Aβ anabolism or catabolism. The present study
indicated that genes associated with Aβ metabolism, such as
ADAM10, BACE1, PS1, and NCT, are involved in aluminum-
induced neurotoxicity. It can be said that aluminum increases
β-secretase and γ-secretase activities. Moreover, DCS or LS
attenuated Al-induced Aβ toxicity by lowering the expression
of APP, β- and γ -secretases.

The DAXX protein is associated with the FAS protein,
which belongs to the tumor necrosis factor receptor superfamily
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FIGURE 6

The graphs represent the relative expression levels of different genes related to Alzheimer’s disease. The analyzed genes were APP, BACE1,
BDNF, ADAM10, TNFα, DAXX, NCTSN, APH1A, PSENEN, and PSEN1. The data are expressed as the mean ± standard deviation. Significance
difference between groups indicated by: # between control and AlCl3, * between AlCl3 and treatment groups.

and contains the death domain critical for apoptotic signaling.
Overexpression of DAXX induces apoptosis, and its expression
has been reported to be increased in the AD brain in previous
studies (78). As shown in Figure 6, DAXX expression was
increased in the AlCl3-treated group compared to the control. In
addition, DAXX expression decreased significantly due to DCS
and LS applications. This finding shows that aluminum causes
AD-related pathogenesis by causing apoptosis and that DCS and
LS are protective against AlCl3-induced apoptosis.

The failure of therapeutic tactics directed at a single
component of Alzheimer’s disease is apparent, and there is
mounting evidence that the development of successful therapies
for the disorder must consider this. In this context, the
use of preventative medications, such as neuro-nutrients that
can slow the progression of Alzheimer’s disease is becoming
more popular (79). This research supports this viewpoint,
demonstrating that LS can have various therapeutic benefits and
potentially contribute to current and future anti-AD treatments.
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