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Mapping underweight in
children using data from the five
Ethiopia Demographic and
Health Survey data conducted
between 2000 and 2019: A
geospatial analysis using the
Bayesian framework
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Chalachew Adugna Wubneh

Department of Pediatrics and Child Health Nursing, School of Nursing, College of Medicine
and Health Sciences, University of Gondar, Gondar, Ethiopia

Background and aims: The Sustainable Development Goal is targeted to
end all types of malnutrition including underweight by 2030. However, the
reduction rate is not as expected to meet the target. Thus, we aimed to
investigate the spatiotemporal distributions and drivers of underweight among
children aged below 5 years in Ethiopia.

Methods: Geostatistical analysis using the Bayesian framework was
conducted to map the spatial and Spatiotemporal distributions of
underweight. Data for the primary outcome was obtained from the
Ethiopian Demographic and Health Survey 2000-2019. Covariate data were
accessed from different credible online sources at high resolutions. Spatial
binomial regression was fitted to identify drivers of underweight using the
Bayesian approach.

Results: The overall national prevalence of underweight was 44.7, 37.7, 354,
25.5, and 23.8% in 2000, 2005, 2011, 2016, and 2019, respectively, with a
total reduction rate of 46.8%. Significant spatial clustering of underweight
was observed in Northern, Northwestern, Southeastern, Eastern borders, and
the border between Oromia and SNNPR regions. Mean annual temperature
(mean regression coefficient (8): —0.39; 95% credible interval (95% Crl): —0.63,
—0.14), altitude (B:—0.30; 95% Crl: 0.57, —0.05), population density (3:—0.03;
95% Crl: —0.03, —0.02), and distance to water bodies (B:—0.03; 95% Crl: —0.05,
—0.004) were negatively associated with being underweight. However, travel
time to the nearest cities in minutes (B: 0.09; 95% Crl: 0.03, 0.14) was positively
associated with being underweight.

Conclusion: The national prevalence of underweight is reduced slower than
expected in Ethiopia, with significant spatial variations across subnational and
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local levels. Temperature, altitude, population density, and distance to water
bodies were negatively associated with underweight, whereas travel time to
the nearest cities was positively associated with underweight in Ethiopia.
Improving child nutrition through creating awareness and providing clean
water should be strengthened.

Bayesian, children, geospatial analysis, mapping, underweight

Introduction

Healthy growth, and

function, as well as a strong immune system and neurological

appropriate organ formation,
development, are all dependent on optimal nutrition for
infants and early children (1). Weight for age is the WHO-
recommended indicator to determine whether the child
is underweight or not (2). As underweight is a composite
indicator that encompasses both stunting and wasting (3).
Underweight children are those whose weight for age measures
is less than minus two standard deviations (—2SD) from the
reference population’s median, and those who are severely
underweight are those whose measures are less than minus
three standard deviations (—3SD) (4).

Malnutrition and micronutrient deficiencies continue to be
the most serious problems among children under the age of
5 years (5). Every year, around 5.9 million children under the
age of 5 years die worldwide, with malnutrition accounting for
45% of these deaths (6). The number of people without access
to adequate calories in the world has increased since 2015 (7).
Despite ongoing efforts have been made, child malnutrition is
a major public health issue in sub-Saharan Africa, including
Ethiopia (8-10). In cognizance of this, the government of
Ethiopia has initiated the Growth and Transformation Plan
II, Second National Nutrition Program (NNP II), and Sekota
Declaration. Nonetheless, the prevalence of undernutrition is
still high (11-13). In Ethiopia, the prevalence of underweight
was 24%, according to the Ethiopian Demographic and Health
Survey (EDHS) of 2016 (14).

Underweight children have a poorer resistance to infections
and a higher risk of dying from common childhood diseases,
while those who survive are subjected to recurring illnesses
and delayed growth. Such youngsters are more likely to have a
lower IQ, which affects not just their academic success but also
their ability to work (15, 16). The effect of child malnutrition
is long-lasting and goes beyond childhood (1). Sex, residency,
birth order, diarrhea, child size, mothers” education, inadequate
dietary diversity, birth interval, and unprotected source of water
are all known factors that contribute to being underweight
(17-19).

Malnutrition reduction progress is not fast enough to
achieve internationally accepted targets, such as the Sustainable
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Development Goal (SDG), which targeted ending all types of
malnutrition by 2030 (20). The Federal Government of Ethiopia
has been working to reduce undernutrition significantly through
public education and providing nutritional supplements and
financial support to vulnerable families (21). However, the
risk factors of undernutrition are diverse and could potentially
change in space, place, and time. Understanding the cluster
variation of underweight and detecting spatial heterogeneity
at the subnational level over time is useful to identify gaps
in the performance of child nutrition improvement programs
and to come up with targeted nutritional interventions toward
population the population at risk. This leads to improving
the nutritional status of children and accelerates disease
elimination, which finally leads to a decrease in child mortality.
However, studies are limited on the spatiotemporal pattern of
childhood underweight and drivers in Ethiopia. Therefore, this
study aimed to map underweight in Ethiopia between 2000 and
2019 through geospatial analysis using the Bayesian approach.

Materials and methods

Study design and setting

A secondary analysis of the Ethiopian Demographic and
Health Surveys from 2000 to 2019 was conducted to investigate
the spatiotemporal distribution of underweight in Ethiopia.
This study was conducted in Ethiopia, which is located in
East Africa. The country has an estimated total population
of 115 million in 2020 (22) and accounts for almost 1.5% of
the global population, with a population density of 215 people
per square kilometer. Administratively Ethiopia is divided into
regions and city administrations (first level), zones (second
level), districts/woredas (third level), and Kebeles (lowest level).

Participants
Children aged below 5 years included in the five EDHSs

in Ethiopia were included in this analysis. All five EDHS
enumeration areas were stratified into urban and rural following
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the nearby population and housing censuses. The EDHS used
a two-stage stratified cluster sampling. In the first stage,
clusters/enumeration areas were selected using probability
sampling. In the second stage, households in the selected cluster
were selected using probability sampling. Data for our analysis
were obtained from reproductive-age women and children aged
below 5 years in each of the five EDHSs.

Data source and variables

The outcome variable for this study was underweight,
obtained from the Ethiopian Demographic and Health Surveys
conducted between 2000 and 2019. Five EDHS surveys were
conducted (i.e., 2000, 2005, 2011, 2016, and 2019) ever. Mothers
aged 15-49 years in each selected household were interviewed,
and anthropometry was taken from all children aged below
5 years in each household. Underweight was defined when the
weight/age of the child is below —2 Standard Deviation (SD).
Geospatial covariate data were obtained from several sources
with a resolution of 1 km?. Climatic data such as temperature
and precipitation were obtained from the WorldClim website
(23). Distance to the nearest cities in minutes and distance
to healthcare facilities data were obtained from the Malaria
Atlas Project (MAP) (24). Population density and distance
to waterbody data were retrieved from WorldPop (25) and
Global Lakes and Wetlands Database (GLWD), respectively.
Covariates were selected based on the potential association with
the outcome variable demonstrated from previous literature
and the availability of high-resolution countrywide data. The
polygon shapefile for the Ethiopian administrative boundaries
was obtained from the Global Administrative Areas (GADEM),
a free online database. The Geographic Positioning System
(GIS) data were accessed from the EDHSs. The prevalence
of underweight was georeferenced and linked with area-level
covariates using ArcGIS.

Data processing and analysis

After formal registration and requesting the EDHS, data
were accessed at the MEASURE DHS website. The Kids Records
(KR) datasets were used for this analysis. Descriptive statistics
such as the prevalence of underweight in each administrative
region were calculated and presented in the table. The trends
for underweight were estimated in the past two decades and
presented with a graph.

Spatial analysis

Geospatial analysis using the Bayesian approach was used
to generate a spatially continuous estimate of the national
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prevalence of underweight mapped at 2000, 2005, 2011, 2016,
and 2019 EDHS surveys at a resolution of 1 km?. The
binomial regression model was fitted within the Bayesian
framework to the prevalence of underweight of both fixed
effects and geostatistical random effects. Six models were
constructed separately for the prevalence of underweight in
2000-2019, 2000, 2005, 2011, 2016, and 2019 EDHS data.
The model for the underweight was the same for all six
datasets. A spatial binomial regression model was fitted for
underweight survey data including fixed effects for temperature,
precipitation, travel time to the nearest city, distance to
the nearest health facilities, distance to the water body and
population density, and geostatistical random effects (26).
The prevalence of stunting was taken at each surveyed
location j as the outcome variable, which was assumed
to follow a binomial distribution: Y; ~ Binomial (n;, p;);
where Y; are the observed stunted children, n; is the
total number of children in each survey, and p; is the
predicted prevalence of underweight at location j (j = 1,
...2,547 for 2000-2019, 535 for 2000, 517 for 2005, 571
for 2011, 619 for 2016, and 305 for 2019 EDHSs). The
mean predicted prevalence of underweight was modeled
via a logit link function to a linear predictor defined as:
logit (pj) = o+ > 2 _,B.X.;+ ¢ where o is the intercept,
B is a matrix of covariate coefficients, X is a design
matrix of z covariates, and g are spatial random effects
modeled using a zero-mean Gaussian Markov random field
(GMRF) with a Matérn covariance function. The covariance
function was defined by two parameters, namely, the range
p, which represents the distance beyond which correlation
becomes negligible (approximately 0.1), and o, which is the
marginal standard deviation (27). Noninformative priors were
used for o (uniform prior with bounds -co and oo), and
we set normal priors with mean = 0 and precision (the
inverse of the variance) = 1 x 10™* for each p. We used
default priors for the parameters of the spatial random
field (28). Parameter estimation was performed using the
Integrated Nested Laplace Approximation (INLA) approach
in R (R-INLA) (27, 29). Sufficient values (i.e., 150,000
samples) from each simulation run for the variables of
interest were stored to ensure full characterization of the
posterior distributions.

Predictions of underweight at unsampled locations were
made at 1 km? resolution by interpolating the spatial random
effects and adding them to the sum of the products of
the coefficients for the spatially variant fixed effects at
each prediction location (30). The intercept was added,
and the overall sum was back-transformed from the logit
scale to the prevalence scale, providing prediction surfaces
that show the estimated immunization coverage for all
prediction locations. The covariate correlation matrix was
checked, and altitude was removed due to its interaction
with temperature.
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The Watanabe Applicable Information Criterion (WAIC)
statistic was used to select the best-fitting model.

Result

A total of 36,193 children aged below 5 years were included
in the analysis in the five EDHSs, which gives an average
of 33.8% of underweighted children over the two decades.
The overall national prevalence of underweight was 44.7, 37.7,
35.4, 25.5, and 23.8% in 2000, 2005, 2011, 2016, and 2019,
respectively. The highest prevalence was observed in Ambhara
and Tigray regions, whereas a lower prevalence was observed
in Addis Ababa (Table 1). Underweighted children are still high
in Afar and Amhara regions.

Trend analysis

The prevalence of underweight was reduced from 44.7%
in 2000 to 23.8% in 2019 with a total reduction rate of 46.8%
(Figure 1). The reduction of underweight was faster in Addis
Ababa.

Spatial analysis

Significant spatial clustering of underweight was observed
in Northern, Northwestern, Southeastern, Eastern borders, and
the border between Oromia and SNNPR regions. However, cold
spots were observed in the Western, Central, and Eastern parts
of the country (Figure 2).

10.3389/fnut.2022.988417

TABLE 1 The national and regional prevalence of underweight among
children aged below 5 years in Ethiopia between 2000 and 2019.

Regions Prevalence of underweight
2000 2005 2011 2016 2019 2000-2019

Tigray 490 434 424 242 317 38.4
Afar 526 355 461 39.1 32.7 417
Amhara 528 496 418 290 276 418
Oromia 436 345 320 226 174 319
Somali 45.8 504 362 271 31.2 342
Benishangul 453 454 40.3 34.7 30.6 39.0
SNNPR 527 344 338 216 206 343
Gambela 415 286 264 201 17.5 26.7
Harari 27.5 30.7 25.0 20.3 18.3 23.8
Addis Ababa  14.8 13.8 9.6 45 53 9.3
Dire Dawa 323 266 336 265 18.1 284
Ethiopia 447 377 354 255 238 338

The predicted prevalence of underweight was observed on
the Northern and Southern borders of the country (Figure 3).

Drivers of underweight

A spatial binomial regression model was fitted using
the Bayesian framework to identify drivers of underweight
among children aged below 5 years in Ethiopia. Mean
annual temperature (mean regression coefficient (B):—0.39;
95% credible interval (95% CrI): —0.63, —0.14), altitude
(B:—0.30; 95% Crl: 0.57, —0.05), population density
(B:—0.03; 95% Crl: —0.03, —0.02), and distance to water
bodies (B:—0.03; 95% Crl: —0.05, —0.004) were negatively

Prevalence of underweight
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Trends of underweight among under-five children in Ethiopia between 2000 and 2019.
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FIGURE 2
Geospatial points and prevalance of underweight in Ethiopia: (A) 2000-2019, (B) 2000, (C) 2005, (D) 2011, (E) 2016, and (F) 2019.

associated with being underweight. However, travel time Discussion
to the nearest cities in minutes (B: 0.09; 95% Crl: 0.03,
0.14) was positively associated with being underweight Undernutrition is one of the major challenges in low- and
(Table 2). middle-income counties, particularly in Ethiopia. Underweight
We used Widely Applicable Information Criteria (WAIC) among children is one of the indications of poor nutrition.
statistics to identify the best-fitted model, and the model with This study aimed to map the underweight in Ethiopia between
the lowest WAIC value was the best-fitted model. 2000 and 2019 through geospatial analysis. The magnitude of
05 frontiersin.org
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FIGURE 3
The predicted geospatial map for the prevalence of underweight in Ethiopia: (A)2000-2019, (B) 2000, (C) 2005, (D) 2011, (E) 2016, and (F) 2019.

underweight among children aged below 5 years in the past
19 years in Ethiopia was found as follows: 2000 (44.7%), 2005
(37.7%), 2011 (35.4%), 2016 (25.5%), and 2019 (23.8%), based
on the EDHS data. The most recent finding from the 2019
mini-EDHS reports that 23.8% of Ethiopian children aged below
5 years were underweight.

The distribution of underweight among children aged
below 5 years widely varies across the administrative region of

Ethiopia. The highest proportion of underweight was reported
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from Amhara (41.8%) and Afar (41.7%) region followed by
Benishangul 39% and Tigray 38.4% from 2000 to 2019. From
these data, the lowest prevalence was observed in Addis Ababa
(9.3%) of underweight children aged below 5 years. This
regional disparity may be due to different agro-economical (31,
32), climate (33-35), culture (36, 37), access to information,
education, healthcare service, and infrastructure (38-40). The
other variation may be because Addis Ababa is the capital

city of Ethiopia, which has a more urban population than the
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TABLE 2 Regression coefficient mean and 95% credible intervals (Crl) of covariates included in a Bayesian spatial model with Binomial response for

the prevalence of underweight in Ethiopia between 2000 and 2019.

Mean regression coefficient with 95% credible interval for each year

Travel time to cities

Covariates 2000-2019 2000 2005 2011 2016 2019

Intercept —0.55 (—0.72, —0.38)  —0.03(—0.37,0.28)  —0.32(—1.11,0.60)  —0.34(—0.46, —0.21) —0.91 (—1.15, —=0.69)  -1.00 (-1.25, -0.77)

Temperature —0.39 (—0.63,—0.14)  —0.75 (—1.20,—0.30)  0.20(—0.30,0.71) 0.14(—0.23, 0.51) —0.27 (—0.75,0.19)  -0.26(-1.00, 0.45)

Precipitation 0.04(—0.07, 0.16) 0.03 (—0.14, 0.20) —0.05(—0.28,0.19)  —0.12(—0.23, 0.00) 0.01 (—0.17, 0.20) -0.07(-0.28, 0.16)

Altitude —0.30 (—0.57,—0.05)  —0.80 (—1.28, —0.32)  0.31(—0.21, 0.84) 0.21(—0.16, 0.58) —0.34(—0.84,0.15)  -0.31(-1.07, 0.39)
(,

0.09 (0.03, 0.14)
~0.03 (—0.03,—0.02)
—0.03 (—0.05,—0.004)

0.05 (—0.03,0.13)

0.17 (0.06, 0.28)
~0.02 (—0.03,—0.01)
—0.01 (—0.06, 0.04)
0.02 (—0.21, 0.24)

Population density
Distance to water body

Distance to health facilities

—0.04(—0.21,0.13)
—0.03(—0.05,—0.02)
0.03 (—0.05, 0.10)
0.17 (—0.09, 0.42)

0.19(0.09, 0.29)
—0.04(—0.05,—0.03)
0.02 (—0.03, 0.07)
0.06 (—0.09, 0.21)

0.15 (0.02, 0.28)
—0.04 (—0.05,—0.02)
—0.02 (—0.08, 0.04)
0.01 (—0.17, 0.19)

-0.01(-0.19, 0.18)
-0.03(-0.04, -0.01)
-0.12(-0.21, -0.02)

0.14(-0.08, 0.35)

rest regions (41, 42). Urban populations have more advantages
in nutrition and health-related literacy compared with the
rural population disputes access to food and health service
accessibility (41).

The magnitude of underweight among children has shown
a significant decline from (44.7%) in 2000 to (23.8%) in 2019
in Ethiopia. This reduction trend implies that for the past
19 years in Ethiopia prevalence of underweight has decreased
nearly by half with a reduction rate of 46.8%. This significant
improvement in the reduction of the magnitude of underweight
may be the result of the cumulative effect of different global,
national, and local interventions such as improvement in
the accessibility of formal education, health service, and
information communication (43, 44). These conditions may
avert the health and nutrition literacy of the population, which
leads to changes in the behaviors of the population toward
the problem (45, 46). Even though the magnitude shows a
reduction, underweight is still one of the public health important
problems that need national and international attention until
the problem is fully addressed. In addition, the improvement is
in the overall magnitude of underweight in Ethiopia generally,
but the problem is still very high across the regions. Even in
Addis Ababa with the lowest overall magnitude, the prevalence
of underweight is still a public health concern that has to be
addressed (47, 48).

In this study, the drivers of being underweight were
identified. As the temperature increases, the probability of being
underweight will be increased. Living in a high-temperature area
have low appetite than people living in a low-temperature area,
which leads to low food intake in children which contributes
to being underweight. The other justification for hot (high
temperature) area body fat is expected to decrease as a result
of thermoregulation (49). In addition, the difference in crop
production distribution between high and low temperatures
may expose children to being underweight (35, 50).

The distance to the nearest cities is the other determinant
of being underweight among children aged below 5 years in
Ethiopia. As the distance to the nearest cities increases, the
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probability of being underweight will be increased. This positive
association implies that those children aged below 5 years living
far from cities were more vulnerable to being underweight
due to the inaccessibility of health services. Those children
who did not get access to a health facility may not have
adequate information regarding feeding and nutrition-related
information. Another possible justification is those children
who did not get full access to a health facility may not be
properly treated for childhood illnesses. This is one of the
predisposing factors for underweight for children aged below 5
years (51, 52).

In agreement with a previous study conducted on African
children (53), the population density and distance to the water
body were negatively associated with being underweight in
children. This is because population density is higher in cities,
where nutritional literacy and healthcare access are relatively
good (54). In contrast, when the distance to get clean water
is far, people might take contaminated water, which leads to
diarrheal diseases, which is the main cause of malnutrition in
children (55).

The finding of this study implies that there is a significant
improvement in the magnitude of underweight in Ethiopia
between 2000 and 2019. This decline could be a result of
national and global efforts to minimize the magnitude of
undernutrition. The efforts may direct nutritional intervention
and indirectly improve nutritional literacy. The policies
and programs implemented regarding nutrition have shown
remarkable success for the past 20 years in Ethiopia in
the reduction of undernutrition particularly in the overall
magnitude of underweight. The other important finding this
study disclosed is fair and equal distribution of infrastructure
including access to health facilities, especially in the remote area.
In Amhara, Afar, Benishangul, and Tigray regions need special
emphasis to address the very high magnitude of underweight.
Health policy and programs shall follow a more innovative
approach in rural areas. The strength of this study was using
countrywide data that would produce reliable estimates with
advanced geostatistical analysis. However, this study had some
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limitations, and due to the secondary nature of the data,
important factors were not included due to a lack of data.

Conclusion

The national prevalence of underweight is reduced slower
than expected in Ethiopia, with significant spatial variations
across subnational and local levels. Significant spatial clustering
of underweight was observed in the Northern and Northeastern
parts of the country. Temperature, altitude, population density,
and distance to water bodies were negatively associated with
underweight, whereas travel time to the nearest cities was
positively associated with underweight in Ethiopia. Improving
child nutrition through creating awareness and providing clean
water should be strengthened.
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