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Dietary pattern is excellent in reflecting an individual’s eating conditions.

Longitudinal data on fetal growth can reflect the process of intrauterine

growth. We aimed to evaluate the associations between maternal dietary

patterns and intrauterine parameters in middle and late pregnancy. The

present study was conducted within Jiangsu Birth Cohort (JBC) study. Dietary

information was assessed with a food frequency questionnaire (FFQ) in the

second and third trimester of gestation. B-ultrasound scans were performed to

obtain fetal intrauterine parameters, including head circumference (HC), femur

length (FL), abdominal circumference (AC), and estimated fetal weight (EFW).

Exploratory factor analysis was used to extract dietary patterns. Multiple linear

regression and linear mixed-e�ects model (LMM) were used to investigate the

association betweenmaternal dietary patterns and fetal growth. A total of 1,936

pregnant women were eligible for the study. We observed inverse associations

of maternal “Vegetables and fish” and “Snack and less eggs” patterns during

mid-pregnancy with fetal HC Z-score, respectively (“Vegetables and fish”:

β=−0.09, 95%CI−0.12,−0.06; “Snack and less eggs”: β=−0.05, 95%CI−0.08,

−0.02). On the contrary, “Animal internal organs, thallophyte and shellfish”

pattern in the second trimester was associated with increased HC Z-scores

(β = 0.04, 95% CI 0.02, 0.06). Consistently, score increase in “Vegetables and

fish” pattern in the third trimester was inversely associated with the Z-scores of

HC (β = −0.05, 95% CI −0.09, −0.02), while “Meat and less nuts” pattern was

positively correlated with the Z-scores of HC (β = 0.04, 95% CI 0.02, 0.07). As

compared to the fetus whose mothers at the lowest tertile of “Snack and less

eggs” pattern in both trimesters, those whose mothers at the highest tertile

demonstrated 1.08 fold (RR = 2.10, 95% CI 1.34–3.28) increased risk of small

HC for gestational age (GA). No correlation was observed between maternal
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dietary patterns and other intrauterine parameters. Our results suggested the

e�ects of maternal dietary patterns on fetal growth, particularly HC. These

findings highlighted the adverse impact of unhealthy dietary pattern on fetal

growth, might provide evidence for strategies to prevent intrauterine dysplasia

and dietary guidelines during pregnancy.

KEYWORDS

prospective study, pregnancy, dietary patterns, B-ultrasound, intrauterine

development

Introduction

Pregnancy requires an increased intake of energy and

macronutrient for maternal and fetal needs (1). Several

studies, including observational studies and clinical trials, have

shown that maternal energy-protein imbalance, inadequate

intake of fatty acid and vitamin B are associated with low

birth weight (LBW), preterm birth (PTB), and congenital

heart disease in offspring (2–4). Maternal undernutrition and

overnutrition have adverse effects on fetal health (5). Even in

the absence of malnutrition, maternal diet during pregnancy

is paramount in achieving appropriate fetal growth and

development (6–8). Previous studies have provided evidence

on the associations between individual food or nutrient intake

during pregnancy, such as fruits (9) and iron (10), and birth

outcomes. However, food and nutrients are not consumed in

isolation, and these ingredients in the diet may form complex

synergies and interactions (11). The summary description of

the overall dietary status better reflects individual’s actual

eating conditions. Dietary pattern, a semi-quantitative research

method describing the overall diet, is particularly suitable for

large-scale epidemiological studies (12). Thus, it has gradually

become an indispensable method for research on dietary

nutrition and health and wellbeing in recent years (13).

Several studies have demonstrated the association between

maternal dietary patterns and birth out-comes, including the

anthropometry measurements of newborns, and the risk of PTB

and born small for gestational age (SGA) (14–17).

Compared with the anthropometry measurements of

newborns, the longitudinal data of fetal growth measured

repeatedly can better reflect the continuous process of

intrauterine growth (18). Growth of the fetus in utero determines

the gratifying outcome of pregnancy, i.e., the birth of a healthy

and viable child (19–21). Poor second and third trimester fetal

growth has been associated with increased risks of PTB, LBW,

and long-term adverse health outcomes (22–24). Normal fetal

growth depends on genetic background, endocrine milieu, and

the appropriate supply of oxygen and nutrients (25). However,

few studies have investigated the influence of maternal dietary

patterns during pregnancy on fetus intrauterine development.

Therefore, in the present cohort study of 1,936 mother-

infant pairs, we described maternal dietary patterns in mid- to

late-pregnancy, and prospectively investigated the associations

between maternal dietary patterns and intrauterine growth

parameters of fetus.

Materials and methods

Study population and design

Our research was based on the Jiangsu Birth Cohort (JBC)

study, a prospective and longitudinal study that recruited

women who are going to receive assisted reproductive

technology (ART) treatment and those who are in their first

trimester of spontaneous pregnancy (SP) at the Women’s

Hospital of Nanjing Medical University or Suzhou Affiliated

Hospital of Nanjing Medical University. Detailed cohort design

and data collection have been described previously (26). The

study was approved by the Human Research Ethics Committee

of NanjingMedical University. The ethical approval code for the

project is NJMUIRB (2017) 002. In addition, written informed

consent was obtained from all participants.

Since April 2017, the cohort collected maternal

dietary information with semi-quantitative food frequency

questionnaire (FFQ, including 25-items) in the first [10–14

gestational week (GW)], second (22–26 GW), and third

trimester (30–34 GW). From the second trimester of pregnancy

to delivery, pregnant women undergo multiple routine

ultrasound examinations in the hospital. Based on the

distribution of ultrasound examinations time, we chose 3-time

points (22–24, 30–32, and 34–36 GW) to achieve as much

ultrasound data as possible.

By March 2020, a total of 2,667 single live births were

born. Among them, dietary information of 2,183 mothers

(81.85%) was collected in the second and third trimester. In

addition, 2 mothers with implausible dietary information [total

energy intake (TEI) <500 or >5,000 kcal/d] were excluded.

Among 2,181 mother-infant pairs with maternal dietary data,

1,936 (88.77%) mothers had at least one B-ultrasound in the
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designated GWs. The flow chart of participants enrolled in the

present study was shown in Supplementary Figure 1.

Assessment of dietary intakes during
pregnancy

Dietary intakes during pregnancy were assessed by semi-

quantitative FFQ (Supplementary Table 1), which was evaluated

by well-trained investigators with the help of food models and

food atlas (27). The responses were reviewed and corrected

in time to ensure the completeness and validity of the

questionnaires. The daily energy intakes were then calculated

according to the Chinese Food Composition Table (28).

Before the analysis, we aggregated the 25 foods into 16 food

groups to reduce complexity; these food groups were created

based on the expected similar nutrient composition (28). The

intake of each food was adjusted for TEI in the second (mean

TEI = 2133.1 kcal/d), and third trimester (mean TEI = 2159.0

kcal/d) using the residual method after log-transformation

(29). The validity of the FFQ was verified before the formal

investigation. One hundred and forty-one pregnant women

in middle pregnancy completed both the FFQ and the 3-day

24-h dietary recall (24HR), detailed data have been published

elsewhere (30).

Assessment of outcome

The examination was completed by a professional

ultrasound technician performing three ultrasound scans to

obtain fetal intrauterine growth data and take the average

value. Ultrasound parameters of fetal growth (millimeters)

included head circumference (HC), femur length (FL), and

abdominal circumference (AC). In addition, gestational age

(GA) was calculated according to the interval between the

self-reported date of last menstrual period and the date of the

B-ultrasound examination. Additionally, estimated fetal weight

(EFW), GA adjusted Z-scores and percentiles for fetal growth

parameters were calculated according to the International

Fetal and Newborn Growth Consortium for the 21st Century

(INTER-GROWTH-21st) standards (31, 32). We chose the 10th

centile as the cutoff of SGA and the 90th percentile as the large

for GA (LGA) cutoff for each parameter since the 10th centile

for AC or EFW was used to qualify a fetus as SGA, and the 90th

percentile was used to qualify the fetus as LGA in a consensus

definition published by an international committee (33).

Assessment of covariates

Data on mothers (demographic, lifestyle, and clinical

factors) and infants (PTB, LBW, sex) were derived from

structured questionnaires and electronic medical records

(EMR). Questionnaires were collected by face-to-face interviews

or telephone. Covariates included mode of conception (SP /

ARTP), area of residence (urban, township, rural), household

income (<50,000 CNY or 50,000–100,000 CNY or 100,000–

200,000 CNY or>200,000 CNY), maternal education (<12/≥12

years), maternal age at conception, maternal pre-pregnancy

BMI, parity (primipara / multipara), chronic diabetes (yes/no),

gestational diabetes mellitus (GDM, yes / no), TEI, infant sex

(male / female). In addition, the dietary patterns are mutually

corrected. Notably, only two women reported smoking and eight

women reported drinking during pregnancy in this study. Thus,

smoking and drinking were not included as covariates.

Statistical methods

We used exploratory factor analysis to characterize maternal

dietary patterns during middle and late pregnancy (34). Dietary

patterns were derived by principal component extraction with

the use of varimax rotation on the 16 food groups (35). To

determine the number of factors to retain, we considered

eigenvalues >1 (36), a breakpoint in the Scree test (37) and

the interpretability of the factors (38). The dietary patterns

identified in the two trimesters were similar in relation to the

number of factors identified and the foods that loaded highly

(Supplementary Table 2). Therefore, factor analysis was rerun on

the geometric mean of food intake during the two pregnancy

periods to represent maternal habitual dietary patterns. For

each food group, loadings for factors represented the correlation

between the food groups and a factor. The dietary patterns were

labeled according to food groups that made major contributions

to the factor (absolute value of factor loading >0.50 and in the

top three of the food groups). Factor scores for each dietary

pattern were calculated for each subject with summing the intake

of food groups weighted by their factor loadings. In addition,

factor loadings are correlation coefficients between each food

group and the dietary pattern; hence, higher dietary pattern

scores indicate greater adherence to the derived pattern (39).

Baseline characteristics were described as percentages or

mean (SD). According to the tertiles of dietary pattern

scores, all pregnant women were divided into three groups

to compare the distribution of macronutrient intake. We

performed linear trends across tertiles using linear regression

(median intake for each tertile as variables included in the

model). The intraclass correlation coefficient (ICC) and 95%

CI were calculated by dietary pattern scores to assess the

temporal variability of dietary patterns during pregnancy.

The linear mixed-effects model (LMM) was used to examine

the associations between maternal dietary pattern scores in

the two trimesters and longitudinal indicators of intrauterine

development (40). Analyses were adjusted for mode of

conception (SP / ARTP), area of residence (urban, township,
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TABLE 1 Characteristics of baseline demographic and lifestyle factors of 1936 mother-infant pairs.

Mothers’ characteristics Overall Offspring’s

characteristics

Overall

Mode of conception GW at delivery 39.43 (1.35)

SP 1,049 (54.2) PTB* 81 (4.2)

ARTP 887 (45.8) Birth weight (g) 3384.35 (443.31)

Area of residence LBW (<2,500 g) 53 (2.7)

Urban 1,530 (79.3)

Township 290 (15.0) Male birth 1,014 (52.4)

Rural 110 (5.7)

Household income (CNY) HC (cm)

<50,000 69 (3.6) 22–24 GW 21.39 (0.98)

50,000–100,000 435 (22.6) 30–32 GW 28.90 (1.15)

100,000–200,000 794 (41.2) 34–36 GW 31.51 (1.14)

>200,000 629 (32.6)

Maternal education (years) < 12 355 (18.4) AC (cm)

Maternal pre-pregnancy BMI (kg/m2) 22–24 GW 19.26 (1.17)

<18.5 230 (12.0) 30–32 GW 27.69 (1.36)

18.5–23.9 1,311 (68.3) 34–36 GW 31.60 (1.51)

24–27.9 306 (15.9)

≥28 72 (3.8) FL (cm)

Maternal age at conception (years) ≥ 35 246 (12.7) 22–24 GW 4.16 (0.25)

Primipara 1,531 (79.1) 30–32 GW 5.97 (0.26)

Chronic diabetes 14 (0.7) 34–36 GW 6.72 (0.27)

GDM 517 (26.7)

Anemia 188 (9.71) EFW (g)

Maternal TEI (100 kcal/d) 22–24 GW 668.58 (77.21)

Second trimester 21.33 (5.33) 30–32 GW 1742.28 (240.95)

Third trimester 21.59 (5.36) 34–36 GW 2574.98 (335.38)

*Gestational age (GA) < 37 GW.

SP, spontaneous pregnancy; ARTP, assisted reproductive technology pregnancy; GDM, gestational diabetes mellitus; TEI, total energy intake; GW, gestational week; PTB, preterm birth;

LBW, low birth weight; HC, head circumference; AC, abdominal circumference; FL, femur length; EFW, estimated fetal weight.

rural), household income (<50,000 CNY or 50,000–100,000

CNY or 100,000–200,000 CNY or >200,000 CNY), maternal

education (<12/≥12 years), maternal age at conception (year),

maternal pre-pregnancy BMI (continuous), parity (primipara

/ multipara), chronic diabetes (yes/no), GDM (yes/no), TEI,

infant sex (male / female). In addition, the dietary patterns

were mutually corrected. False discovery rate (FDR) (41) was

utilized to correct for multiple tests, and FDR-p < 0.05

was set as the significance threshold. To avoid the potential

confounding effects of maternal diabetes and anemia, we

excluded mothers with such conditions in the sensitivity

analyses. Maternal diabetes included preexistent diabetes and

GDM (42), and anemia was defined as hemoglobin levels

<110 g/L (43). In addition, a stratified analysis was performed

according to the mode of conception, and heterogeneity was

tested. All analyses were conducted in R software (Version

3.6.1, R Foundation for Statistic Computing, Vienna, Austria.

URL https://www.R-project.org/).

Results

Basic characteristics

Demographic characteristics of the 1,936 enrolled mother-

infant pairs were summarized in Table 1. The JBC study was

originally designed to investigate the heterogeneity of assisted

vs. natural pregnancy in perinatal outcomes and child health,

with 45.8% (n = 887) of mothers conceived after assisted

reproduction in this analysis. The majority of women live

in cities (79.3%) and a medium socioeconomic status level

household (63.8%). Fewer than one in five women have

<12 years of education (18.4%). Approximately two-thirds

(n= 1,311) of women within a normal weight before pregnancy

and 246 (12.7%) women were over 35 years old at conception.

In addition, 1,531 (79.1%) mothers were primiparous. And the

number of mother with GDM and anemia were 517 (26.7%)

and 188 (9.71%), respectively. Baseline information on offspring
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FIGURE 1

Factor loadings of averaged* food groups in middle and late pregnancy for five dietary patterns. *The geometric mean of food groups in two

trimesters of pregnancy.

indicated that the incidence of PTB (GA < 37 GW) and LBW

(birth weight < 2,500 g) was 4.2% (n = 81) and 2.7% (n = 53),

respectively. The proportion of male infants (52.4%) was slightly

higher than that of female infants.

Maternal dietary patterns

Five dietary patterns were identified by using factor analysis

(Figure 1), which accounted for 46.4% of the total changes

in dietary intake. The “Vegetables and fish” pattern was

characterized by higher intakes of dietary fiber, minerals, and

high-quality protein, explaining 10.2% of the variation in the

dietary data. The “Animal internal organs, thallophyte and

shellfish” pattern, which explained 10.0% of the variation, is rich

in micronutrients, cholesterol and animal protein. In addition,

“Fruits and refined grains” pattern, “Snack and less eggs” pattern,

and “Meat and less nuts” pattern explained 9.1, 8.1, and 8.0%

of the variation, respectively. In the evaluation of temporal

variability of diets across pregnancy, all dietary patterns showed

high consistency (ICC > 0.40) from mid- to late-gestation in

our study population (Supplementary Table 3), especially the

“Vegetables and fish” pattern (ICC = 0.631). Macronutrient

intakes of 1,936 mothers were described according to tertiles

of dietary pattern scores (Supplementary Table 4). Compared

to women in the lowest tertile of the “Vegetables and fish”

pattern, women in the highest tertile had higher intakes

of protein (second trimester: 18.77% compared with 16.15%

energy; third trimester: 18.90% compared with 16.57% energy)

and dietary fiber (second trimester: 7.29 g compared with

6.51 g/1,000 kcal; third trimester: 7.34 g compared with

6.25 g/1,000 kcal). We observed that women with a greater

adherence to the “Animal internal organs, thallophytic and

shellfish” pattern or “Meat and less nuts” pattern (third tertile)

had a higher mean intake of cholesterol. Women in the

highest tertile of “Snack and less eggs” pattern score had

the lowest cholesterol intake than all other tertiles of dietary
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TABLE 2 Adjusted associations of maternal dietary patterns in the second and third trimester of pregnancy with fetal growth indicators.

Dietary patterns
HC Z-score AC Z-score FL Z-score EFW Z-score

Beta (95% CI) FDR-p Beta (95% CI) FDR-p Beta (95% CI) FDR-p Beta (95% CI) FDR-p

Second trimester

Vegetables and fish

−0.09 (−0.12, −0.06) <0.001 0.004 (−0.02, 0.03) 0.959 −0.001 (−0.03, 0.03) 0.998 −0.02 (−0.05, 0.01) 0.332

Animal internal organs,

thallophyte and shellfish

0.04 (0.02, 0.06) 0.002 0.01 (−0.01, 0.03) 0.523 −0.001 (−0.02, 0.02) 0.998 0.02 (−0.001, 0.04) 0.181

Fruits and refined grains −0.01 (−0.04, 0.02) 0.748 0.01 (−0.01, 0.04) 0.613 −0.01 (−0.03, 0.02) 0.898 0.01 (−0.02, 0.03) 0.851

Snack and less eggs −0.05 (−0.08, −0.02) 0.002 −0.01 (−0.03, 0.02) 0.748 −0.01 (−0.04, 0.02) 0.650 −0.02 (−0.05, 0.01) 0.291

Meat and less nuts 0.03 (0.01, 0.06) 0.146 −0.01 (−0.04, 0.01) 0.542 0.01 (−0.01, 0.04) 0.638 −0.005 (−0.03, 0.02) 0.922

Third trimester

Vegetables and fish

−0.05 (−0.09, −0.02) 0.009 0.01 (−0.02, 0.04) 0.803 0.01 (−0.03, 0.04) 0.896 −0.004 (−0.03, 0.02) 0.896

Animal internal organs,

thallophyte and shellfish

0.01 (−0.01, 0.04) 0.615 −0.01 (−0.03, 0.01) 0.700 −0.01 (−0.03, 0.01) 0.700 −0.005 (−0.03, 0.02) 0.876

Fruits and refined grains −0.03 (−0.06, 0.01) 0.219 0.002 (−0.02, 0.03) 0.963 0.001 (−0.03, 0.03) 0.963 −0.005 (−0.03, 0.02) 0.896

Snack and less eggs −0.04 (−0.07,−0.01) 0.133 0.005 (−0.02, 0.03) 0.896 −0.03 (−0.06, 0.01) 0.349 −0.005 (−0.03, 0.02) 0.896

Meat and less nuts 0.04 (0.02, 0.07) 0.013 −0.001 (−0.03, 0.02) 0.963 0.03 (0.01, 0.05) 0.165 0.01 (−0.01, 0.03) 0.751

Analyses were adjusted for mode of conception, area of residence, household income, maternal education, maternal age at conception, maternal pre-pregnancy BMI, parity, chronic

diabetes, GDM, TEI, and infant sex. In addition, the dietary patterns were adjusted for each other.

HC, head circumference; AC, abdominal circumference; FL, femur length; EFW, estimated fetal weight; FDR, false discovery rate; TEI, total energy intake; GDM, gestational

diabetes mellitus.

Bold values means a statistically significant difference in results.

patterns. In addition, protein intake declined along with the

increased score of “Snack and less eggs” pattern (p for trend

< 0.001).

Maternal dietary patterns and fetal
growth indicators

Associations of maternal dietary patterns in the second

and third trimester with fetal growth index were shown in

Table 2. In the second trimester, maternal “Vegetables and fish”

(β = −0.09, 95% CI −0.12, −0.06) and “Snack and less eggs”

(β = −0.05, 95% CI −0.08, −0.02) pattern were associated

with decreased fetal HC Z-score from mid-to late-gestation. On

the contrary, each score increases in “Animal internal organs,

thallophyte and shellfish” pattern was associated with 0.04 (0.02,

0.06) in Z-scores of fetal HC. We then investigated maternal

dietary patterns in the third trimester in relation to intrauterine

growth parameters in late pregnancy. Consistently, per score

increase in “Vegetables and fish” pattern in the third trimester

was inversely associated with the Z-scores of HC (β = −0.05,

95% CI −0.09, −0.02) in late pregnancy, while “Meat and less

nuts” pattern was positively correlated with the Z-scores of

HC (β = 0.04, 95% CI 0.02, 0.07) were positively correlated

with this pattern score. However, no correlation was observed

between maternal dietary patterns and AC, FL, and EFW. In

addition, we investigated maternal dietary patterns in relation

to offspring birth weight after further adjusting for GW at

delivery (Supplementary Table 5). No significant association was

observed between maternal dietary patterns during pregnancy

and offspring birth weight. We further carried out sensitivity

analyses by excluding women who were complicated with

chronic diabetes or GDM (Supplementary Table 6), as well as

women who were diagnosed with anemia during pregnancy

(Supplementary Table 7), and the main results remained stable.

In addition, we conducted stratified analyses by mode of

conception (Supplementary Table 8). Though some associations

were not statistically significant when splitting the study

population, the main results were consistent in both groups and

no heterogeneity was observed.

As these dietary patterns were significantly associated

with fetal HC following adjustment for covariates,

Supplementary Table 9 illustrates the associations of fetal

HC with intakes of food groups. After adjusting for covariates,

the effects of food intake on fetal HC remained largely

consistent with the dietary patterns it constituted, although not

all statistically significant.

Adherence to the same dietary pattern in
both trimesters and fetal HC

To assess the effect of adherence to the same dietary pattern

from middle to late pregnancy and fetal HC, we categorized

participants into tertiles according to their scores on the dietary

patterns in both second and third trimester (Table 3). As

compared to the fetus whose mothers at the lowest tertile of

the score on “Vegetables and fish” pattern in both trimesters,
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TABLE 3 Adjusted associations of tertiles of dietary patterns in the

second and third trimester with fetal HC Z-score.

Dietary patterns N
HC Z-score

Beta (95% CI) FDR-p

Vegetables and fish

Lowest tertile in both trimesters

343 Ref

Highest tertile in both trimesters 368 −0.28 (−0.43, −0.14) 0.001

Animal internal organs,

thallophyte and shellfish

Lowest tertile in both trimesters

322 Ref

Highest tertile in both trimesters 349 0.08 (−0.06, 0.22) 0.326

Fruits and refined grains

Lowest tertile in both trimesters

304 Ref

Highest tertile in both trimesters 311 −0.01 (−0.16, 0.15) 0.926

Snack and less eggs

Lowest tertile in both trimesters

335 Ref

Highest tertile in both trimesters 350 −0.19 (−0.33, −0.05) 0.016

Meat and less nuts

Lowest tertile in both trimesters

299 Ref

Highest tertile in both trimesters 316 0.18 (0.04, 0.33) 0.019

Analyses were adjusted for mode of conception, area of residence, household income,

maternal education, maternal age at conception, maternal pre-pregnancy BMI, parity,

chronic diabetes, GDM, TEI, and infant sex. In addition, the dietary patterns were

adjusted for each other. Ref, reference group, which is the group of mothers with the

lowest tertile of dietary pattern scores in both trimesters.

HC, head circumference; FDR, false discovery rate; TEI, total energy intake; GDM,

gestational diabetes mellitus.

Bold values means a statistically significant difference in results.

those whose mothers at the highest tertile demonstrated 0.28

decreased Z-score in fetal HC (β = −0.28, 95% CI −0.43,

−0.14). Similar associations exist between “Snack and less eggs”

pattern and HC Z-score. Additionally, HC Z-score of the fetus

in the highest tertile of the mother’s “Meat and less nuts” pattern

increased by 0.18 (0.04, 0.33) as compared with the lowest tertile.

We observed 10.66% of HC in late pregnancy below the 10th

centile and 7.59% above the 90th centile with INTERGROWTH-

21st. Further analyses investigating associations of dietary

patterns with small and large HC for GA were carried out. As

compared to the fetus whose mothers at the lowest tertile of

“Snack and less eggs” pattern in both trimesters, those whose

mothers at the highest tertile in both trimesters demonstrated

1.08 fold (RR = 2.10, 95% CI 1.34–3.28) increased risk of

small HC for GA after adjusting for potential confounders

(Table 4). No significant associations were observed between

dietary patterns and the risk of large HC for GA.

Discussion

The present study prospectively investigated the associations

between maternal dietary patterns across the second to third

trimester and intrauterine growth parameters in middle and late

pregnancy in a Chinese birth cohort study. Notably, our study

demonstrated the positive associations of maternal “Animal

internal organs, thallophyte and shellfish” and “Meat and less

nuts” patterns with fetal HC; and the negative correlation

between “Vegetables and fish” and “Snack and less eggs” pat-

terns and fetal HC. Further, these effects persisted after we

excluded mothers with diabetes or anemia. No heterogeneity

was observed in this association between groups of different

conception methods, which suggested the effects of dietary

patterns on fetal growth were not significantly different among

ART and SP populations. We cannot exclude the possibility of

the relatively modest sample size in the stratification analyses

causing underestimation of the significance of true associations

due to statistical power (44). In addition, the effects were more

significant if one adhered to the same pattern across the second

and third trimester. It should also be noted that high adherence

to the “Snack and less eggs” pattern increases the risk of small

HC for GA. However, no correlation was observed between

maternal dietary patterns and AC, FL, EFW and birth weight.

“Animal internal organs, thallophyte and shellfish” and

“Meat and less nuts” patterns are rich inmeat andmeat products,

which contribute significantly to the intake of cholesterol,

protein and essential minerals such as iron and zinc (45).

Cholesterol plays a pivotal role in many aspects of brain

development. The brain has the highest cholesterol content

compared with other organs (25% of total body cholesterol),

while representing only about 5% of total body weight (46).

Analysis of 5,702 pregnant women in the Generation R Study

showed that lipid levels in the first trimester were positively

associated with neonatal HC (47). Additionally, zinc has

multiple roles in brain growth, differentiation, and repair (48).

One prospective study of 7,644 pregnant women in Foshan,

China also showed that maternal serum zinc levels at 24 GW

were positively correlated with neonatal HC (49). Notably,

the level of zinc in shellfish is much higher than that in fish

and shrimp, which may lead to their different effects on HC

(28). Observational study including 538 children aged 3–4 in

rural Nepal showed a positive correlation between animal food

intake and HC (50). Clinical intervention trial of 88 infants

further demonstrated that the increase in HC from 7 to 12

months for supplemented with meat group was higher than

cereal-complementary group, and protein and zinc intakes were

predictors of head growth (51). One observational study assessed

offspring’s HC among vegetarian and omnivorous pregnant

women and reported that offspring’s HC of vegetarian mothers

was smaller than that of omnivorous mothers (52), which also

suggested the potential effects of animal protein on fetal HC.

Thallophyte and shellfish are not only rich in protein and

micronutrients, but also a quality source of iodine (53, 54).

Iodine is an essential micronutrient and a component of the

thyroid hormones, which regulate growth and development

from conception to adulthood (55, 56). A study conducted in

a pregnancy cohort of 2087 women found that high urinary
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TABLE 4 Adjusted associations of tertiles of dietary patterns in the second and third trimester with small and large HC for GA of fetus.

Dietary patterns N
Small HC for GA Large HC for GA

RR (95% CI) FDR-p RR (95% CI) FDR-p

Vegetables and fish

Lowest tertile in both trimesters 343 Ref Ref

Highest tertile in both trimesters 368 1.40 (0.93, 2.10) 0.556 0.44 (0.25, 0.80) 0.061

Animal internal organs, thallophyte and shellfish

Lowest tertile in both trimesters 322 Ref Ref

Highest tertile in both trimesters 349 0.84 (0.56, 1.26) 0.900 0.86 (0.52, 1.43) 0.939

Fruits and refined grains

Lowest tertile in both trimesters 304 Ref Ref

Highest tertile in both trimesters 311 0.83 (0.52, 1.33) 0.900 0.78 (0.44, 1.38) 0.900

Snack and less eggs

Lowest tertile in both trimesters 335 Ref Ref

Highest tertile in both trimesters 350 2.10 (1.34, 3.28) 0.013 1.03 (0.63, 1.69) 0.979

Meat and less nuts

Lowest tertile in both trimesters 299 Ref Ref

Highest tertile in both trimesters 316 0.60 (0.39, 0.93) 0.182 1.27 (0.71, 2.25) 0.900

Analyses were adjusted for mode of conception, area of residence, household income, maternal education, maternal age at conception, maternal pre-pregnancy BMI, parity, chronic

diabetes, GDM, TEI, and infant sex. In addition, the dietary patterns were adjusted for each other. Ref, reference group, which is the group of mothers with the lowest tertile of dietary

pattern scores in both trimesters.

HC, head circumference; GA, gestational age; FDR, false discovery rate; TEI, total energy intake; GDM, gestational diabetes mellitus.

Bold values means a statistically significant difference in results.

iodine concentration in the second trimester was associated with

higher HC of fetal during pregnancy (57). Our findings are in

line with the above studies, and the adherence to “Meat and less

nuts” pattern across both trimesters demonstrated more distinct

effects on increased fetal HC.

Moreover, we found that maternal “Vegetables and fish” and

“Snack and less eggs” patterns had a lowering effect on the HC

of fetus, the latter also increasing the risk of small HC for GA.

Fiber-rich in “Vegetables and fish” pattern increases post-meal

satiety and reduces food intake behavior (58). Fish and shrimp

were not only rich in nutrients such as marine n-3 fatty acids,

vitamin D, and selenium, but can also be a source of pollutants

such as methylmercury, arsenic and polychlorinated biphenyls

(59, 60). Study based on data from the Child Health and

Development Study in the San Francisco Bay Area found that

high polychlorinated biphenyl exposure in utero was associated

with reduced HC at birth (61). As reported by the China

Fisheries Statistical Yearbook (62), lean fish species are common

food fish in Jiangsu Province, China (62). One prospective

cohort study in Italy of 114 mother-infant pairs reported a

negative association between maternal consumption of lean fish

during pregnancy and neonatal HC (63). Notably, thallophyte

and shellfish may contain mercury and persistent pollutants, but

meanwhile their nutrient substances such as high levels of zinc

and iodine are beneficial for fetal growth (28, 53, 54). The “Snack

and less eggs” pattern is an unhealthy diet characterized by low

cholesterol and protein. Results from a cohort study of 1,151

women in the southern US demonstrated that adherence to a

dietary pattern characterized by fast food, snacks, sweets, and

soft drinks during pregnancy reduced offspring head neonatal

HC (64). In addition, snack food products are often nutrient-

poor, high in salt or sugar, and not recommended for pregnant

women (65). Similar to cholesterol (46), protein plays an

indispensable role in the development of fetal brain anatomy and

physiology (66). A randomized controlled parenteral nutrition

study in very early preterm infants also showed that post-

natal high-protein diet could improve offspring’s HC at 28

days (67).

It was worth noting that our results suggested effects of

maternal dietary patterns with growth index in fetal being

observed only associated with HC, but not with AC, FL, EFW,

and birth weight. Head growth is an independent process and

proceeds independently of skeletal growth and fat acquisition

(68). FL, AC and body weight are not effective indicators for

evaluating head development. Randomized controlled trial of

196 women showed that dietary and lifestyle interventions

during pregnancy were associated with offspring’s HC but not

offspring’s weight, and the association persisted until offspring 1-

year-old (69). A pilot trial of portable ultrasoundwith 47 second-

trimester women in Ecuador found a significant association

between maternal diet and fetal HC, while EFWwas not affected

by maternal diet (70). In addition, two birth cohort studies

in the U.S. reported that dietary pattern in the mid- to late-

trimester has no effect on the birth length or weight of offspring
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(64, 71), but were associated with HC at birth (64). As far as

AC was concerned, the dietary pattern in the third trimester of

pregnancy has no effect on the AC of the offspring even up to 54

months of age (72).

A key strength of our study is the longitudinal evaluation

of embryonic growth, providing data on fetal growth across

pregnancy. Further, prospective and longitudinal data collection

allowed examining the temporal associations of maternal dietary

patterns and subsequent fetal development. In addition, the

use of dietary patterns, which provides an insight into the

overall quality of the diet, a feature single-food or nutrient

studies cannot provide (12). Finally, a wide range of potential

confounding factors was evaluated and controlled in the

analysis. Some potential limitations of the research merit

discussion. First, the limited items in the FFQ and is prone to be

biased by poor participant recall of dietary intake. The FFQ used

in this study was scientifically designed and its implementation

process was strictly controlled. Moreover, we have confirmed

the high validity of the questionnaire in a pre-survey. Second,

we did not include maternal B-ultrasound data in the first

tri-mester in the current study as the B-ultrasound before 14

GW only provides the crown-rump length (CRL) to assess the

GA and fetal size. Additionally, meta-analysis also showed that

ultrasound data in the middle and late trimesters rather than

the early trimester have predictive value for birth outcomes

(73). Third, we did not collect HC, AC and FL at birth, which

hindered the evaluation of accuracy of intrauterine ultrasound

parameters. However, the EFW and birth weight showed well

consistency (data not shown), which may reflect the accuracy of

B-ultrasound data to some extent. Finally, despite the strengths

of our study, its findings should be interpreted with some

caution. Our survey was conducted in China, where food culture

is significantly different from other countries, especiallyWestern

countries. Therefore, the generalization of our findings to other

countries remains to be established.

Conclusion

In the prospective and longitudinal JBC study, our

results suggested the effects of maternal dietary patterns on

fetal growth, particularly HC. These findings highlighted the

adverse impact of unhealthy dietary pattern during pregnancy

on fetal growth, might provide evidence for strategies to

prevent intrauterine dysplasia and dietary guidelines during

pregnancy. This study also validates the practicality of

“dietary pattern” for research and health guidance, which

takes into account the correlation structure of the food

groups and does not focus on selected aspects of a diet.

The observed associations between maternal dietary patterns

and fetal growth highlighted research on maternal nutrition

evaluated by “dietary pattern” in the field of intrauterine

growth and even post-natal health. Furthermore, our findings

may have important clinical and public health implications.

Considering the high prevalence of fetal growth restriction

and its potential negative impact on lifelong health, improving

maternal diet is of utmost importance. Therefore, awareness

of the importance of a healthy dietary pattern should be

raised among pregnant women. Future prospective studies with

longer follow-up are warranted to determine whether maternal

dietary patterns may impact longer-term child growth beyond

intrauterine development.
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