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Folic acid ameliorates
alcohol-induced liver injury via
gut—liver axis homeostasis
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The gut-liver axis (GLA) plays an important role in the development of
alcohol-induced liver injury. Alcohol consumption is typically associated
with folic acid deficiency. However, no clear evidence has confirmed the
effect of folic acid supplementation on alcohol-induced liver injury via GLA
homeostasis. In this study, male C57BL/6J mice were given 56% (v/v) ethanol
and 5.0 mg/kg folic acid daily by gavage for 10 weeks to investigate potential
protective mechanisms of folic acid in alcohol-induced liver injury via GLA
homeostasis. Histopathological and biochemical analyses showed that folic
acid improved lipid deposition and inflammation in the liver caused by
alcohol consumption and decreased the level of ALT, AST, TG, and LPS in
serum. Folic acid inhibited the expression of the TLR4 signaling pathway
and its downstream inflammatory mediators in the liver and upregulated the
expression of ZO-1, claudin 1, and occludin in the intestine. But compared
with the CON group, folic acid did not completely eliminate alcohol-
induced intestine and liver injury. Furthermore, folic acid regulated alcohol-
induced alterations in gut microbiota. In alcohol-exposed mice, the relative
abundance of Bacteroidota was significantly increased, and the relative
abundance of unclassified_Lachnospiraceae was significantly decreased.
Folic acid supplementation significantly increased the relative abundance
of Verrucomicrobia, Lachnospiraceae_NK4A136_group and Akkermansia,
and decreased the relative abundance of Proteobacteria. The results of
Spearman’s correlation analysis showed that serum parameters and hepatic
inflammatory cytokines were significantly correlated with several bacteria,
mainly including Bacteroidota, Firmicutes, and unclassified_Lachnospiraceae.
In conclusion, folic acid could ameliorate alcohol-induced liver injury in mice
via GLA homeostasis to some extent, providing a new idea and method for
prevention of alcohol-induced liver injury.
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Introduction

Chronic alcohol ingestion can lead to more than 200
diseases, of which alcoholic liver disease (ALD) is one of the
most common and serious diseases (1). ALD is a spectrum
of disease ranging from asymptomatic liver steatosis to the
development of alcoholic hepatitis, fibrosis, and cirrhosis (2),
threatening to the health and lives of millions of people around
the world every year.

The gut-liver axis (GLA) refers to the interaction between
the gut and liver, which is one of the main pathways for the
development and progression of ALD (3). Lipopolysaccharide
(LPS), also known as endotoxin, is a key trigger of liver
inflammation, which could lead to liver steatosis and
inflammatory injury (4, 5). Both alcohol-mediated gut
microbial dysbiosis and intestinal barrier destruction enhance
the release of a large amount of LPS from the intestine into
serum, which is later transported to the liver (4). Leaky
LPS can be bound by toll-like receptor 4 (TLR4) (6) on
the surface of liver cells, activating the downstream nuclear
factor kappa-B (NF-kB) inflammatory pathway, promoting an
inflammatory cascade response, inducing an overproduction
of inflammatory cytokines (7), and consequently leading
to inflammatory injury of the liver. Preclinical and clinical
studies have shown that alcohol consumption could affect
the amount and composition of gut microbiota (8), leading
to dysbiosis of gut microbiota. Dysbiosis of gut microbiota
could also affect intestinal barrier function and further
damage the liver through microbial products such as LPS.
Modulation of gut microbiota is also considered a strategy for
the amelioration of ALD, aimed at preventing or delaying liver
injury (9).

Folic acid, also known as vitamin By, is a water-soluble
vitamin. It is an essential nutrient and a micronutrient necessary
for normal human growth and development (10). Notably, folic
acid deficiency was found to be one of the most common
phenomena of malnutrition in patients with alcoholism. In the
United States, a study found that 80% of chronic alcoholics had
low serum folic acid levels, and among these chronic alcoholics
with low serum folic acid levels, 44% of them were in the
severe deficiency range (11). Another study found that 40%
of anemic alcoholics had low red blood cell folic acid levels
(12). Previous studies pointed out that folic acid could prevent
and improve non-alcoholic fatty liver disease (NAFLD) induced
by exerting antioxidant and anti-inflammatory effects (13-15),
and it has also been found that folic acid had potential to
regulate gut microbiota (16). A few studies showed that folic
acid could improve alcohol-induced liver injury by exerting
antioxidant (17, 18). However, the effect of folic acid on
alcohol-induced liver injury via GLA homeostasis has not
been reported yet.

In this study, alcohol-exposed C57BL/6] mice were given
5.0 mg/kg folic acid for 10 weeks to investigate the effect of
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folic acid on alcohol-induced liver injury and its mechanism via
GLA homeostasis.

Materials and methods

Animals and experimental design

A total of 24 male C57BL/6] mice (20 £ 2 g, 7 weeks old)
were purchased from Beijing Vital River Laboratory Animal
Technology Co., Ltd. (License number: SCXK [Jing], 2016-
0006). The animals were housed in a specific pathogen-free and
environmentally controlled room with constant temperature
(22-25°C), humidity (50-60%), and a 12-h light/dark cycle.
Animal experiments were performed according to the guidelines
of the institutional animal ethics committee and were approved
by the Qingdao University Laboratory Animal Welfare Ethics
Committee (approval number: 20201030C572720210108044).

After 1-week acclimation period, the mice were randomly
divided into three groups (eight mice per group, with no
significant difference in body weight among the groups). The
control group (CON) was given normal saline at 10.0 ml/kg
(body weight) by gavage. The model group (MOD) was given
56% (v/v) ethanol by gavage. The folic acid intervention group
(FA) was given 5.0 mg/kg folic acid (body weight) and 56%
(v/v) ethanol daily. Gavage was administered daily in all the
groups. All the ethanol administration groups were given 56%
(v/v) ethanol at 2.5, 5.0, and 7.5 ml/kg (body weight) for the
first 3 weeks to acclimatize to the stimulation of ethanol, and
then given 56% (v/v) ethanol at 10.0 ml/kg (body weight) for
the remaining 7 weeks. The FA group was given ethanol after
folic acid intervention for 1 h (Figure 1). Folic acid (>97%
purity, molecular weight 441.40 g/mol) was obtained from
Sigma-Aldrich (MO, USA).

At 12 h after the final gavage, the mice were killed, and blood
samples were collected from the retro-orbital venous plexus.
The blood samples were centrifuged at 3,000 g for 10 min at
4°C to obtain serum. The livers were immediately removed
and weighed to calculate the liver index (liver index% = liver
weight (g)/body weight (g) x 100%). The contents of the colon
were harvested into sterile tubes to analyze the structure and
composition of gut microbiota. All the samples were stored at
-80°C for subsequent experiments.

Serum biochemical analysis

The levels of serum alanine aminotransferase (ALT),
aspartate aminotransferase (AST), triglyceride (TG), and total
cholesterol (TC) were measured using an automatic biochemical
analyzer (Hitachi High-Technologies Corporation, Tokyo,
Japan). The concentration of LPS in serum was measured with
the Endpoint Chromogenic Endotoxin Detection LAL Kit.
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FIGURE 1

Schedule of the experimental protocol and drug administration of folic acid and ethanol.

Histopathological examination

Liver and ileum histopathology were assessed via H&E
staining. The samples were fixed with 4% paraformaldehyde.
After 24 h, the samples were embedded in paraffin wax.
Subsequently, paraffin sections of 5 um thickness were cut using
a sliding microtome (Sakura TTM-200-NO), deparaffinized
in xylene, rehydrated in an alcohol gradient, and stained
with H&E. Finally, the stained sections were observed with a
light microscope (Olympus BX60, Japan). The inflammation
histopathological scores of liver tissues were obtained according
to a semi-quantitative method, as described in a previous study
(19). The average villus height, villus width, and crypt depth of
ileum tissue were approximated by measuring these parameters
in at least 10 well-oriented villi and crypts per section (20, 21).
All measures were carried out by Image] software (National
Institutes of Health).

Determination of hepatic inflammatory
cytokines

Liver tissue was homogenized in 10% (w/v) phosphate
buffer and centrifuged at 3,500 rpm at 4°C for 15 minutes.
The supernatant was collected for analysis. The levels of IL-
1B, IL-6, and TNF-a in liver tissue were measured using ELISA
kits (Nanjing Jiancheng Bioengineering Institute, Nanjing,
Jiangsu, China) in accordance with the protocol provided by
the manufacturer.
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Western blot analysis

23), the total
proteins in liver and ileum tissues were extracted, and proteins

According to our previous methods (22,

were quantified using a bicinchoninic acid (BCA) Protein
Assay Kit
Nanjing, China). The same amounts of proteins were

(Nanjing Jiancheng Bioengineering Institute,

dissolved on polyacrylamide gels (8-10%) and transferred
onto PVDF membranes (Millipore, Bedford, MA, USA).
The membranes were blocked with 10% non-fat milk in
Tris-buffered saline/Tween (TBST) and then incubated with
primary antibodies against TLR4, MyD88, IRAK1, TRAF6
(Proteintech Group, Chicago, USA), IkBa, phospho-IxBa
(Santa Cruz, CA, USA), NF-kB, ZO-1, claudin 1, occludin,
and P-actin (Cell Signaling Technology, Danvers, MA, USA)
at 4°C overnight. After washing with TBST, the membranes
were incubated with the corresponding secondary antibodies
(Bioeasy, Beijing, China) for 2 h at 37°C. In the end, the bands
of proteins were visualized by the Odyssey Infrared Imaging
System (Li-Cor Biosciences, Lincoln, NE, USA). B-Actin served

as an internal control.

DNA extraction and 16S rRNA gene
sequencing

After 10-week intervention, 16S rRNA gene sequencing

was performed on contents of colon samples for microbiome
analysis from the CON group, MOD group, and FA group.
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A total of five samples were randomly selected from each group
for sequencing. The sequencing methods were adopted from
our previous studies (24, 25). In detail, DNA was extracted
using a DNA kit (Tiangen Biotech (Beijing) Co., Ltd.) according
to the manufacturers instructions. The DNA concentration
was measured using a Qubit dsDNA HS Assay Kit and a
Qubit 4.0 Fluorometer (Invitrogen, Thermo Fisher Scientific,
Oregon, USA). The 338F: 5'-ACTCCTACGGGAGGCAGCA-
3’ and 806R: 5'-GGACTACHVGGGTWTCTAAT-3" universal
primer set was used to amplify the V3-V4 region. The total
PCR amplicons were purified using Agencourt AMPure XP
Beads (Beckman Coulter, Indianapolis, IN) and quantified using
the Qubit dsDNA HS Assay Kit and Qubit 4.0 Fluorometer
(Invitrogen, Thermo Fisher Scientific, Oregon, USA). After the
individual quantification step, amplicons were pooled in equal
amounts. For the constructed library, Illumina Novaseq 6000
System (Illumina, Santiago CA, USA) was used for sequencing.
According to quality of single nucleotides, raw data were
primarily filtered by Trimmomatic. Identification and removal
of primer sequences were processed by Cutadapt. PE reads
obtained from previous steps were assembled by USEARCH,
followed by chimera removal using UCHIME. High-quality
reads generated from the aforementioned steps were used
in the following analysis. The DADA2 method in QIIME2
was used for the denoise processing after the quality control
of data. A total of 0.005% of the number of all sequences
sequenced was used as the filtering threshold to filter ASVs.
Alpha diversity was calculated and displayed by QIIME2 and R
software, respectively. Beta diversity was determined to evaluate
the degree of similarity of microbial communities from different
samples using QIIME. Principal coordinate analysis (PCoA),
analysis of similarities (ANOSIM), heatmaps, and unweighted
pair-group method with arithmetic mean (UPGMA) were used
to analyze the beta diversity. Principal coordinate analysis
(PCoA) was performed by using the Bray-Curtis method.
Furthermore, we employed linear discriminant analysis (LDA)
effect size (LEfSe) to test the significant taxonomic difference
among the groups. A logarithmic LDA score of 4.0 was set as
the threshold for discriminative features. The raw data of 16S
rRNA gene libraries generated during this study are publicly
available at the Sequence Read Archive portal of the NCBI*
under accession number PRJNA874577.

Statistical analysis

Statistical analysis was carried out by SPSS 22.0 statistical
software (SPSS, Chicago, IL, USA). The experimental data
were presented as mean =+ standard deviation (SD), and
the comparison of multiple groups was statistically analyzed
by one-way analysis of variance (ANOVA). When one-way

1 https://www.ncbi.nlm.nih.gov/sra/PRINA874577
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ANOVA gives a significant result, Fisher’s LSD test was used
for comparing the difference between two groups. In this study,
p < 0.05 was considered statistically significant.

For gut microbiota analysis, the Kruskal-Wallis rank test
was used, and p-values were adjusted for multiple comparisons
using the false discovery rate. The correlations between gut
microbiota and the indexes related to alcohol-induced liver
injury (including serum parameters and hepatic inflammatory
cytokines) were determined by using Spearman’s correlation
analysis and were corrected for multiple hypothesis testing;
Tp <0.05*p < 0.01.

Results

Effects of folic acid on body weight
and liver index

No obvious significant difference in body weight was found
among all the groups (p > 0.05; Figure 2A). As shown in
Figure 2B, the liver index was significantly higher in the MOD
group than in the CON group (p < 0.05), and it was significantly
lower in the FA group than in the MOD group (p < 0.05). But
the liver index in the FA group was still significantly higher than
in the CON group (p < 0.05).

Effects of folic acid on serum
parameters

The levels of ALT, AST, TG, and TC were significantly
higher in the MOD group than in the CON group (p < 0.05).
Compared with the MOD group, the levels of ALT, AST, and TG
were significantly lower in the FA group (p < 0.05), but these
parameters in the FA group were still significantly higher than
those in the CON group (p < 0.05; Figures 2C-F).

The serum LPS level in the MOD group was significantly
higher than that in the CON group (p < 0.05), and the serum
level in the FA group was significantly lower than in the MOD
group (p < 0.05). But the serum LPS level in the FA group was
still significantly higher than that in the CON group (p < 0.05;
Figure 2G).

Histopathological examination

Effects of folic acid on liver histopathology

In the CON group, the liver lobule structure was clear and
complete, and hepatocytes exhibited an ordered arrangement
with no evident lipid droplet aggregation and inflammatory cell
infiltration. In the MOD group, the hepatic cords of the mice
were disordered, and a large number of lipid droplets gathered,
accompanied by inflammatory cell infiltration. Compared with
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Effects of folic acid on general parameters of mice. (A) Body weight; (B) liver index; (C) serum ALT; (D) serum AST; (E) serum TG; (F) serum TC;
(G) serum LPS; (H) liver histopathology assessed by H&E staining (400x) (n = 3/group); (1) hepatic inflammatory score. Data are presented as
mean + SD (n = 8/group). ?p < 0.05 compared with the CON group; Pp < 0.05 compared with the MOD group.

the MOD group, liver cords of mice in the FA group were
arranged more orderly, and the phenomenon of lipid droplet
aggregation and inflammatory cell infiltration improved, but
there was still a great difference compared with the CON
group (Figure 2H). The results of showed that the hepatic
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inflammatory score in the MOD group was significantly higher
than that in the CON group (p < 0.05), and the score in the
FA group was significantly lower than that in the MOD group
(p < 0.05) but was still significantly higher than the CON group
(p < 0.05; Figure 2I).
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Effects of folic acid on ileum histopathology

The ileum in the CON group was intact in structure
and normal in shape. Compared with the CON group, the
intestinal villi in the MOD group were disordered, broken,
and shortened, the submucosa and muscularis were partially
detached. Compared with the MOD group, the intestinal villi
of mice in the FA group were arranged more neatly, and the
villus height, fracture, and abscission of the lower layer were
improved, but there was still a great difference compared with
the CON group (Figure 3A). The results of villus measurement
showed that the villus height, villus width, and crypt depth in
the MOD group were significantly lower than those in the CON
group (p < 0.05); the villus height, villus width, and crypt depth
in the FA group were significantly higher than those in the MOD
group (p < 0.05), but the villus height and crypt depth were
still significantly lower than those in the CON group (p < 0.05;
Figure 3B).

Effects of folic acid on the expression
levels of tight junction protein in the
ileum

The expression levels in the MOD group of ZO-1, claudin
1, and occludin were significantly lower than those in the CON
group (p < 0.05). However, the expression levels of ZO-1,
claudin 1, and occludin in the FA group were significantly higher
than in those in the MOD group (p < 0.05). But the expression
of these proteins in the FA group was still lower than that in the
CON group (p < 0.05; Figure 3C).

Effects of folic acid on hepatic
inflammatory cytokines

The levels of IL-1B, IL-6, and TNF-o in the MOD group were
significantly higher than those in the CON group (p < 0.05).
In the FA group, the levels of IL-1p, IL-6, and TNF-o were
significantly lower than those in the MOD group, but these
inflammatory cytokines were still higher than those in the CON
group (p < 0.05; Figures 4A-C).

Effects of folic acid on TLR4/NF-«B
signaling pathway in the liver

The expression levels of TLR4, MyD88, IRAK1, TRAF6,
p-IkBa, p-IkBa/IkBa, and NF-kB in the MOD group were
significantly higher than those in the CON group (p < 0.05),
and the expression levels of these proteins in the FA group were
significantly lower than those in the MOD group (p < 0.05).
But the expression levels of TLR4, MyD88, IRAKI, TRAF6,
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p-IkBa/IkBa, and NF-kB in the FA group were still higher than
those in the CON group (p < 0.05; Figure 4D).

Effects of folic acid on gut microbiota

Long-term alcohol consumption could lead to the dysbiosis
of gut microbiota. To investigate the effects of folic acid on gut
microbiota in alcohol-exposed mice, 16S rRNA gene sequencing
was used to analyze gut microbiota of colon contents, and the
results are given in the following text.

Alpha diversity analysis

Good’s coverage index of all the groups based on ASV
richness was greater than 99.99%. The index of community
richness mainly includes ACE index and Chao 1 index, and
the results showed that community richness in the MOD
group was significantly lower than that in the CON group
(p < 0.05; Figures 5A,B). The index of community diversity
mainly includes Shannon index and Simpson index, and the
results showed no statistical significance in community diversity
among all the groups (p > 0.05; Figures 5C,D).

Beta diversity analysis

The principal coordinate analysis (PCoA) showed that the
clusters of gut microbiota in the CON group were clearly
separated from those in the MOD group, whereas the clusters
in the FA group were closer to those in the CON group
(Figure 5E). The analysis of similarities (ANOSIM) showed that
the difference among the groups was greater than that within the
groups (r = 0.522, p = 0.001; Figure 5F). The heatmap analysis
and the unweighted pair-group method with arithmetic mean
(UPGMA) showed that the similarity between the FA group and
CON group was greater than that between the MOD group and
CON group (Figures 5G,H).

Relative abundance analysis at phylum level

At the phylum level, gut microbiota mainly composed of
Bacteroidota, Firmicutes, Verrucomicrobiota, Actinobacteriota,
and Desulfobacterota (Figure 6A). The relative abundance of
Bacteroidota in the MOD group was significantly higher than
that in the CON group (p < 0.05; Figure 6C). The relative
abundance of Verrucomicrobiota and Proteobacteria in the FA
group was significantly higher than that in the MOD group
(p < 0.05; Figures 6D,E).

Relative abundance analysis at genus level

At the genus level, top 10 genera from the different
groups are shown in Figure 6B. The relative abundance
of Lachnospiraceae_NK4A136_group and Akkermansia in the
FA group was significantly higher than that in the MOD
group (p < 0.05; Figures 6EH), and the relative abundance
of unclassified_Lachnospiraceae in the MOD group was
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significantly lower than that in the CON group (p < 0.05;
Figure 6G).

LEfSe analysis

LDA effect size (LEfSe) analysis could be used for
comparison among the groups to identify the species with
significant differences. LEfSe analysis revealed that 10 ASVs at
the phylum (1 ASV), class (1 ASV), order (1 ASV), family (1
ASV), genus (3 ASVs), and species (3 ASVs) showed significant
differences among the groups. Among the significantly different
ASVs, p_Desulfobacterota was the most abundant bacterium
in the CON group; f Prevotellaceae, g_lleibacterium, and
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s_Ileibacterium_valens were the most abundant bacteria in the
MOD group; and s_Bifidobacterium_animalis was the most
abundant bacterium in the FA group (Figure 7).

Statistical Spearman’s correlations
between gut microbiota and indexes
related to liver injury

The potential relationships between gut microbiota and the

indexes related to alcohol-induced liver injury (including serum
parameters and hepatic inflammatory cytokines) were explored
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by Spearman’s correlation analysis. As shown in Figure 8,
Bacteroidota, Proteobacteria, and unclassified_Muribaculaceae

positively
inflammatory

were
and hepatic
Verrucomicrobiota,
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correlated  with
cytokines,
Deferribacterota,

serum

parameters

and  Firmicutes,
Lachnospiraceae_

NK4A136_group, unclassified_Lachnospiraceae, Akkermansia,
and Ligilactobacillus were negatively correlated with these
indexes. Specifically, Bacteroidota was significantly positively
correlated with serum parameters and hepatic inflammatory

cytokines (p < 0.05); unclassified_Lachnospiraceae was
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significantly negatively correlated with serum ALT, LPS, Lachnospiraceae_NK4A136_group,

and Akkermansia were

hepatic IL-1p, and hepatic IL-6 (p < 0.05). Proteobacteria significantly negatively correlated with serum TC (p < 0.05).

was significantly positively correlated with serum TC unclassified_Muribaculaceae  was  significantly  positively
(p < 0.05), while Verrucomicrobiota, Deferribacterota, correlated with hepatic IL-1f (p < 0.05), while Firmicutes and
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Ligilactobacillus were significantly negatively correlated with
hepatic IL-1p (p < 0.05).

Discussion

This is the first study to find that folic acid could ameliorate
alcohol-induced liver injury via GLA homeostasis to some
extent. Folic acid ameliorated the destruction of the intestinal
barrier and the dysbiosis of gut microbiota induced by alcohol,
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which subsequently reduced the leakage of LPS. Then, the
activation of the TLR4 signaling pathway mediated by LPS in the
liver was inhibited by folic acid, and consequently, liver injury
induced by alcohol was improved.

ALD is a syndrome of liver injury associated with chronic
intake of alcohol, which includes a range of alcohol-induced
liver injury such as alcoholic fatty liver, alcoholic hepatitis,
and alcoholic cirrhosis (26). The elevation of serum ALT
and AST activity, and the infiltration of lipid droplets and
inflammatory cells are early biochemical and pathological
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changes in ALD (27). In this study, the liver tissues of the examination, and liver index and serum ALT, AST, TG, and
MOD group showed obvious aggregation of lipid droplets TC in the MOD group were significantly higher than those in
and inflammatory cell infiltration through the histopathological the CON group, suggesting the alcohol-induced liver injury has
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Folic acid ameliorates alcohol-induced liver injury via gut-liver axis (GLA) homeostasis, mainly including the improvement of the intestinal
barrier, regulation of gut microbiota, and inhibition of liver inflammation.

occurred. Alcohol consumption is typically accompanied with
folic acid deficiency (28). Our previous study has demonstrated
that folic acid supplementation may relieve ethanol-induced
Th17/Treg disbalance by altering Foxp3 promoter methylation
patterns, which suggest that folic acid may be a feasible
preventive strategy for ALD (29). In this study, in the FA
group, histopathological liver changes induced by alcohol were
improved, and liver index and the levels of serum ALT, AST,
and TG were significantly lower than those in the MOD
group. However, folic acid did not completely eliminate alcohol-
induced liver injury compared with the CON group. The results
showed that folic acid could improve alcohol-induced liver
injury to some extent.

Notably, recent studies have demonstrated that modulated
perturbations of the GLA emerged as a promising therapeutic
option in the progression of ALD (30). In normal conditions,
a balance between the intestinal barrier and pathogenic
microorganisms in the gut lumen is maintained, which prevents
harmful substances such as LPS translocation from the gut (31).
In ALD, gut barrier disruption induced by alcohol results in a
significant increase in gut permeability and gut leakiness, and
subsequently, LPS is transported into the portal bloodstream
and liver. LPS binds to endotoxin receptors to activate the
liver TLR4 signaling pathway and consequently leads to the
inflammatory injury. It is showed that phytochemicals such
as semen hoveniae extract, ursolic acid, and astaxanthin could
ameliorate alcohol-induced liver injury by affecting the GLA
(32, 33). However, no study has focused on the ameliorating
effect of folic acid on ALD by the mechanism of the GLA.

The destruction of the intestinal barrier facilitated the
transfer of LPS from gut to the liver and general circulation
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(34). Alcohol consumption disrupts the intestinal barrier and
increases gut permeability both in patients with ALD and
in experimental models of ALD (34). Our results from the
histopathological examination showed that the intestinal barrier
was disrupted by alcohol, including the detachment of the
intestinal epithelium and the destruction of intestinal villi
integrity. In the FA group, the destruction of the intestine
was ameliorated. Alcohol has been reported to increase
intestinal epithelial permeability, mainly due to alcohol-induced
alterations in the expression of tight junction proteins (35). This
study showed the expression levels of tight junction proteins,
including ZO-1, claudin 1, and occludin, were decreased in
response to alcohol exposure. Importantly, alcohol-induced
decreases in these indexes were notably raised by folic acid. Folic
acid could alleviate alcohol-induced destruction of the intestinal
barrier, which is beneficial to prevent harmful substances from
entering the bloodstream.

The increase in intestinal permeability leads to the leakage
of LPS, which was a recognized factor in the pathogenesis of
ALD (36). In acute and chronic liver diseases, elevated serum
LPS levels and the presence of a large number of inflammatory
cytokines could be detected (37). Higher than normal levels
of LPS can activate liver macrophages and extrahepatic
macrophages to overproduce inflammatory cytokines (38),
which could result in hepatocellular necrosis. Previous works
showed that folic acid exerted anti-inflammatory activity in mice
with NAFLD (39, 40). In this study, we confirmed the anti-
inflammatory property of folic acid in alcohol-exposed mice.
Folic acid not only decreased the accumulation of LPS in serum
but also significantly inhibited the elevation of hepatic IL-1p,
IL-6, and TNF-a levels induced by alcohol. Increasing evidence
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showed that intestinal permeation, translation of bacterial LPS,
and activation of the TLR4-dependent signaling pathway in
the liver are key mechanisms in the development of ALD (41,
42). The binding of LPS to the TLR4 receptor depends on
MyD8S8 to trigger the initiation of a series of cascade reactions
that activate interleukin receptor-associated kinase 1 (IRAK1)
and its downstream tumor necrosis factor receptor-associated
factor 6 (TRAF6) (43). In the cytoplasm, NF-kB remains inactive
by forming a complex with NF-kB inhibitor protein (IkBa).
With the activation of TRAF6, IkBa was phosphorylated that
leading to the dissociation of NF-kB/IkBa complex and NF-
kB activation, and finally specific target genes were activated
and the expression of inflammatory cytokines were promoted
(44). The results of this study showed that the expression
levels of TLR4, MyD88, IRAK1, TRAF6, p-IkBa, and NF-kB
proteins in the FA group were significantly decreased compared
with the MOD group. Folic acid could reduce the intestinal
leakage of LPS and inhibit the activation of the LPS/TLR4/NF-
kB signaling pathway, which demonstrated that folic acid
could exert anti-inflammatory effects to ameliorate alcohol-
induced liver injury.

The dysbiosis of gut microbiota can trigger inflammation
of ALD by compromising the intestinal barrier and increasing
translocation of bacterial products LPS to the liver (45).
The modulation of gut microbiota has potential to relieving
liver diseases of different etiologies (28). Therefore, we
conducted 16S rRNA gene sequencing to detect and analyze
the changes of gut microbiota in each group of mice.
We randomly selected five samples from each group to
perform sequencing analysis by referring to the published
animal studies (46, 47). Diversity analysis showed that there
were differences of gut microbiota among the three groups,
while the similarity of composition and structure of gut
microbiota between the FA group and CON group was
greater than those between the MOD group and CON
group. At the phylum level, Bacteroidota and Firmicutes were
the two most abundant phyla in gut microbiota, which is
consistent with previous studies (32, 48). It was reported that
following alcohol feeding, there was an overall decrease in
Firmicutes, whereas the relative abundance of Bacteroidota
increased in alcohol-fed mice (49). Acute-on-chronic alcohol
administration induced shifts in various bacterial phyla
in the mice, including a reduction in Verrucomicrobiota
(50). Consistent with these studies, we found that alcohol
exposure resulted in a significant increase in the relative
abundance of Bacteroidota, and folic acid significantly increased
the relative abundance of Verrucomicrobiota. Furthermore,
folic acid significantly decreased the relative abundance of
Proteobacteria. Proteobacteria is one of the harmful bacteria,
the abundance of Proteobacteria in gut microbiota of patients
with inflammatory bowel disease increased significantly, and
patients with hepatic steatosis were reported to have a higher
abundance of Proteobacteria (51, 52). At the genus level,
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the relative abundance of Lachnospiraceae_NK4A136_group
and Akkermansia was significantly increased in the FA
group compared with the MOD group, and the relative
abundance of wunclassified_Lachnospiraceae was significantly
decreased in the MOD group compared with the CON group.
Lachnospiraceae_NK4A136_group was related to a decline in
intestinal injury (53). Akkermansia is often considered beneficial
because it is associated with lower levels of inflammation,
and it could improve intestinal barrier function (54). In
addition, Akkermansia is involved in regulating the mucus
produced by goblet cells, strengthening the intestinal barrier,
and supporting the metabolic function of enterocytes; its
depletion might exacerbate the toxic effects of alcohol and
acetaldehyde on the intestinal barrier (55). Lachnospiraceae
members are short-chain fatty acid propionate producers and
microbiota composition modulators in the gut (56). And the
increase of unclassified_Lachnospiraceae could be a signature
of positive effects (57). To identify the specific bacterial
taxa after folic acid supplementation, LEfSe analysis was
conducted, with a threshold of 4.0 as the log LDA fraction
of the distinguishing feature. The results showed that the
relative abundance of Prevotellaceae and Ileibacterium was
significantly higher in the MOD group than in other groups.
Similar results have been observed in population studies, and
a significant increase was found in the relative abundance
of Prevotellaceae in microbiota of patients with alcohol-use
disorders compared with healthy individuals (58). Another
study pointed out that LPS biosynthesis may be associated
with Prevotellaceae abundance (59). A previous studies on
NAFLD showed an increased relative abundance of intestinal
microbial pathogenic bacteria in mice, including Ileibacterium,
Turicibacter, and Faecalibaculum (60). The relative abundance
of s_Bifidobacterium_animalis was significantly higher in the
FA group than in other groups. Bifidobacterium is a common
probiotic that plays a vital role in the intestinal tract. Among a
large number of bifidobacterial taxa, just a few, which include
Bifidobacterium_animalis, have been exploited as health-
promoting bacteria. In particular, Bifidobacterium_animalis
strains have been extensively used as active ingredients in a
variety of functional food species (61).

To further explore the potential relationship between
gut microbiota and liver injury in alcohol-exposed mice,
we performed correlation analysis between the relative
abundance of gut microbiota and liver injury-related indexes.
The results showed that Bacteroidota, Proteobacteria, and
uncultured_bacterium_f_Muribaculaceae were significantly
positively correlated with serum parameters and hepatic
inflammatory cytokines, while Firmicutes, Verrucomicrobia,
Lachnospiraceae_NK4A136_group,
uncultured_bacterium_f_Lachnospiraceae,

Deferribacterota,
Akkermansia,
and Ligilactobacillus were negatively correlation with them.
Collectively, these results suggested that folic acid may
ameliorate alcohol-induced liver injury by selectively promoting
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the relative abundance of specific beneficial microbiota and
inhibiting the relative abundance of harmful microbiota. In
this study, we did not perform gut microbiota sequencing and
correlation analysis on all samples, which is a limitation for the
study. The sequencing and correlation analysis may provide a
high convincing result based on the larger sample size, and we
will pay attention to this issue in our future studies.

Conclusion

Folic acid could regulate gut microecological dysbiosis,
relieve intestinal barrier destruction, and inhibit the LPS-
mediated activation of the TLR4/NF-kB signaling pathway,
which, in turn, could ameliorate alcohol-induced liver injury to
some extent (Figure 9). This is the first study demonstrating
that the ameliorative effects of folic acid of alcohol-induced
liver injury were probably associated with modulating the
perturbations of the GLA in mice, which may serve as an
excellent candidate for ALD prevention and uncover the
underlying mechanisms involved.
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