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Introduction: Substantial response heterogeneity is commonly seen in dietary

intervention trials. In larger datasets, this variability can be exploited to identify

predictors, for example genetic and/or phenotypic baseline characteristics,

associated with response in an outcome of interest.

Objective: Using data from a placebo-controlled crossover study (the FINGEN

study), supplementing with two doses of long chain n-3 polyunsaturated

fatty acids (LC n-3 PUFAs), the primary goal of this analysis was to develop

models to predict change in concentrations of plasma triglycerides (TG), and

in the plasma phosphatidylcholine (PC) LC n-3 PUFAs eicosapentaenoic acid

(EPA) + docosahexaenoic acid (DHA), after fish oil (FO) supplementation.

A secondary goal was to establish if clustering of data prior to FO

supplementation would lead to identification of groups of participants who

responded differentially.

Methods: To generate models for the outcomes of interest, variable selection

methods (forward and backward stepwise selection, LASSO and the Boruta

algorithm) were applied to identify suitable predictors. The final model

was chosen based on the lowest validation set root mean squared error
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(RMSE) after applying each method across multiple imputed datasets.

Unsupervised clustering of data prior to FO supplementation was

implemented using k-medoids and hierarchical clustering, with cluster

membership compared with changes in plasma TG and plasma PC EPA + DHA.

Results: Models for predicting response showed a greater TG-lowering after

1.8 g/day EPA + DHA with lower pre-intervention levels of plasma insulin,

LDL cholesterol, C20:3n-6 and saturated fat consumption, but higher pre-

intervention levels of plasma TG, and serum IL-10 and VCAM-1. Models also

showed greater increases in plasma PC EPA + DHA with age and female sex.

There were no statistically significant differences in PC EPA + DHA and TG

responses between baseline clusters.

Conclusion: Our models established new predictors of response in TG

(plasma insulin, LDL cholesterol, C20:3n-6, saturated fat consumption, TG,

IL-10 and VCAM-1) and in PC EPA + DHA (age and sex) upon intervention with

fish oil. We demonstrate how application of statistical methods can provide

new insights for precision nutrition, by predicting participants who are most

likely to respond beneficially to nutritional interventions.

KEYWORDS

precision nutrition, omega-3, fish oil, statistical modeling, secondary analysis,
crossover study

Introduction

There is often a large degree of variability in physiological
outcomes within nutritional intervention studies (1–3). This
means that some participants respond beneficially to an
intervention, while others may respond poorly or not at all
(4). Precision nutrition aims to identify the drivers of these
differences, and predict who may respond beneficially (5).
While determining response at the level of a single individual
requires multiple measurements over time, e.g., through an
N-of-1 study (6), predictors of response to outcomes at a
group level may be identified through appropriate application of
statistical methods in well-powered studies (7). Understanding
associations between phenotype, genotype and physiological
response could lead to greater understanding of the mechanisms
responsible for differential response to interventions, and
provide a rational basis for the tailoring of dietary interventions
to subgroups of the population (8–10).

Response heterogeneity is seen for physiological markers
that can have daily fluctuations, such as plasma triglyceride (TG)

Abbreviations: 0.7FO, 0.7 g/day EPA + DHA from fish oil; 1.8FO,
1.8 g/day EPA + DHA from fish oil; APOE(4), apolipoprotein E(4);
DPA, docosapentaenoic acid; FABP1, Fatty Acid Binding Protein 1; FO,
fish oil; LASSO, Least Angle Selection and Shrinkage Operator; LC
n-3 PUFAs, long-chain n-3 polyunsaturated fatty acids; PC, plasma
phosphatidylcholine; PCA, principal components analysis; RMSE, root
mean squared error; TG, triglycerides.

concentration (3), as well as those that can vary over longer time
periods, such as plasma long-chain n-3 polyunsaturated fatty
acids (LC n-3 PUFAs, also called omega-3 fatty acids) (9, 11).
Plasma concentration of TG and LC n-3 PUFAs are common
outcomes of interest in LC n-3 PUFA supplementation trials.
Fish oil (FO) is a good source of LC n-3 PUFAs, including
eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA),
which have been shown to lower TG concentrations in many
intervention trials (12). An increase in the omega-3 index (EPA
+ DHA as a percentage of total fatty acids in erythrocyte
membranes) has been linked to lower risk of cardiovascular
disease (13, 14).

The FINGEN study was a double-blind, placebo-controlled
crossover study investigating the effects of low (0.7 g
EPA + DHA/d, 0.7FO) and medium (1.8 g EPA + DHA/d,
1.8FO) doses of fish oil for 8 weeks on cardiovascular disease
risk biomarkers, including plasma TG concentration (15). The
FINGEN study revealed greater body weight-adjusted increases
in plasma phosphatidylcholine (PC) DHA in men compared
with women, with lowering of TG concentration in response
to 1.8FO being 3 times greater in males, and a trend toward
reductions seen in apolipoprotein E4 (APOE4) carriers (15).
Significantly higher baseline TG concentrations were observed
in APOE4 carriers compared with E2 and E3 carriers (16).
However, previous analyses only stratified by two factors (sex
and APOE genotype) but did not exploit the whole dataset to
identify which of the many available variables could best predict
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response to intervention, in terms of reductions in plasma TG
and increases in PC EPA + DHA after supplementation.

Using data from the FINGEN study, the primary goal
of this analysis was to identify the predictors that best
explain the response heterogeneity of plasma TG and plasma
PC EPA + DHA to LC n-3 PUFA supplementation, using
variable selection methods and validation approaches.
The second goal was to determine whether unsupervised
analysis of pre-intervention and baseline data could help to
identify groups that responded differentially to LC n-3 PUFA
supplementation.

Methods

FINGEN study design and participants

Characteristics of the participants recruited to the FINGEN
study, and the methods used, have been reported in full
elsewhere (15, 16). The original study was approved by the
ethics committee at each of the four universities involved in
the study (15). Briefly, 312 healthy participants who consumed
oily fish less than once a week, recruited at 4 centers in
the UK, completed three 8-week intervention periods. They
consumed a control oil (an 80:20 blend of palm oil and
soybean oil) containing no EPA or DHA, 0.7FO and 1.8FO in a
random order, separated by two 12-week washout periods. The
participant flow chart can be found in Supplementary Figure 1.

Before and after each intervention period, a fasting (12
h-fast) blood sample was collected for the measurement
of plasma lipids, apolipoproteins, glucose and insulin
concentrations (15). Plasma was used for assessment of fatty
acid proportions (15); PC is the most abundant phospholipid
in plasma (17) and plasma PC EPA + DHA has been shown to
be a suitable biomarker of LC n-3 PUFA intake in long-term
studies (18). Plasma PC fatty acid composition was determined
by gas chromatography.

For genotyping, the buffy layer was collected from
an ethylenediaminetetraacetic acid (EDTA) tube (BD
Biosciences, San Diego, CA, USA) and genomic DNA was
extracted using a DNA extraction kit (Qiagen, Hildenberg,
Germany), following the manufacturer’s instructions.
SNP genotyping was conducting using a commercial SNP
genotyping service, TaqManTM SNP Genotyping Assay, human,
Applied Biosystems.

Data overview

Data were received in Excel sheets and amalgamated
to form a single dataset. The dataset included descriptive
and physiological variables, dietary intake data, information
on single nucleotide polymorphisms (SNPs) and plasma

PC fatty acid data. All variables included in this analysis
can be found in Supplementary Table 1. Due to lack
of variability, SNPs with ≥ 99% genotype similarity
between participants were removed. Data from two
participants were removed due to > 10% missing data.
The complete dataset was imported into R (version
4.1.0), which was used for all statistical analyses. A copy
of the (un-imputed) dataset was created, with numeric
variables standardized for comparing coefficients in
the final models.

Prior to multiple imputation, all SNPs and sex (M/F)
were coded as factor variables. SNP data was coded 1–
3, with 1 corresponding to two reference alleles and 2
and 3 corresponding to one and two non-reference alleles,
respectively. All other numeric variables were mean-centered
to improve interpretability of the final model coefficients (19).
Using the mice package in R (20), collinear variables were
removed prior to multiple imputation, which replaced missing
values with estimates from the distribution of the remaining
data (20). Missing data per variable was between 0 and 6%, with
total missing data just under 1%. Multiple imputation generated
5 complete imputed (independent) datasets. 5 imputations
were chosen and deemed acceptable due to the size of the
dataset and low amount of total missing data, meaning the
variation between the imputed datasets was expected to be
low (20). To improve statistical power, SNPs were converted
back to numeric variables after imputation, aside from codes
designating APOE variant (2 = E2/E2 + E2/E3, 3 = E3/E3, 4
= E3/E4 + E4/E4; rs429358 and rs7412) and endothelial nitric
oxide synthase (eNOS, rs1799983; 1 = GG, 2 = GT, 3 = TT) due
to their inclusion as basic characteristics in the original dataset.
Details of all SNPs and their reference IDs can be found in
Supplementary Table 1.

Each imputed dataset was divided into a dataset containing
all baseline variables and data collected prior to the 0.7FO
treatment arm (0.7FO dataset), and a dataset containing
all baseline variables and data collected prior to the 1.8FO
treatment arm (1.8FO dataset), to examine the predictors of
response prior to each treatment arm separately. In total, each
imputed dataset contained 98 variables (including volunteer
identifier and outcome variables) and 310 participants.

This study focused on two outcomes: change in plasma
TG concentration, and change in plasma PC EPA + DHA
calculated from the difference in EPA + DHA proportion,
as a percentage of total fatty acids, pre- and post-fish oil
supplementation. For the purpose of this report, these outcomes
are referred to as change scores. Outcomes were used on a
continuous scale rather than as a dichotomous classification
(e.g., response/non-response) to maximize use of information
and statistical power (21, 22). To examine if there were
significant differences in the outcomes of interest between
treatment arms, ANOVA tests with Huynh-Feldt correction
were conducted (23). To determine whether supervised analysis
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for both outcomes was appropriate after each FO intervention,
the standard deviations (SDs) of the change scores after 0.7FO
or 1.8FO were compared with the change scores after control
oil for each outcome. A greater change score SD after either
0.7FO or 1.8FO compared with control oil was indicative of
response heterogeneity (24). However, if the control oil change
score SD was larger than either of the FO change score SDs,
no further supervised analysis was undertaken, as differences
between participants after FO could be explained by random
variability alone (24).

Data analysis strategy

Clustering of pre-intervention data
Figure 1 provides an overview of the procedures for

data analysis. After imputation, unsupervised cluster analysis
was conducted with all non-outcome variables, in the 0.7FO
and 1.8FO datasets, respectively. For each imputed dataset, a
dissimilarity matrix was constructed using the “daisy” command
within the R cluster package. Each value in the matrix

referred to the distance between participants, with higher values
corresponding to greater dissimilarity (25).

Two different clustering methods were conducted, in order
to determine which method led to clearest cluster segregation
upon visual inspection. These methods were PAM (Partitioning
Around Medoids) also known as k-medoids clustering, where k,
the number of clusters, must be stipulated (26); and hierarchical
clustering (27), calculating the distance between participants
and merging them via application of linkage methods (28).
The highest average silhouette value was used to determine
the optimal number of clusters after PAM clustering, while
the cluster dendrogram informed the number of clusters after
hierarchical clustering, with clusters separated using the cutree
function. The optimal linkage method for computing the cluster
dendrograms was selected by comparing the agglomerative
coefficient of four methods (average, single and complete
linkage, and Ward’s minimum variance), with the highest
value determining the method chosen. These procedures were
performed using the cluster and stats R packages. Final cluster
membership was defined as the cluster most frequently assigned
to each participant across the 0.7FO and 1.8FO imputed
datasets, respectively (≥3/5 of the imputed datasets).

FIGURE 1

Overview of analysis pipeline.
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Dimension reduction, via principal components analysis
(PCA), was undertaken using the stats R package, with results
visualized using the ggbiplot package. The variables with the
greatest loadings on each component were examined.

Supervised analysis methods
Several variable selection techniques were chosen to

generate models with relevant predictors for each outcome of
interest. Results across the 5 imputed datasets were aggregated
to form final models and to compare methods. Figure 1 presents
a general overview of the analysis procedure.

Using the leaps package in R, forward stepwise selection was
used to add predictors sequentially that maximally improved the
fit of the model to the given outcome. Then, backwards selection
was used, starting with a model containing all predictors and
sequentially removing predictors that added least to the fit.
Both methods were appropriate for the FINGEN dataset since
the number of participants was greater than the number of
predictors (29).

Next, the shrinkage method LASSO (Least Angle Selection
and Shrinkage Operator) was applied using the glmnet package
in R (30). Briefly, the method applies a parameter, lambda (λ),
which shrinks the model coefficients to zero as it increases. Non-
zero coefficients therefore represent the most useful predictors.
These can be any combination of variables, unlike stepwise
selection where predictors are added or subtracted iteratively
(29). Finally, a variable selection technique that makes use of a
non-linear method, Random Forest regression, was applied—
the Boruta algorithm, using the Boruta package in R. The
algorithm works by comparing the importance of each variable
in the dataset to a set of randomly shuffled values, known
as shadow features. Variables are confirmed as important or
rejected after a series of iterations (31).

Model selection and method comparison
For each analysis method, and for each imputed dataset,

10-fold cross-validation or separate training and validation
sets were used to select and validate models. For the stepwise
selection techniques, 10-fold cross-validation was used to
identify the optimal model size that led to the lowest validation
set root mean squared error (RMSE)—the amount of error using
the remainder of the data not used in model development.
Participants were split into 10 random folds using the set
seed function in R. For each possible model size (from 1:n,
constrained by the number of participants per fold), 9 folds
were used as the training set, while 1 fold was used as a
test of the model, providing the validation RMSE. This was
repeated for each fold, with the average validation RMSE
taken across all folds for each model size. To maximize
power, the selected model size was run using all data to
identify the relevant predictors. For example, if a model
containing 3 predictors had the lowest validation RMSE
after 10-fold cross-validation, the 3-variable model using the

full dataset was examined to identify the resulting variables
and coefficients.

The glmnet package for LASSO automatically performs
10-fold cross-validation and provides a range of plausible λ

values. To determine the optimal λ value and resulting model,
validation was performed using a random 2/3 of the data as
the training set with the other 1/3 as the validation set. The λ

value associated with the lowest validation set RMSE was used
to select the corresponding full model. Similarly, for the Boruta
algorithm, a random 2/3 of the data was retained in the training
set, to maximize shuffling of the shadow features and to improve
variable selection. Random Forest regression using the selected
variables only was then run with the training data, and used to
predict the outcome using the test data, with RMSE calculated.

For stepwise methods, a variable was included in a final
pooled linear model if it was included in at least 3 out of 5 of the
imputed dataset models. The pooled regression was conducted
on all imputed datasets simultaneously using the “with” function
in R and pool function within the mice package (20). Non-
zero coefficients that remained across ≥ 3/5 of the LASSO
models were averaged and retained as important predictors.
Variables identified as important across ≥ 3/5 Boruta models
were considered the most relevant for the given outcome.

The method that led to models with the lowest average
validation set RMSE across the 5 imputed datasets was
considered the best fit for a given outcome, i.e., the model
gave the best predictions for change in plasma TG or plasma
PC EPA + DHA after intervention. Final models, with the
lowest validation set RMSE, are presented in two forms:
with numeric coefficients mean-centered but unstandardized,
for model interpretability; and with standardized numeric
coefficients, for the relative importance of predictors to be
compared. For stepwise selection methods, the adjusted R2 value
quantified the goodness of fit of the models.

Due to anticipated high correlation between change score
and pre-intervention value (e.g., TG change vs. pre-intervention
TG levels), Oldham’s transformation was performed to
determine whether the relationship could be explained by
regression to the mean (32). The transformation compares the
mean of baseline and final values of an outcome against the
change score. If the relationship between change score and
pre-intervention value was due to regression to the mean, no
significant relationship would remain after the transformation.

Results

Outcome change scores

Table 1 shows the average changes in plasma TG and
PC EPA + DHA after each intervention arm of the study.
A repeated measures ANOVA with Huynh-Feldt correction
showed that mean plasma TG change differed significantly
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TABLE 1 Mean change (SD) in plasma TG and plasma PC EPA + DHA in
response to fish oil supplementation.

Outcome Treatment arm Mean change
(SD)

Change in plasma TG
(mmol/l) between start and
end of 8-week intervention

0.7 g/day EPA + DHA −0.083 (0.428)

1.8 g/day EPA + DHA −0.152 (0.499)

Control oil 0.011 (0.460)

Change in plasma PC
EPA + DHA (% of total fatty
acids) between start and end
of 8-week intervention

0.7 g/day EPA + DHA 3.05 (1.70)

1.8 g/day EPA + DHA 4.65 (2.28)

Control oil −0.089 (1.40)

between intervention arms [F(1.936, 598.2) = 10.19, p < 0.001],
as has been previously reported (15). Pairwise comparisons
using Bonferroni correction revealed that there was a significant
reduction in TG concentrations after 0.7FO and 1.8FO
compared with control oil, but the difference in TG change
between 0.7FO and 1.8FO was not significant (Table 2). For
plasma TG change, the change score SD was greater after 1.8FO
than after the control oil, but was greater after control oil
compared with 0.7FO. This meant that subsequent supervised
analyses of TG change after 1.8FO only could be conducted.

Repeated measures ANOVA with Huynh-Feldt correction
showed that mean PC EPA + DHA change differed significantly
between intervention arms [F(1.895, 585.5) = 636.1, p < 0.001].
Pairwise comparisons with Bonferroni correction revealed that
there were significant differences in PC EPA + DHA change
between all intervention arms (Table 2), with mean plasma PC
EPA + DHA as a proportion of total fatty acids increasing by
3.05 and 4.65% after 0.7FO and 1.8FO, respectively (Table 1).
The change score SD was greater after both 0.7FO and 1.8FO
compared with control oil, meaning subsequent supervised
analyses could be conducted after both fish oil interventions
(Table 1).

Clustering analysis

0.7FO dataset
Hierarchical clustering using Ward’s method led to clearest

discrimination of clusters, resulting in two clusters with 161 and
149 participants in clusters 1 and 2, respectively (Figure 2A).
PCA revealed a degree of separation of the two clusters across
the first two principal components (PCs) (Figure 2B). There
was no significant difference in plasma TG change after 0.7FO
between the two clusters. Mean change in plasma PC EPA +
DHA for participants in cluster 1 (3.22%) was not significantly
greater than EPA + DHA change for participants in cluster 2
(2.86%), p = 0.058 (Figure 2C).

1.8FO dataset
Hierarchical clustering using Ward’s method was also

found to lead to the clearest discrimination of clusters

with the 1.8FO dataset, with four clusters found to be
optimal (1, n = 82; 2, n = 51; 3, n = 112; 4, n = 65)
(Figure 3A). Clusters did not segregate clearly upon application
of PCA. Due to differences in imputed values between
datasets for plasma TG change, a significant difference in
TG change between clusters was observed in one of the
imputed datasets only [F(3, 206) = 2.67, p < 0.05], with
participants in cluster 3 having a mean reduction in plasma
TG of −0.247 mmol/L, significantly greater than a mean
reduction of −0.052 mmol/L for participants in cluster 1
(p < 0.05, Bonferroni corrected) (Figure 3B). The difference
in EPA + DHA change between clusters was not significantly
different (p = 0.073).

Supervised analysis

Predicting plasma triglycerides change after
1.8FO

Table 3 presents the average RMSEs from supervised
analysis of the five imputed datasets. For predicting plasma TG
change, the lowest average RMSE across all five imputed datasets
corresponded to models generated by LASSO. Table 4 presents
the mean-centered and standardized shrunk coefficients,
averaged across all imputed datasets. In total, 18 predictors
were selected across 3 or more imputed datasets. The
highest positive coefficient corresponded to baseline plasma
insulin concentration, while the highest negative coefficient
corresponded to pre-intervention TG concentration. These
two variables were also selected by the other supervised
analysis methods. For the other numeric predictors, the
standardized coefficients were all less than ± 0.1, with the
next largest coefficients corresponding to baseline LDL and
the fatty acid C20:3n-6, both positively associated with TG
change; and baseline IL-10 levels, negatively associated with
TG change. For the categorical variables, carriers of the T
allele for rs1800588, a polymorphism of the LIPC gene, was
also positively associated with TG change. Figure 4A shows
the relationship between predicted plasma TG change using
the LASSO model, and actual plasma TG change, with an
R2 upon application to the original (un-imputed) dataset
of 0.47. Upon applying Oldham’s transformation, Figure 4B
shows a significant negative correlation (R=−0.19, p < 0.001)
between the average of (log-transformed) pre- and post-
intervention TG values against observed TG change, indicating
that participants with higher pre-intervention plasma TG show
greater reduction after 1.8FO, after adjusting for regression to
the mean.

Predicting plasma PC EPA + DHA change after
0.7FO

The lowest average RMSE for predicting plasma PC EPA +
DHA change after 0.7FO corresponded to models generated by
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TABLE 2 Bonferroni-adjusted pairwise comparisons after repeated measures ANOVA for differences in plasma TG change and plasma PC
EPA + DHA change between intervention groups.

Outcome/test Mean difference Test statistic Bonferroni-adjusted p-value

Change in plasma TG between start and end of 8-week intervention (mmol/L)

0.7 g/day EPA + DHA – control oil −0.095 −2.594 0.0298

1.8 g/day EPA + DHA – control oil −0.163 −4.162 0.0001

1.8 g/day EPA + DHA – 0.7 g/day EPA + DHA −0.069 −2.082 0.1144

Change in plasma PC EPA + DHA between start and end of 8-week intervention (% of total fatty acids)

0.7 g/day EPA + DHA – control oil 3.139 25.44 <0.0001

1.8 g/day EPA + DHA – control oil 4.740 31.45 <0.0001

1.8 g/day EPA + DHA – 0.7 g/day EPA + DHA 1.601 12.32 <0.0001

FIGURE 2

Cluster plots of datasets containing baseline variables and data collected prior to intervention with 0.7 g/day EPA + DHA. Each participant is
displayed as one data point, by visualizing the clusters using the first of the imputed datasets. (A) Visualization of hierarchical clusters, cluster 1 ◦
(black, n = 161), cluster 2 1 (gray, n = 149). (B) PCA plot of pre-0.7 g/day data visualizing clusters across the first two principal components
(clusters as described in A). (C) Clustering as shown in a with gradation of shading relating to change in plasma PC EPA + DHA (as% of total fatty
acids) after 0.7 g/day EPA + DHA intervention, with darker shading corresponding to greatest increases in EPA + DHA. Legend in top right shows
range of EPA + DHA change. PC, plasma phosphatidylcholine; PCA, principal components analysis.

forward stepwise selection (Table 3). Table 5 shows both the
mean-centered coefficients, pooled from the 5 imputed datasets,
and standardized coefficients calculated from running the model
against the standardized non-imputed dataset, with an adjusted
R2 value of 0.32. The final model contained 6 predictors with
positive coefficients for age, sex, a SNP in the tumor necrosis
factor alpha (TNFα) gene (rs1800629) and pre-intervention
PC docosapentaenoic acid (DPA) proportion, and negative
coefficients for pre-intervention proportions of EPA and DHA.
Figure 5A shows the relationship between predicted and actual

EPA + DHA change using the forward stepwise model, with an

R2 of 0.33 after application to the un-imputed dataset. After

application of Oldham’s transformation, Figure 5B shows no

relationship between the average of pre- and post-intervention
EPA + DHA with observed EPA + DHA change, indicating
that the relationship between pre-intervention EPA + DHA and
subsequent EPA + DHA change after 0.7FO can be explained by
regression to the mean.

Predicting plasma PC EPA + DHA change after
1.8FO

The lowest average RMSE for predicting plasma PC
EPA + DHA change after 1.8FO corresponded to models
generated by backward stepwise selection (Table 3). The final
model contained 11 predictors with positive coefficients for age,
sex and a SNP in the Fatty Acid Binding Protein 1 (FABP1)
gene (rs2241883), and negative coefficients for body mass index
(BMI) and a number of pre-intervention PC fatty acids, as
shown in Table 6. Figure 6A shows the relationship between
predicted and actual EPA + DHA change using the backward
stepwise model, with an R2 of 0.38 after application to the un-
imputed dataset. After application of Oldham’s transformation,
Figure 6B shows a significant positive correlation (R = 0.23,
p< 0.001) between the average of pre- and post-intervention PC
EPA + DHA and observed PC EPA + DHA change, meaning that
after accounting for regression to the mean, there was a greater
change in PC EPA + DHA for participants with higher pre- and
post-intervention average PC EPA + DHA proportions.
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FIGURE 3

Cluster plots of datasets containing baseline variables and data collected prior to intervention with 1.8 g/day EPA + DHA. Each participant is
displayed as one data point. (A) Visualization of hierarchical clusters using the first imputed dataset, cluster 1 ◦ (white, n = 82), cluster 2 1 (black,
n = 51), cluster 3 4 (light gray, n = 112); cluster 4 + (dark gray, n = 65). (B) Visualization of hierarchical clusters using the fourth imputed dataset,
with gradation of shading relating to change in plasma TG concentration (mmol/L) after 1.8 g/day EPA + DHA intervention, with lightest shading
corresponding to greatest reductions in plasma TG concentration. Legend in top right shows range of plasma TG change. TG, triglyceride.

TABLE 3 Model RMSEs after application of supervised analysis methods to the outcomes plasma TG change after 1.8 g/day EPA + DHA, plasma PC
EPA + DHA change after 0.7 g/day EPA + DHA, and plasma PC EPA + DHA change after 1.8 g/day EPA + DHA.

Outcome Plasma TG change
after 1.8 g/day

EPA + DHA

Plasma PC EPA + DHA
change after 0.7 g/day

EPA + DHA

Plasma PC EPA + DHA
change after 1.8 g/day

EPA + DHA

Method Mean RMSE (SD), 5 imputed datasets

Forward stepwise 0.396 (0.006) 1.470 (0.024) 1.982 (0.032)

Backward stepwise 0.400 (0.010) 1.488 (0.015) 1.966 (0.013)

LASSO 0.353 (0.058) 1.521 (0.051) 2.059 (0.170)

Boruta—test set RMSE 0.452 (0.064) 1.610 (0.127) 2.177 (0.106)

Lowest RMSEs for each outcome are given in bold.

To examine the different results after Oldham’s
transformation with 0.7FO and 1.8FO more closely, the
relationship between pre- and post-intervention PC EPA + DHA
with PC EPA + DHA change were examined separately
(Supplementary Figure 2). For both fish oil doses, there was
a negative association between pre-intervention plasma PC
EPA + DHA and subsequent PC EPA + DHA change, of a
similar magnitude for both fish oil doses (Supplementary
Figures 1A,B). However, when comparing post-intervention
PC EPA + DHA proportion with PC EPA + DHA change,
there was a higher positive correlation after 1.8FO (R = 0.68,
Supplementary Figure 1D) than after 0.7FO (R = 0.46,
Supplementary Figure 1C), with PC EPA + DHA increase
more uniform after 1.8FO than after 0.7FO.

Discussion

Nutrition studies typically reveal substantial heterogeneity
in physiological response after an intervention. Studies that

collect data on a large array of predictors of response, in a
sufficient number of participants, can be utilized to identify
potential predictors of this response variability. This is of
interest in the growing fields of precision and personalized
nutrition, where elucidation of predictors of response may help
to identify the characteristics of people most and least likely to
respond beneficially. The results of this analysis revealed that
the application of variable selection techniques, in particular,
can identify new and clinically important predictors that explain
between a third to a half of the variability in change in plasma

TG and PC EPA + DHA, after an intervention with fish
oil. Our predictive models showed greater TG-lowering with
lower pre-intervention levels of plasma insulin, LDL cholesterol
and C20:3n-6 levels, along with C carriers (compared with

T carriers) of the SNP rs1800588; and greater TG-lowering
in those with higher pre-intervention levels of plasma TG

(additional to regression to the mean) and serum IL-10. For
predicting change in plasma PC EPA + DHA, greater increases
were observed with higher age and female sex, along with
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TABLE 4 Shrunk coefficients after LASSO analysis for predicting
plasma TG change after 1.8 g/day EPA + DHA.

Variable
name

Mean-centered
coefficient (SD)

Standardized
coefficient

Intercept −0.330 (0.103) 0

APOE—APOE4
variant

−0.010 (0.006)

Baseline BMI
(kg/m2)

0.002 (0.001) 0.017

Baseline CRP
(mg/l)

0.005 (0.002) 0.030

Baseline plasma
insulin (mmol/L)

0.014 (0.003) 0.118

Baseline IL-10
(pg/ml)

−0.007 (0.002) −0.045

Baseline VCAM-1
(ng/ml)

<−0.001 −0.030

Pre-intervention
plasma TG
(mmol/L)

−0.442 (0.048) −0.577

Pre-intervention
LDL-cholesterol
(mmol/L)

0.035 (0.006) 0.066

Fruit
consumption (g)

<0.001 −0.011

Saturated fat
consumption (g)

0.001 (0.001) 0.040

rs320 (G > T) −0.015 (0.004)

rs2250656 (C > T) −0.017 (0.009)

rs1800588 (T > C) 0.058 (0.031)

rs1800795 (C > G) 0.024 (0.012)

rs1800896 (C > T) 0.015 (0.009)

rs5370 (T > G) 0.054 (0.030)

C20:3n-6 0.027 (0.012) 0.049

C20:4n-6 0.006 (0.002) 0.024

Variables listed were selected by 3 or more of the 5 imputed datasets, and depict the mean
(SD) of their shrunk coefficients across all imputed datasets for which they were selected.
Both mean-centered (left) and standardized (right, variables on continuous numeric
scale only) shrunk coefficients are presented. APOE/APOE4, apolipoprotein E3/E4 or
E4/E4; CRP, C-reactive protein; IL-10, interleukin 10; LDL, low-density lipoprotein; TG,
triglyceride; VCAM-1, vascular cell adhesion protein 1.

lower levels of baseline plasma C20:5n-3 (EPA) and C22:6n-
3 (DHA), for both doses of fish oil. However, the relationship
between baseline EPA + DHA levels and degree of change
differed between the 0.7FO and 1.8FO fish oil interventions,
with the relationship for 0.7FO explained by regression to the
mean, while increases in EPA + DHA after 1.8FO were more
uniform. This means that greater increases in EPA + DHA
than expected were observed in those with higher baseline
EPA + DHA levels.

Change in plasma TG and plasma PC EPA + DHA
were the outcomes of interest in this study and were
used on a continuous scale rather than being dichotomized
into “responders” or “non-responders” to the intervention

to maximize statistical power (33, 34). Findings from this
study identify important physiological predictors of response
heterogeneity at a group level for the given outcomes of
interest. The final models were generated through application
of different variable selection methods—with forward and
backward stepwise selection, and LASSO, generating the
models with the lowest RMSE for predicting change in
plasma TG after 1.8FO and in PC EPA + DHA after 0.7FO
and 1.8FO. Stepwise selection methods such as forward and
backward stepwise selection have been criticized (35, 36) as
they are often overfit to training data and undergo lack of
validation, or are used as the sole model-building approach.
In this study, we mitigated these limitations by using cross-
validation to select the final model size, repeating the process
across 5 imputed datasets to determine the most appropriate
predictors to retain in the final model, and comparing the
validation set RMSEs with models generated by other variable
selection methods. While cross-validation helps to prevent
model overfitting, it will be important to validate these models
using external, independent datasets to ascertain whether
findings from the FINGEN study are generalizable to other
populations (37).

The variables selected by LASSO for predicting plasma
TG change after 1.8FO (Table 4) included baseline BMI,
plasma insulin concentration and saturated fat intake, and
pre-intervention LDL-cholesterol concentration, all of which
had positive (shrunk) coefficients, meaning that higher values
of these predictors were associated with less TG-lowering.
Each of these predictors is known to be associated with
higher TG concentrations, with obesity and insulin resistance
being features of the metabolic syndrome (38). Conversely,
other predictors had negative coefficients, including APOE4
carriers, meaning this variant was associated with greater
plasma TG-lowering than other APOE genotypes. This supports
the previous findings from the FINGEN cohort for a non-
significant trend in greater TG reductions in APOE4 carriers,
with the greatest TG reductions in men carrying APOE4
(15). Baseline concentration of plasma interleukin 10 (IL-
10) and self-reported fruit consumption were also among
the predictors with negative coefficients; higher values of
both are associated with better health status, and these
participants were more likely to show falls in plasma TG in
response to the intervention. Apart from the association of
higher pre-intervention plasma TG concentration with greater
TG-lowering, the variables selected by LASSO suggest that
participants with a profile indicative of lower heart disease risk
are more likely to have greater plasma TG-lowering after 1.8
g/day EPA + DHA.

Participants who were older and female tended to have the
greatest increases in plasma PC EPA + DHA (Tables 5, 6),
confirming findings from a previous study (39). For change
after 1.8FO only, higher BMI was associated with a lower
increase in PC EPA + DHA, in line with previous findings
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FIGURE 4

Graphs depicting results from supervised analysis with plasma TG change after 1.8 g/day EPA + DHA as intervention. (A) Scatter plot comparing
actual TG change against predicted TG change using the LASSO model, averaged across all imputed datasets; (B) scatter plot depicting the
correlation between the average of logged plasma TG values pre- and post-1.8g/day EPA + DHA intervention with observed TG change. Dashed
line represents no change. LASSO, Least Angle Selection and Shrinkage Operator; TG, triglyceride.

TABLE 5 Model output after performing forward stepwise regression for predicting plasma PC EPA + DHA change after 0.7 g/day EPA + DHA.

Pooled mean centered regression coefficients Standardized regression coefficients, un-imputed dataset

Term Estimate Std. error Test statistic p Term Estimate Std. error Test statistic p

Intercept 2.536 0.129 19.61 <0.001 Intercept 2.686 0.119 22.49 <0.001

Age 0.021 0.006 3.280 0.001 Age 0.281 0.085 3.300 0.001

Sex—Female 0.681 0.165 4.139 <0.001 Sex–Female 0.694 0.170 4.094 <0.001

rs1800629 – G/A 0.400 0.178 2.243 0.026 rs1800629
(G > A)

0.230 0.082 2.806 0.005

rs1800629—A/A 0.649 0.337 1.926 0.055

C20:5n-3 −0.859 0.118 −7.285 <0.001 C20:5n-3 −0.727 0.102 −7.119 <0.001

C22:5n-3 1.514 0.346 4.371 <0.001 C20:5n-3 0.376 0.091 4.124 <0.001

C22:6n-3 −0.247 0.077 −3.206 0.001 C20:5n-3 −0.325 0.101 −3.218 0.001

Data showing mean-centered regression coefficients pooled across all imputed datasets (left), and upon applying the model to the standardized un-imputed dataset (right, continuous
numeric scale variables standardized only).

(39). For predicting PC EPA + DHA change after 1.8FO, higher
pre-intervention levels of the saturated fatty acids palmitic
(C16:0) and stearic acid (C18:0), the trans fatty acid vaccenic
acid (C18:1n-7) and the unsaturated fatty acids linoleic acid
(C18:2n-6) and arachidonic acid (C20:4n-6) were associated
with a lesser increase in PC EPA + DHA (Table 6), which
has, to the best of our knowledge, not been reported before.
On the other hand, for the model predicting PC EPA + DHA
change after 0.7FO, a higher proportion of DPA in plasma PC
was associated with greater increases in PC EPA + DHA in
response to supplementation. As desaturation of DPA leads to
the formation of DHA, DHA levels are likely to increase if
more DPA is available (40), and DPA supplementation has been
shown to increase DHA levels in plasma TG (41). As plasma
PC fatty acid proportions were included in this analysis, this
suggests that lower levels of other fatty acids will enable EPA +

DHA to form a greater proportion of total plasma PC fatty acids.
Unsurprisingly, higher pre-intervention concentrations of EPA
(C20:5n-3) and DHA (C22:6n-3) were associated with a smaller
increase in PC EPA + DHA after both fish oil interventions, as
has been observed previously (39). The standardized coefficients
for pre-intervention EPA were approximately twice as large as
the coefficients for DHA (Tables 5, 6), suggesting that EPA
status was a more important predictor of incorporation of
EPA + DHA into PC. This makes sense given that DHA is
a downstream metabolite of EPA (40). Interestingly, different
results were observed upon applying Oldham’s transformation
to EPA + DHA change after each fish oil intervention. As the
relationship between the average of pre- and post-intervention
EPA + DHA with EPA + DHA change was not significant
for 0.7FO, this suggests the relationship can be explained
by regression to the mean. However, the significant positive

Frontiers in Nutrition 10 frontiersin.org

https://doi.org/10.3389/fnut.2022.989716
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/


fnut-09-989716 October 19, 2022 Time: 15:8 # 11

Potter et al. 10.3389/fnut.2022.989716

FIGURE 5

Graphs depicting results from supervised analysis with plasma PC EPA + DHA change after 0.7 g/day EPA + DHA intervention. (A) Scatter plot
comparing actual PC EPA + DHA change against predicted change using the final forward stepwise model. (B) Scatter plot depicting the
correlation between the average of pre- and post-intervention plasma PC EPA + DHA proportion against observed change in EPA + DHA
proportions. Dashed line represents no change. PC, plasma phosphatidylcholine.

TABLE 6 Model output after performing backward stepwise regression for predicting plasma PC EPA + DHA change after 1.8 g/day EPA + DHA.

Pooled mean centered regression coefficients Standardized regression coefficients, un-imputed dataset

Term Estimate Std. error Test statistic p Term Estimate Std. error Test statistic p

Intercept 3.915 0.193 20.27 0 Intercept 4.235 0.157 26.95 <0.001

Age 0.043 0.009 4.777 <0.001 Age 0.563 0.115 4.897 <0.001

Sex—Female 0.799 0.224 3.572 <0.001 Sex—Female 0.774 0.224 3.451 0.001

BMI −0.088 0.035 −2.537 0.012 BMI −0.320 0.118 −2.716 0.007

rs2241883—T/C 0.564 0.229 2.462 0.014 rs2241883
(T > C)

0.323 0.107 3.012 0.003

rs2241883—C/C 0.806 0.343 2.350 0.019

C16:0 −0.429 0.109 −3.922 <0.001 C16:0 −0.844 0.219 −3.852 <0.001

C18:0 −0.281 0.109 −2.572 0.011 C18:0 −0.496 0.197 −2.515 0.012

C18:1n-7 −0.350 0.120 −2.904 0.004 C18:1n-7 −0.488 0.173 −2.813 0.005

C18:2n-6 −0.454 0.091 −5.009 <0.001 C18:2n-6 −1.304 0.263 −4.966 <0.001

C20:4n-6 −0.491 0.111 −4.408 <0.001 C20:4n-6 −0.903 0.211 −4.287 <0.001

C20:5n-3 −1.670 0.202 −8.275 <0.001 C20:5n-3 −1.337 0.163 −8.217 <0.001

C22:6n-3 −0.548 0.112 −4.882 <0.001 C22:6n-3 −0.702 0.142 −4.935 <0.001

Data showing mean-centered regression coefficients pooled across all imputed datasets (left), and upon applying the model to the standardized un-imputed dataset (right, continuous
numeric scale variables standardized only).

association that remained after 1.8FO suggests that a greater
increase in EPA + DHA occurred than would be expected in
those with higher pre-intervention EPA + DHA. This finding
supports a lack of a “ceiling effect,” meaning higher pre-
intervention plasma PC EPA + DHA levels do not limit further
increases in EPA + DHA in response to supplementation. The
findings of the JELIS trial lend support to this claim, where
Japanese participants had a reduction in coronary events after
EPA supplementation, despite high habitual consumption of
fish and thus high pre-intervention plasma LC n-3 PUFA status
(42).

A strength of this analysis approach was the use of a large
dataset with many variables, with the potential to uncover

new variables associated with change in plasma TG and
PC EPA + DHA levels. Furthermore, the crossover design
enabled analyses to be performed on the same participants,
enabling better comparisons to be made between the results
for EPA + DHA change after both 0.7FO and 1.8FO. However,
the analysis may have been limited by the statistical power
of the dataset, with a large number of predictors considered
in relation to the number of participants. Despite this, the
supervised analysis methods applied in this paper were suitable
for use on high-dimensional datasets, where the power is
even smaller due to the number of predictors being greater
than the number of participants (27). These types of dataset
are increasingly common in an era of precision medicine,
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FIGURE 6

Graphs depicting results from supervised analysis with plasma PC EPA + DHA change after 1.8 g/day EPA + DHA intervention. (A) Scatter plot
comparing actual PC EPA + DHA change against predicted change using the final backward stepwise model; (B) scatter plot depicting the
correlation between the average of pre- and post-intervention plasma PC EPA + DHA proportion against observed change in EPA + DHA
proportions. Dashed line represents no change. PC, plasma phosphatidylcholine.

where information on an array of markers including genotype,
metabolomics and microbiome are increasingly collected (1,
43). While limiting the number of variables considered in this
analysis would have improved statistical power, this would
not have made full use of the dataset, nor enabled potential
discovery of new predictors of response to the outcomes of
interest. Using validation approaches such as cross-validation to
determine the size of models selected, and performing analyses
across 5 imputed datasets, also increased the likelihood that
models contained relevant variables, as final models considered
variables that were only in common across at least 3 of the 5
imputed datasets.

In conclusion, the application of supervised analysis
approaches, particularly variable selection methods, led to
the identification of new variables for predicting change
in plasma TG and plasma PC EPA + DHA after fish
oil supplementation. This means that females and those
who are older are more likely to benefit from fish oil
supplements in terms of increasing the omega-3 index.
In addition, those with higher levels of plasma TG and
certain inflammatory markers, together with lower levels of
plasma insulin, LDL cholesterol, C20:3n-6, and saturated
fat consumption, are more likely to benefit from fish oil
supplements in terms of TG lowering, based on the results of
this study. A similar analysis approach applied to data from
other large fish oil supplementation studies could provide an
external validation of our models, or help to identify additional
markers of response. Our study highlights how application of
appropriate statistical methods to rich datasets can develop our
knowledge of the factors underpinning physiological response
heterogeneity to interventions, and hence provide a useful tool
for precision nutrition and in the future tailoring of dietary
recommendations.
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