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Cellulose is the first rich biological polysaccharide in nature and has many

excellent properties, so it is being developed as a variety of drug carriers.

Moreover, applications in drug delivery, biosensors/bioanalysis, immobilization

of enzymes and cells, stem cell therapy, and skin tissue repair are also

highlighted by many studies. Coronary heart disease, as one of the diseases

with the highest incidence, is urgent to enhance the survival outcome and

life quality of patients with coronary heart disease, whereas the mechanism

of cellulose’s interaction with the human body remains unclear. However,

the mechanism of cellulose’s interaction with the human body remains

unclear. We obtained 92 genes associated with cellulose and coronary heart

disease through the intersection of di�erent databases. Ten key genes were

identified: HRAS, STAT3, HSP90AA1, FGF2, VEGFA, CXCR4, TERT, IL2, BCL2L1,

and CDK1. Molecular docking of the 10 genes revealed their association with

their respective receptors. Analysis by KEGG and GO has discovered that

these related targets were more enriched in metabolic- and activation-related

functions, which further confirmed that cellulose polysaccharides can also

interact with cardiovascular diseases asmolecules. In the end, we screened out

six key genes that were more associated with the prognosis (CDK1, HSP90AA1,

CXCR4, IL2, VEGFA, and TERT) and constructed a signature, which has a good

predictive e�ect and has significant statistical significance. Our study is the first

study to explore the interaction targets of cellulose and CHD and to construct

a prognostic model. Our findings provide insights for future molecular design,

drug development, and clinical trials.
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Introduction

Coronary heart disease refers to the accumulation of some

lipid substances similar to atherosclerosis in the intima of the

artery and becomes white plaques, which gradually increase to

cause arterial stenosis, blocked blood flow, resulting in heart

ischemia, and angina pectoris (1, 2). With the improvement of

people’s living standard, coronary heart disease has growingly

become a global health problem and the main cause of global

morbidity. Many risk factors contribute to coronary heart

disease, including hypertension, hyperlipidemia, aging, and

diabetes (3, 4). Coronary heart disease can be treated through

drug treatment, surgical treatment, PCI treatment, and so on

Stewart et al. (5). The prognosis varies with the site and severity

of the lesion, the rate of progression of vascular stenosis, the

damage of the affected organs, and the presence or absence

of complications.

Polysaccharides, being formed by glycosidic bonds of long

carbohydrate molecules with monosaccharide units, (6, 7)

exist widely in animals, plants, and microorganisms and are

easy to obtain and intently relative to tremendous kinds of

physiological functions. It is one of the four fundamental

substances that constitute life (8, 9). Studies have shown

that polysaccharides have anti-virus, anti-tumor, anti-oxidation,

immune regulation, and other biological activities. (10–12).

Previous researches have demonstrated that polysaccharides

have a significant efficacy on the treatment of coronary heart

disease (6). Especially in Chinese traditional medicine, cellulose

polysaccharides are very rich, and many of them are used

in the treatment of coronary heart disease. Bacterial cellulose

(BC), one of the polysaccharides, has attracted great interest

in medicine, pharmacy, and other related fields due to its

inherent physical, mechanical, and biological properties (13). Its

structural characteristics provide an ideal environment for the

development of composite materials (14, 15). Compared with

plant cellulose, bacterial cellulose (BC) has the characteristics of

high purity, high water retention, and biocompatibility (16, 17).

Cellulose nanocrystals, a nanostructure of cellulose material as

a new research direction of biomedical resources, with excellent

performance results, such as sustainability, biodegradability, and

biocompatibility, have become a new field of polysaccharide

treatment in some diseases (18–20). At present, studies have

shown that nanocellulose can be used as a tumor drug carrier

and can play a role in the treatment of tumors. However, its

therapeutic effect on coronary heart disease is still unclear.

At the macrolevel, the intake of cellulose can regulate the

intestinal microbiota of the human body (21). The intestinal

flora, through its metabolites, participates in mediating the

metabolism of blood cholesterol or uric acid, even taking part

in oxidative stress, inflammatory response, and other basic

metabolic processes, which may possibly lead to the progress of

atherosclerosis and coronary heart disease. Moreover, the intake

of cellulose helps to regulate the level of blood lipid and thusmay

play a role in the treatment of coronary heart disease. Cellulose

is the richest polysaccharides on earth and has many excellent

characteristics, including low expense, brilliant biodegradability,

and good biocompatibility (22). This makes cellulose a brilliant

material that can be potentially used for creating nano-drug

delivery systems (nano-DDs). A study published by Lin, Dai

et al. introduces and discusses some significant advances in

the formulation of cellulose-based prodrugs and nanoparticles

(23–26). Microscopically, nanocellulose has high medical value

and can be used as the management direction of coronary

heart disease in future (27). Nanocellulose is an exogenous

substance in the human body, and its exact toxicity and how

it interacts with human tissues are not clear yet. Therefore, it

should be studied and examined in detail before any biomedical

application that requires direct contact with human cells.

Nowadays, nanomaterials have gradually become an important

part of new drugs and medical materials, and nanocellulose

has the most promising application prospects in biomedical

fields such as regenerative medicine, tissue engineering, and

controlled drug delivery. Nanocellulose is considered to be

a biocompatible nanomaterial, which is relatively safe for

biomedical applications.

Therefore, it is very important to find relevant targets and

molecular pathways as the basis for research. We hypothesized

that pathways related to cell membrane signaling, cell stability,

and drug response were most affected. Studies have reported

that immune responses are closely related (28). However, more

research is needed to prove this hypothesis. In this study, a series

of analyses were conducted on the data from public databases

to find the most important targets and carry out enrichment

analysis of relevant physiological processes, so as to explore the

influence of cellulose on coronary heart disease at the level of

certain molecular targets.

Materials and methods

Data collection

In the cause of finding the targets of cellulose, two

online databases for targets of medications’ searching and

screening were applied: SwissTargetPrediction (http://

www.swisstargetprediction.ch/) and Similarity ensemble

approach (SEA) search server (https://sea.bkslab.org/). For

selecting the query molecule in the online database named

SwissTargetPrediction, the standardized screening threshold of

taking the protein as target was set to be>0. In the SEA database,

we screened targets for the cellulose and recorded those with

E-values of <10–5 for cellulose-target analysis. The targets for

coronary heart disease (CHD) were obtained from the following

five databases, including DisGeNET database (https://www.

disgenet.org/), the DrugBank database (https://www.drugbank.

ca/), GeneCards database (https://www.genecards.org/),

MalaCards database (https://www.malacards.org/), and Online

Mendelian Inheritance in Man database (OMIM, https://www.
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omim.org/). Afterward, a CHD-related gene set was generated

by uniting the results from these databases.

The previously published datasets downloaded from NCBI

Gene Expression Omnibus (NCBI-GEO, https://www.ncbi.nlm.

nih.gov/geo/) database (i.e., GSE35182, GSE62867, GSE169256,

GSE186019, GSE190475, GSE194154, GSE194155, GSE194156,

and GSE198885) were screened out to onwards acquire data

of gene expression. Supported by the GEO2R (http://www.

ncbi.nlm.nih.gov/geo/geo2r/) analysis, genes that are diversely

expressed with the cutoff criteria of |Log2FC| more than one

and adjusted P-value <0.05 were selected in comparison with

normal heart tissues.

Venn diagram construction

Venn diagram was established by utilizing VENNY 2.1

(https://bioinfogp.cnb.csic.es/tools/venny/) according to the

intersection of the target genes of CHD and cellulose. Ninety-

two intersectant targets were obtained following inputting 8,051

differentially expressed genes in CHD and 146 target genes of

cellulose. The coincident target genes between both cellulose

and CHD were displayed in the overlapping domain after

amalgamation and striking out the duplicates.

Establishment of protein–protein
interaction (PPI) network

The network of PPI cellulose and CHD reclosing targets

in Venn diagram was constructed by utilizing the database

STRING (https://string-db.org/). The genes that met the

interaction grade exceeding the threshold (≥0.4) were sorted

for the generation of PPI network. The PPI network was

depicted by Cytoscape 3.8.2 software (https://cytoscape.org/),

and a highly connected sub-networks were screened out by the

Molecular Complex Detection (MCODE) plugin (version 1.5.1)

of Cytoscape with a threshold cutoff being equaled to two, cutoff

of node score being equaled to 0.2, K-core being equaled to two,

and max depth being equaled to 100.

Analysis of gene ontology (GO) and kyoto
encyclopedia of genes and genomes
(KEGG)

Enrichment analyses by GO and KEGG were performed

to pursue the biological capabilities of the overlapping target

genes by utilizing the online Metascape (http://metascape.

org/gp/index.html#/main/step1). Bioinformatics (http://www.

bioinformatics.com.cn) was used to visualize the representative

enriched terms. The results include cellular component (CC),

biological process (BP), andmolecular function (MF) discovered

by GO analysis and key signaling pathways generated by KEGG

analysis that were finally presented in bar and bubble graph.

Molecular docking analysis

Molecular docking analyses of cellulose and the major

relevant targets were performed to validate the reliability of

the prediction results. The two-dimensional (2D) structure

of cellulose was downloaded and obtained from the database

named PubChem (https://pubchem.ncbi.nlm.nih.gov/). With

the software OpenBabel 2.4.1, those data were converted to the

format of mol2. The proteins of relevant receptors encrypted by

the opted target genes were searched in the UniProt database

(http://www.uniprot.org/). In addition, 3D compositions of

the protein receptors were acquired from the Protein Data

Bank (PDB) database (https://www.rcsb.org/). PyMol software

and AutoDockTools 1.5.6 software were used to perform

the dehydration and hydrogenation process for the protein

molecules, respectively. Finally, cellulose and protein receptors

were docked by utilizing AutoDock Vina software.

Prognosis analysis

Six genes were normalized by using Log2 transformation.

We conducted minimum absolute shrinkage, LASSO regression,

and multivariate Cox regression analysis with R package

“glmnet” in sequence. A signature based on these six genes was

conducted. With the usage of “survival” R package, Kaplan–

Meier survival analysis evaluating the survival differences

between the high- and low-risk groups was finished. Time-

dependent receiver operating characteristic (ROC) curves were

used to evaluate the performance of genetic risk models.

Moreover, “survivalROC” R packages were used to examine the

prognosis prediction efficiency and other clinical characteristics.

An analysis named Cox regression was applied to assess the

independent prognostic value of clinical characteristics. With

the aim of estimating the likelihood of survival outcomes, a

survival map by nomogram was constructed using R package

named “rms” according to risk score and clinical features. It was

also examined by analysis of multivariate Cox regression. The

relative function of nomogram was appraised by C index, ROC,

and calibration chart.

Results

Target genes of cellulose and CHD

An overall 147 cellulose-related target genes were obtained

from SwissTargetPrediction and SEA search server after
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FIGURE 1

Exploration of CHD and cellulosic polysaccharide-related targets. (A) Venn diagram from SwissTargetPrediction and SEA database. (B) Venn

diagram from DisGeNET database, DrugBank database, GeneCards database, MalaCards database, and OMIM database. (C) Venn diagram of the

interactive targets of cellulose and CHD. (D) Network diagram of the intersectant targets.

FIGURE 2

PPI network diagram. (A) PPI network of 92 targets derived from STRING database. (B) Network diagram of 10 key targets.
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FIGURE 3

Analysis of GO and KEGG enrichment and molecular docking. (A) GO analysis of the 92 overlapping genes. (B,C) Analysis of KEGG among the 92

overlapping genes. (D) Signaling mapping of the overlapping genes. (E) Molecular docking of the 10 key targets.

removing duplication and combining the results (Figure 1A).

A total of 1,576, 52, 7,693, 32, and 1,956 targets of CHD

were collected from DisGeNET database, DrugBank database,

GeneCards database, MalaCards database, and OMIM database,

respectively, and a sum of 8,051 CHD-affiliated genes were

acquired after duplicate target elimination and the result

combination (Figure 1B). Furthermore, to reveal the interactive

targets of cellulose and CHD, a Venn diagram was established

to show the overlapped part of cellulose targets and CHD-

affiliated genes (Figure 1C) and 92 intersectant genes were finally

obtained (Figure 1D).

PPI network and highly related
subnetwork

The network of PPI derived from database named STRING

was constructed to explore the complex interactions among

these 92 intersectant targets that were considered to be the

interactive targets of cellulose and CHD. The target proteins

and the interactions of these proteins are denoted by the nodes

and edges, respectively, and the number of stria in the network

of PPI indicated the level of correlations and target ranks

(Figure 2A). Moreover, a key subnetwork composed of 10 target

genes (i.e., HRAS, STAT3, HSP90AA1, FGF2, VEGFA, CXCR4,

TERT, IL2, BCL2L1, and CDK1) was established as well by

utilizing MCODE plugin of Cytoscape (Figure 2B). We found

that these targets have a strong interaction with each other and

speculated that they may collectively play some role.

GO and KEGG enrichment analysis and
molecular docking

The aforementioned 92 overlapping genes undergone the

GO enrichment analysis, and the most significant 10 catalogs of

biological process (BP), cellular component (CC), andmolecular

function (MF) were clarified, respectively (Figure 3A). The

results of GO analysis suggested that cellulose affects CHD

through various aspects, especially response to drug (BP),

positive regulation of ERK1 and ERK2 cascade (BP), dendrite

(CC), integral component of membrane (CC), neuropeptide

binding (MF), and G-protein coupled receptor activity (MF).

KEGG enrichment analysis was used to analyze the

92 intersectant genes as well for a further investigation

of the underlying pathways of cellulose influencing CHD.

The bar and bubble chart illustrated the top 17 significant

results (Figures 3B,C), and the map showed the interaction

of neuroactive ligand–receptor (Figure 3D). KEGG analysis

indicated that the interaction among neuroactive ligand–

receptors, the pathways of calcium signaling, pathways of cAMP

signaling, pathways of cGMP-PKG signaling, and metabolism of
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TABLE 1 Results of molecular docking.

Receptor name Ligand name Scores

BCL2L1 cellulose_config_out1.pdbqt −7.3

CDK1 cellulose_config_out1.pdbqt −7.4

CXCR4 cellulose_config_out1.pdbqt −6.4

FGF2 cellulose_config_out1.pdbqt −5.6

HRAS cellulose_config_out1.pdbqt −8.5

HSP90AA1 cellulose_config_out1.pdbqt −7.2

IL2 cellulose_config_out1.pdbqt −5.6

STAT3 cellulose_config_out1.pdbqt −6.8

TERT cellulose_config_out1.pdbqt −7.0

VEGFA cellulose_config_out1.pdbqt −7.2

starch and sucrose where the 92 targets were enriched could be

the potential mechanisms of cellulose affecting CHD. Besides,

gap junction, serotonergic synapse, and galactose metabolism

may also participate in the regulation of CHD by cellulose.

The ten target gene-encoded proteins in PPI subnetwork,

including HRAS, STAT3, HSP90AA1, FGF2, VEGFA, CXCR4,

TERT, IL2, BCL2L1, and CDK1, were selected to carry out

molecular docking analyses with cellulose, respectively. The

outcomes from molecular docking demonstrated that the

cellulose has the capabilities to enter and connect the active

pocket of all selected receptors (Figure 3E). The docking score

of the 10 receptors with cellulose is shown in Table 1.

Survival analysis and construction of
prognostic model

The survival curves were established following analysis of

the data from GEO database. A total of 442 heart tissues with

high expression of six core genes and 443 with low expression

were analyzed. The CHDpatients with high expression of CDK1,

CXCR4, IL2, VEGFA, and TERT showed a significant lower

five- and ten-year survival rate, whereas the high expression

of HSP90AA1 improved the survival rate of CHD patients

(Figures 4A–F). These results indicated that CDK1, HSP90AA1,

CXCR4, IL2, VEGFA, and TERT were potential targets for CHD

intervention, and HSP90AA1 was a possible protective factor

for CHD. Furthermore, analysis of LASSO Cox regression was

performed to investigate the acquaintance among the ten core

target genes from PPI subnetwork and the survival outcomes

for CHD patients (Figures 5A,B), and six targets were sorted

to establish the signature of the prognosis. The risk score was

computed by the following formula: Risk score= (−0.3067)
∗HSP90AA1 + (0.0239) ∗FGF2 + (0.1721) ∗TERT + (0.0799)
∗IL2 + (−0.1204) ∗BCL2L1 + (0.617) ∗CDK1. According to

the distribution of risk score, the patients with CHD were

divided into high-risk groups and low-risk groups. The curve

from analyzed Kaplan–Meier survival indicated that the overall

survival probability of high-risk group was inferior to the

low-risk group, and the AUCs for 1, 3, and 5 years were

0.861, 0.939, and 0.886 in the training dataset (Figure 5C),

which were statistically significant. The expression of BCL2L1,

CDK1, HSP90AA1, IL-2, and TERT was discovered to be

significant in accordance with the survival of CHD patients

following univariate Cox regression analyses (Figure 6A). The

outcomes of multivariate Cox regression analysis demonstrated

that the CDK1, HSP90AA1, and TERT were still independent

prognostic predictors for CHD patients after correcting various

confounding factors (Figure 6B). Furthermore, to predict

1-, 3-, and 5-year survival probability of CHD patients,

a nomogram was established by utilizing TERT and the

outcomes demonstrated that the expression of TERT affects the

survival probability of CHD patients significantly (Figure 6C).

The good calibration of the model was later confirmed

by the calibration plot which displayed brilliant accordance

between the nomogram-predicted survival probability and

actual observed results (Figure 6D).

Discussion

Coronary heart disease has been recognized as one

of the dominant global causes of death. Coronary heart

disease (CHD) is a group of diseases with many forms

including myocardial infarction, angina pectoris, ischemic

cardiomyopathy, asymptomatic, and sudden cardiac death.

Constant factors (such as age and gender) and variable factors

(such as dyslipidemia, hypertension, diabetes, and smoking)

interact together and become causes of coronary heart disease

(29). At the same time, coronary heart disease will affect the

patient’s systemic multiple systems. Its influence is not limited

to the heart, but also affects lung function, skeletal muscle

function, activity ability, mental state, etc. There are many

ways to treat coronary heart disease. Drug therapy is the basis.

Nitrates have a long history as a remedy for angina (30).

However, because of its failure to reduce hard end points such as

mortality, it is only used to relieve symptoms in angina pectoris.

Calcium channel blockers are unique in alleviating coronary

artery spasm, while beta receptor blockers play an important

role in alleviating fatigue angina and reducing cardiac events

(31, 32). The role of antiplatelet agents in the prevention of

ischemic events and mortality in coronary heart disease has

been demonstrated (33). Anticoagulant and thrombolytic drugs

are also being used gradually. The lipid-regulating effects of

statins, such as endothelium protection, anticoagulation, and

anti-inflammation, have also become hot issues in this field (34,

35). Percutaneous coronary intervention is also a revolutionary

progress in the field of coronary heart disease treatment (36,

37). The research of surgical treatment of coronary heart

disease has experienced nearly 100 years of exploration and
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FIGURE 4

Di�erence of survival outcomes in CHD patients. (A) Patients with high expression of CDK1 have a lower survival rate (P < 0.0001, HR = 2.03,

95%CI: 1.55–2.67). (B) Patients with high expression of HSP90AAI have a better survival rate (P = 0.001, HR = 0.639, 95%CI:0.49–0.834). (C)

Patients with high expression of CXCR4 have a lower survival rate (P = 0.001, HR=1.6, 95%CI:1.22–2.09). (D) Patients with high expression of IL2

have a lower survival rate (P = 0.004, HR = 1.48, 95%CI:1.14–1.93). (E) Patients with high expression of VEGFA have a lower survival rate (P =

0.01, HR = 1.42, 95%CI:1.09–1.86). (F) Patients with high expression of TERT have a lower survival rate (P <0.0001, HR=2.12, 95%CI:1.61–2.78).

has put forward many different surgical methods and surgical

techniques, according to the breakthrough progress, can be

divided into three stages: surgical intervention of the body

physiological treatment of coronary heart disease, focusing

on increasing collateral circulation, and directly increasing

myocardial blood supply (38).

Polysaccharide derivatives such as cellulose derivatives have

attracted increasing attention due to their relative abundance

and ability to maintain drug release. Rossana B Simeoni

et al. explored the possibility of using bacterial cellulose (BC)

membrane patches containing co-cultured cells to limit post-

myocardial infarction pathology (39, 40). The results of the

study leaded by Sahar S Abd-Elhalem et.al. suggested that

nanofibrillation cellulose-loaded methotrexate may improve

renal function tests, markers of renal tissue inflammation,

and fibrosis (41). In addition, nanofibrillated cellulose carriers

maintain long-term slow-release of methotrexate, making it

more likely than nanosilica to play a role in further medical

applications as an effective new drug carrier with minimal

side effects on leukemia model kidney tissue (42). At present,

an increasing number of scientists focus on exploring the

functional rules of polysaccharides and their related derivatives

in the treatment of cardiovascular diseases. The development of

cellulose-based nano-DDs for intravenous or oral applications

is about to become an essential research field and lead to more

commercial standings in the market. Nanocellulose can be used

as a carrier to transport antiplatelet drugs and anticoagulant

drugs into the body and achieve the purpose of sustained

release or even selective action on the lesion site, so as

to reduce other cerebrovascular events caused by drug side

reactions. However, due to the fact that cellulose is an exogenous

substance in the human body, few studies on the mechanism of

cellulose and human body have been published, and relevant

clinical trials are even rare. Our study is the first analysis

to explore the relevant target of cellulose action in patients

with coronary heart disease through network pharmacology,

providing some molecular basis for subsequent materials

science, basic medicine, and clinical medicine researchers. We

obtained 92 genes associated with cellulose and coronary heart

disease through the intersection of different databases. Then, we

found 10 key genes through network analysis: HRAS, STAT3,

HSP90AA1, FGF2, VEGFA, CXCR4, TERT, IL2, BCL2L1, and
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FIGURE 5

E�cacy test of six-gene prognostic signature. (A,B) Analysis by LASSO Cox regression and the partial likelihood deviance of the targets. (C) The

Kaplan–Meier survival curve indicating the overall survival probability and the AUCs for 1, 3, and 5 years.

FIGURE 6

Univariate regression, multivariate regression, and nomograph. (A) Univariate Cox regression analyses of the expression of BCL2L1, CDK1,

HSP90AA1, IL-2, and TERT of CHD patients. (B) Multivariate cox regression analyses of the expression of BCL2L1, CDK1, HSP90AA1, IL-2, and

TERT of CHD patients. (C) Nomogram established by utilizing TERT. (D) Calibration plot of 1-year, 3-year, and 5-year survival.
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CDK1. Molecular docking of the 10 genes revealed their

association with the relevant receptors. Through KEGG and

GO analysis, we found that these related genes are more

enriched in metabolism- and activation-related functions, such

as calcium signaling pathway and cAMP signaling pathway.

This further confirmed that cellulose polysaccharides can also

interact with cardiovascular disease as a molecule. With the

aim of onwards exploring the impact of these key genes on

the prognosis of patients, we screened six genes that were

more correlated with the prognosis to construct a prognosis

model. Patients with high expression of CDK1 have a lower

survival rate. Patients with high expression of HSP90AAI have

a better survival rate. Patients with high expression of CXCR4

have a lower survival rate. Patients with high expression of

IL2 have a lower survival rate. Patients with high expression of

VEGFA have a lower survival rate. Patients with high expression

of TERT have a lower survival rate. According to the AUC

curve, the prognostic model had a good predictive effect and

was statistically significant.

Our study is the first study to explore the interacting

targets of cellulose and CHD with the construction of

a prognostic signature. Our findings provide insights for

future molecular design, drug development, and clinical trials.

However, our study still has limitations, for instance, we did

not conduct in vitro and in vivo experiments to verify the

capabilities of relevant targets. At present, cellulose modified

to be used in the treatment of diseases is still a long

way to go. The research on this application in medical

materials science and pharmacology is not deep enough, and

interdisciplinary research should be further proposed. More

animal studies need to be conducted to explore potential safety

and efficacy metrics. Therefore, more efforts are needed in

this field.
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