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High-throughput next-generation sequencing (NGS) provides insights into

genome-wide mutations and can be used to identify biomarkers for the

prediction of immune and targeted responses. A deeper understanding

of the molecular biological significance of genetic variation and effective

interventions is required and ultimately needs to be associated with clinical

benefits. We conducted a retrospective observational study of patients in

two cancer cohorts who underwent NGS in a "real-world" setting. The

association between differences in tumor mutational burden (TMB) and

clinical presentation was evaluated. We aimed to identify several key mutation

targets and describe their biological characteristics and potential clinical value.

A pan-cancer dataset was downloaded as a verification set for further analysis

and summary. Natural product screening for the targeted intervention of key

markers was also achieved. The majority of tumor patients were younger adult

males with advanced cancer. The gene identified with the highest mutation

rate was TP53, followed by PIK3CA, EGFR, and LRP1B. The association of

TMB (0–103.7 muts/Mb) with various clinical subgroups was determined. More

frequent mutations, such as in LRP1B, as well as higher levels of ferritin and

neuron-specific enolase, led to higher TMB levels. Further analysis of the key

targets, LRP1B and APC, was performed, and mutations in LRP1B led to better

immune benefits compared to APC. APC, one of the most frequently mutated

genes in gastrointestinal tumors, was further investigated, and the potential
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interventions by cochinchinone B and rottlerin were clarified. In summary,

based on the analysis of the characteristics of gene mutations in the "real

world," we obtained the potential association indicators of TMB, found the key

signatures LRP1B and APC, and further described their biological significance

and potential interventions.

KEYWORDS

next-generation sequencing, tumor mutation burden, targeted therapy and
immunotherapy, LRP1B, APC

Background

Despite the rapid development of various clinical
management strategies, cancer remains a dominant threat
to human health in the 21st century (1). This is partly due to
the fact that cancer therapies are still "one-size-fits-all" models
based on organ-centric approaches that often fail to consider
the personalized genomic landscape of tumors. Personalized
medicine, which is designed to match the right drugs to the
individual patients, is an attractive strategy that promises
to improve efficacy while reducing side effects through the
integration of genomic, transcriptomic, and proteomic data
from tumor samples in oncology decision-making (2). Cancer
treatment has benefited from advances in precision medicine,
making it more relevant and effective. This is particularly
true for targeted therapy models against driver genomic
alterations, which have improved outcomes for patients with
different types of cancer. This approach heavily relies on the
efforts of the scientific community over the past few decades
to define the cancer genomic landscape, thereby laying the
foundation for personalized medicine and improving our
understanding of cancer biology and tumor diversity (3); the
development of next-generation sequencing (NGS) that has
allowed rapid identification of comprehensive tumor genome
profiles and their mutations (base pair substitution, copy
number variation, insertion/deletion, and rearrangement),
which can be used to match patients with targeted therapies
against these carcinogenic drivers (4). Although genomics
seems to be the most relevant starting point for the precision
medicine approach, determining the molecular phenotype
and mutation characteristics is necessary to better understand
tumors and improve the overall efficacy of precision medicine
approaches in the clinical management of cancer patients.

NGS is a high-throughput sequencing method that can
simultaneously identify millions of data points; furthermore,
it can provide a static measure of changes within the
tumor genome, many of which are known to influence the
tumor’s response to specific clinical interventions (5). In 2017,
the FDA approved FoundationOne CDx, the first extensive

concomitant diagnostic tool for solid tumors (6). Since then,
NGS panels based on various gene sizes have been widely
evaluated. NGS has successfully guided the clinical choice of
targeted therapies and immunotherapy for various cancers
through the identification of several actionable variants, EGFR,
HER2, and PARP, achieving significant clinical benefits in
multiple cancer types (7–9). Furthermore, ongoing studies and
clinical trials have begun to evaluate tumor mutational burden
(TMB) and microsatellite instability (MSI). High-throughput
analysis methods are constantly being developed in parallel
with sophisticated data analysis software tools to use these
parameters to improve therapeutic efficacy (10).

To date, several studies have shown that molecular
genomic profiling is a key tool for identifying clinically relevant
information for the development of effective personalized
therapeutic interventions (11). Because of its success,
this approach has remained a strong focus in anticancer
exploration. The development of personalized medicine, led
by NGS, combines the hot topics of cancer management and
genomics, and the number of cancer genomes sequenced
continues to grow exponentially; however, a relatively small
proportion of cases have been treated using molecular-
guided interventions. Therefore, further work identifying
the potential benefits and optimal use of targeted therapy or
immunotherapy is needed to design more relevant clinical
evaluations (12).

Our study retrospectively analyzed the “real-world”
evidence to determine the comprehensive genomic profile
and the impact of the routine inclusion of NGS. We analyzed
the benefits of NGS-guidance to patients and their relevant
clinical characteristics. Based on a high-throughput database
and a large sample immunotherapy cohort, the immunological
characteristics of the key target, LRP1B, were explored. Further,
molecular docking analysis of APC was performed using a small
molecule library, and the intervention value of cochinchinone
B and rottlerin on the APC gene was determined. As the APC
gene is one of the most frequently mutated known drivers in
colorectal cancer, our study provides potential intervention
measures for the associated disease.
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Materials and methods

Study design and patients

All NGS-based genomic profiling assays were commercially
available multi-gene panels produced by Yikon Genomics
(Shanghai, China). We conducted a retrospective, observational
study of cancer patients who underwent NGS, and the design of
this study is described in Figure 1. These patients underwent
comprehensive genomic profiling (CGP) of tumor or body
fluid samples, following the requisite consent protocols. The
patients’ CGP, gene mutation, TMB, and MSI expression
were determined; their clinical and treatment information was
extracted from the electronic medical records of the Weifang
Medical System. Patients previously treated with targeted drugs
were excluded because there was some concern that this may
influence their mutational profile. This study was conducted in
accordance with the Declaration of Helsinki, and the protocol
was approved by the ethics committee of Weifang Traditional
Chinese Hospital.

Library construction and
next-generation sequencing

Each sample underwent genomic extraction, and 30–500 ng
of this DNA was used to generate fragments of approximately
150 bp for library construction. Thereafter, end repair, A-tailing,
and adaptor ligation were performed as described in the
standard library construction protocol. These libraries were
hybridized to a custom pool of oligonucleotides for target
enrichment, and the probe panel was designed to cover cancer-
specific genes in 593 tumor tissue samples and 418 plasma
samples. Enriched libraries were amplified and sequenced using
2 × 150 bp paired-end reads on NovaSeq 6000 (Illumina, San
Diego, CA, United States).

Mutation analysis

Differences in exons were detected using a combination
of depth of coverage and split-read analysis, supplemented
with additional alignments generated using SLOPE.
Frameshift, nonsense, missense, or splice site mutations of
key genes predicted to be deleterious to protein function
were validated using Sanger sequencing or droplet digital
PCR, according to different allele mutation frequencies.
The Yikon Genomics Panel has been proven to estimate
TMB accurately. When 6–20 mutations per million bases
in the tissue samples and 6–16 mutations per million
bases in the body fluid samples were applied as the limits,
the TMB level could be stratified into three tertiles: low,
intermediate, and high.

The PD-L1 combined positive score was defined as the
number of PD-L1-positive tumors and immune cells divided
by the total number of tumor cells multiplied by 100. A value
of one or greater was used to estimate PD-L1-positive tumors.
MSI is evaluated based on the expression of mismatch repair
genes and is linked to immunotherapy efficacy. Owing to the
low benefit of immunotherapy in the MSI-L group, researchers
developed the Yikon Genomics Panel combined MSI-L with the
microsatellite stability (MSS) group and further defined MSI as
two modes: MSI-H and MSS.

Analysis and verification of pan-cancer
samples in the database

The TMB and clinical data of pan-cancer samples from
The Cancer Genome Atlas (TCGA) data portal were used
as independent verification sets, and all cancer types with
case projects greater than 100 were used for further analysis.
Within each cancer type, the mutation status of key target
genes and their effects on TMB and survival were elucidated.
Furthermore, through integration with transcriptome data,
Gene Set Enrichment Analysis (GSEA) identified significantly
enriched pathways in the mutation group.

Thereafter, we mapped mutations and wild-type subsets of
tumor patients to immune cell-related gene sets reported in
previous studies and used single-sample GSEA to correlate the
state of immune cell infiltration to further identify the changes
in immune status caused by key target mutations. Furthermore,
to investigate whether the genomic alterations in the key target
genes were related to the response to immunotherapy, clinical
cohorts with response annotations and matched mutational
data from published studies were collected and consolidated.
To verify our hypothesis, we divided these publicly accessible
immunotherapy-treated patient cohorts into mutant and wild-
type subgroups and analyzed the correlation between the
mutation status and the clinical benefit of immunotherapy.

Targeted therapy screening based on
molecular docking

Small-molecule screening for the targeted intervention of
key genes was achieved based on molecular docking analysis,
using the Surflex-Dock Geom program interfaced with Sybyl.
To qualify and filter the natural products in the ZINC database,
SDF format files were downloaded, and further conformational
enumerations and optimizations were performed. The X-ray
crystal structure of the key proteins was extracted from the
RCSB protein database, and the co-crystal ligands and structural
water molecules were removed from the crystal structures before
the docking simulation. Hydrogen atoms and Kollman total
atomic charges were added and assigned. In our study, the ligand
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FIGURE 1

Study design. Retrospective analysis of tumor patients in a real-world setting and association analysis of clinical and mutation targets
characteristics.

model was based on the binding site of the key target and
receptor, thereby creating a binding pocket. If the original ligand
existed, the structural similarity between the co-crystallized
ligand and the target compound was also considered. Finally,
effective intervention screening was realized based on binding
strength and scoring.

Statistical analysis

All statistical analyses were performed using GraphPad
Prism 7.04 (San Diego, CA, United States) and SPSS 22.0 (IBM
Corp., Armonk, NY, United States). Owing to the non-normal
distribution of the TMB data, the differences between the two
groups and between multiple groups were compared using
the Wilcoxon Mann–Whitney test and Kruskal–Wallis test,
respectively. Correlation analyses for TMB, mutation abundance
and clinical characteristics were performed using Spearman’s
linear regression. All p values were two-sided, and statistical
significance was set at P ≤ 0.05.

Results

Analysis of the clinical and mutational
characteristics of the patients who
underwent next-generation
sequencing

The demographic information of all 177 patients with
tumors who underwent targeted NGS is summarized in Table 1.
In the non-small cell lung cancer cohort, the majority of
the patients who underwent NGS were male (35/56, 62.50%)

with a median age of 61.77 years (range 40–85 years). The
predominant sample types were tissue (26/56, 46.43%) and
blood (27/56, 48.21%); however, there were a few samples from
the hydrothorax and ascites (3/56, 5.36%). Only four samples
could not be allocated a TMB score, and the TMB in the
rest of the population ranged from 0–21.12 muts/Mb, with
a median value of 5.66 muts/Mb. The number of patients
classified as TMB-L, TMB-M, and TMB-H was 36, 14, and 2,
respectively. The most common diagnosis in the pan-cancer
cohort was colorectal cancer (18/121, 14.88%), followed by
gastric cancer (17/121, 14.05%) and breast cancer (11/121,
9.09%) (Supplementary Table S1). They also showed a greater
proportion of male patients and younger age groups, and the
majority were TMB-L patients. The clinical outcomes suggest
that most were stage III and IV patients as well as non-smokers;
MSI status was also collected (Table 1).

The mutation profiles for all 177 patients are summarized
in Figure 2A, while the mutation details of each of the two
cohorts are shown in Figures 2B,C. TP53 showed the highest
mutation rate, followed by PIK3CA, EGFR, LRP1B, and KRAS.
It has a commonality with the mutation details of each of the
two queues. Furthermore, only 19.77% (35/177) of patients had
at least one clinically relevant genomic alteration. We evaluated
the mutational characteristics of TP53, PIK3CA, EGFR, LRP1B,
and KRAS using the Catalogue of Somatic Mutations in Cancer
(COSMIC1) database. COSMIC is the world’s largest and most
comprehensive resource for exploring the impact of somatic
mutations on human cancers. A description of the mutation
type and details of its frequencies for each of the five genes,
based on a large sample set in this database, is provided in
Supplementary Figure S1.

1 https://cancer.sanger.ac.uk/cosmic
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Clinical treatment guided by
next-generation sequencing

A total of 39 patients received NMPA-approved
immunization or targeted medication evaluations. In 24 of these
patients, this resulted in a change to their clinical management,
and of these, only four (16.67%) received standard targeted
therapy guided by gene mutation. The remaining patients
were further subdivided as follows: 17 (70.83%) who received
immunotherapy based on their TMB status (medium or high)
and 3 (12.5%) who received both therapies in subsequent rounds
of administration. Of the 24 patients, half were lung cancer,
and more than half of them (58.33%) had previously received
less than three treatments of chemotherapy, with the highest
number calculated at 25. The average number of chemotherapy
treatments received prior to enrolment in this study was 4.875.
The patient information and clinical outcomes of those who
underwent clinical management changes based on their NGS
profiles are described in Supplementary Table S2. These
clinical management changes refer to the discovery of targeted
therapy or immunotherapy recommended by the guidelines
based on the NGS results, which were then administered to
these patients. Sixteen patients experienced a documented
clinical benefit following the revision of their treatment plan.
In addition, when we evaluated the disclosed hospitalization
costs of 15 of these patients, the average number of days
of hospitalization between the last chemotherapy and first
treatment following NGS-guided changes was 15.4 (coefficient
of variation: 1.70) and 16.5 (coefficient of variation: 1.25)
days, respectively. There were no increases in the daily drug
costs before and after these changes (U1142.37 vs. U1312.15,
p > 0.05).

Comparing tumor mutational burden
values between subgroups

We evaluated the influence of different subgroups on TMB.
Because tumors harboring different gene mutations may have
distinct biological behaviors, we divided our data into subgroups
based on their primary gene mutations, TP53, PIK3CA, EGFR,
LRP1B, and KRAS. These results demonstrated that all five genes
showed increased TMB levels in the mutation group of the
pan-cancer cohort (Figure 2D), while only TP53 and LRP1B
showed this increase in the non-small cell lung cancer cohort
(Figure 2E). Participants with mutations in LRP1B exhibited
medium to high TMB values. The patients older than 65 years
showed increased TMB expression rates within their subgroups
(Figure 2F).

Clinical examination indices, including routine blood
tests, liver and kidney function tests, and tumor biomarker
evaluations, were collected, and their possible correlation with

TMB was evaluated (Table 2). Using Spearman correlation
analysis, we found that ferritin (379.59 ± 462.09, p = 0.006),
neuron-specific enolase (NSE; 20.59 ± 10.77, p = 0.006),
hematocrit (34.79 ± 6.95, p = 0.032), mean corpuscular
hemoglobin concentration (329.41 ± 11.35, p = 0.015), albumin
levels (40.18 ± 4.90, p = 0.003), and total bile acid (8.94 ± 30.38,
p = 0.019) were strongly associated with changes in TMB value.
The curve-fitting diagram constructed based on locally weighted
scatterplot smoothing (Lowess) is shown in Supplementary
Figure S2.

Analysis of key mutation targets based
on verification sets

To further explore the characteristics of the mutations,
25 solid tumor datasets with case studies greater than 100
were downloaded, and 9475 mutation samples were used
for further analysis. The mutation states of the five key
targets and the mutation characteristics of each cancer type
were captured (Supplementary Figure S3 and Supplementary
Table S3). The results showed that among the five key
genes, TP53 had the highest mutation frequency, reaching
35.04% (3320/9475); followed by PIK3CA (12.78%, 1211/9475),
LRP1B (11.01%, 1043/9475), KRAS (6.51%, 617/9475), and
EGFR (3.40%, 322/9475). This was consistent with the results
of pan-cancer data obtained from large samples in the
COSMIC database (Supplementary Figure S1). In addition, the
mutation states of the targets in different cancer species led to
different trends in TMB expression (Supplementary Figure S4).
Mutations in TP53, PIK3CA, EGFR, and KRAS were often
accompanied by a high TMB status in the tumor, while the
special cases were the TP53 mutant group in uterine corpus
endometrial carcinoma and the EGFR mutant group in lung
adenocarcinoma (LUAD) and lung squamous cell carcinoma
(LUSC). In addition, the survival state was analyzed based on
the clinical data of each cancer type (Supplementary Table S4).
Further survival analysis was conducted by integrating the gene
expression profiles and clinical information from the Genotype-
Tissue Expression Portal, and the risk ratios were calculated
(Supplementary Figure S5).

Exploration of typical mutants in the
LRP1B gene

A significant correlation between the LRP1B mutation and
TMB was observed, with the TMB values for the majority of the
patients (20/22, 90.91%) and the LRP1B mutation falling into
the medium or high TMB categories (Figures 2D,E). Given the
relative novelty of the mutations in LRP1B compared to those
in the other four genes, we expanded the analysis of this gene to
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TABLE 1 Clinical characteristics of cancer patients.

Characteristic Non-small cell
lung cancer cohort

(n = 56)

Pan-cancer
cohort
(n = 121)

n % n %

Age, years

Mean 61.77 60.72

Range 40–85 27–97

≤65 39 69.64 72 59.50

>65 17 30.36 49 40.50

Gender

Male 35 62.50 76 62.81

Female 21 37.50 45 37.19

Sample type

Tissue 26 46.43 72 59.50

Blood 27 48.21 45 37.19

Hydrothorax and
ascites

3 5.36 4 3.31

TMB

Mean 5.66 8.01

Range 0–21.12 0–103.7

TMB-L 36 64.29 73 60.33

TMB-M 14 25.00 29 23.97

TMB-H 2 3.57 13 10.74

NA 4 7.14 6 4.96

MSI

MSS 38 67.86 85 70.25

MSI-H 0 0 4 3.31

NA 18 32.14 32 26.44

Smoking

True 10 17.86 27 22.31

False 19 33.93 53 43.80

NA 27 48.21 41 33.89

TMB, tumor mutation burden; MSI, microsatellite instability; MSS,
microsatellite stability.

include 1683 more clinical samples. These results revealed that
the cancer subtype with the highest LRP1B mutation rate was
prostate cancer (5/14, 35.7%), followed by small-cell lung cancer
(7/24, 29.2%), gastric cancer (34/126, 27.0%), and cervical
cancer (4/15, 26.7%); the average mutation rate was observed to
be 15.2% (255/1683) (Figure 2G and Supplementary Table S5).
This differed from the outcome of large pan-cancer samples
in the cBioPortal database2, which may be attributed to the
false-positive expression due to the small sample size of our
"real-world" tumor data (Figure 3A).

Further database-based verification and analysis of LRP1B
were performed. The nucleotide variation and clinical data

2 http://www.cbioportal.org

from 25 solid tumors were obtained from TCGA. The results
suggested that LRP1B displayed a high mutation frequency in
skin cutaneous melanoma (37.55%), LUAD (30.08%), LUSC
(29.24%), and stomach adenocarcinoma (23.67%); this was
consistent with the results obtained from the cBioPortal
database. Survival analysis was based on both the transcriptome
and genome. In addition, transcriptome expression data were
downloaded and transformed into more standardized TPM data
to facilitate between-sample comparisons (Figure 3B).

Kyoto Encyclopedia of Genes and Genomes (KEGG)-
derived gene sets, collected from MSigDB C2, were used in
GSEA. We aligned TCGA data and focused on a single gene,
LRP1B, for the phenotype. Pathways such as "MISMATCH
REPAIR," "BASAL TRANSCRIPTION FACTORS," and "DNA
REPLICATION" were significantly enriched (Supplementary
Figure S6 and Supplementary Table S6). In addition, mutation
of LRP1B led to a variety of metabolic changes. Notably, the
synthesis and metabolic pathways of folic acid were significantly
enriched, which may explain the relationship between TMB and
mean corpuscular hemoglobin concentration to some extent.

Benefit analysis of immunotherapy for
LRP1B mutant subsets

The immunocyte association analysis of single-sample
GSEA in non-small cell lung cancer showed that the LRP1B
mutation led to a high level of immune cell infiltration. The
mutant subsets exhibited extensive enrichment of immune
cells, such as T cells, MHC class I, chemokine receptors,
and macrophages (Figures 4A,B); the same outcome was
obtained based on the immune cell-related gene sets reported
previously (Figures 4C,D). Furthermore, the high level of
immune infiltration in the LRP1B mutant population seems to
be more prominent in LUSC than in LUAD.

The outcomes of mutations showed that the LRP1B mutant
group appeared to be associated with immunotherapy benefits.
To investigate this association, clinical cohorts with response
annotations and matched mutational data obtained from
previous studies were collected and consolidated. We divided
these publicly accessible, immunotherapy-treated patient
cohorts into the LRP1B-MUT and LRP1B-WT subgroups and
analyzed the correlation between LRP1B mutation status and
clinical immunotherapy benefit. In the non-small cell lung
cancer cohort of Hellmann et al. (13), the patients harboring
LRP1B mutation demonstrated an enhance objective response
rate (ORR) and progression-free survival (PFS), the results
were statistically significant (Figures 4E,F). A similar outcome
was observed in the melanoma cohort, wherein the LRP1B
mutant population showed better overall survival (OS) after
immunotherapy (Figure 4G). The potential clinical implications
were stratified by the specific LRP1B mutation state.
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FIGURE 2

Screening and characterization of key genetic mutations. (A) A waterfall map describing genetic mutations appearing with a greater than 5%
frequency in total 177 patients; (B,C) waterfall maps describing genetic mutations appearing with a greater than 10% frequency in non-small cell
lung cancer cohort and pan-cancer cohort respectively; (D,E) Comparison of TMB in mutant and wild-type subgroups for TP53, EGFR, PIK3CA,
LRP1B, and KRAS in non-small cell lung cancer cohort and pan-cancer cohort respectively; (F) Correlation between demographic or
clinicopathological features and TMB. Error bars represent the mean with a 95% CI; (G) Comparison of LRP1B mutation rates in an additional
1683 pan-cancer clinical samples. LRP1B-M: LRP1B mutation, LRP1B-W: LRP1B wild-type. *p < 0.05, **p < 0.01.

APC mutation characteristics analysis
and screening of targeted intervention
molecules

In this study, we identified the mutation of the key
target APC in both the non-small cell lung cancer and pan-
cancer cohort; however, the analysis showed that it was not

associated with TMB and did not provide any immunotherapy
benefit. As a typical tumor suppressor gene, APC can
negatively regulate the canonical WNT signaling pathway and
participate in the regulation of cell-cell adhesion and cell
migration by recognizing and activating Asef (14). In further
GSEA-based pathway analysis of non-small cell lung cancer and
colorectal cancer, pathways closely related to tumorigenesis and
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TABLE 2 Potential correlations between laboratory test
results and TMB.

No. Term Values
(mean ± SD)

Correlation with
TMB

(Spearman test)

Complete
blood Count
1 WBC 7.17 ± 5.65 p = 0.824

2 Neu% 68.58 ± 12.64 p = 0.320

3 Neu# 5.29 ± 5.25 p = 0.817

4 LY% 22.50 ± 11.06 p = 0.178

5 LY# 1.29 ± 0.59 p = 0.137

6 Mon% 6.76 ± 3.77 p = 0.363

7 Mon# 0.42 ± 0.22 p = 0.340

8 Eos% 1.82 ± 1.65 p = 0.076

9 Eos# 0.14 ± 0.33 p = 0.060

10 Bas% 0.32 ± 0.24 p = 0.689

11 Bas# 0.02 ± 0.02 p = 0.959

12 RBC 3.83 ± 0.82 p = 0.172

13 HGB 114.80 ± 23.68 p = 0.167

14 HCT 34.79 ± 6.95 *p = 0.032

15 MCV 91.60 ± 6.90 p = 0.408

16 MCH 30.18 ± 2.71 p = 0.883

17 MCHC 329.41 ± 11.35 *p = 0.015

18 RDW-SD 47.37 ± 9.87 p = 0.893

19 RDW-CV 14.05 ± 2.03 p = 0.743

20 PLT 238.61 ± 99.4 p = 0.580

21 PCT 0.20 ± 0.07 p = 0.352

22 MPV 8.86 ± 1.21 p = 0.772

23 PDW 15.97 ± 0.54 p = 0.506

24 P-LCR 18.32 ± 7.65 p = 0.786

Basic metabolic
tests
25 K 4.10 ± 0.36 p = 0.163

26 Na 136.87 ± 21.32 p = 0.651

27 CI 100.92 ± 5.11 p = 0.271

28 CO2 24.90 ± 2.81 p = 0.414

29 CA 2.34 ± 0.27 p = 0.318

Liver function
tests
30 ALT 34.80 ± 45.33 p = 0.181

31 AST 47.86 ± 123.12 p = 0.333

32 AST/ALT 1.42 ± 0.87 p = 0.882

33 ALP 130.20 ± 175.07 p = 0.059

34 GGT 121.41 ± 384.65 p = 0.128

35 TP 66.97 ± 7.59 p = 0.205

36 ALB 40.18 ± 4.90 **p = 0.003

37 GLO 26.80 ± 4.71 p = 0.876

38 A/G 1.54 ± 0.33 p = 0.178

39 TBIL 13.11 ± 11.72 p = 0.237

40 DBIL 3.83 ± 8.56 p = 0.417

41 IBIL 9.28 ± 4.83 p = 0.073

42 TBA 4.46 ± 6.30 *p = 0.030

Renal function
tests
43 UA 299.45 ± 98.14 p = 0.177

44 UREA 5.16 ± 1.87 p = 0.946

(Continued)

TABLE 2 (Continued)

No. Term Values
(mean ± SD)

Correlation
with TMB

(Spearman test)

Tumor markers
45 CR 65.24 ± 22.56 p = 0.861

46 GLU 5.87 ± 1.66 p = 0.101

47 CEA 97.51 ± 458.65 p = 0.423

48 CA125 66.85 ± 151.64 p = 0.266

49 CYF211 10.05 ± 12.82 p = 0.681

50 NSE 20.59 ± 10.77 **p = 0.006

51 CA199 294.87 ± 777.89 p = 0.127

52 CA724 22.01 ± 57.27 p = 0.115

53 Ferritin 379.59 ± 462.09 **p = 0.006

54 Ki67 62.22 ± 22.92 p = 0.473

Blood coagulation
tests
55 PT-SEC 12.63 ± 1.38 p = 0.811

56 INR 1.06 ± 0.11 p = 0.959

57 PT-% 90.58 ± 12.22 p = 0.959

58 APTT 29.15 ± 4.59 p = 0.639

59 TT 15.93 ± 1.74 p = 0.191

60 Fib 3.66 ± 1.30 p = 0.464

61 DD 1.83 ± 4.12 p = 0.216

Myocardial
zymogram
62 LDH 218.17 ± 95.71 p = 0.072

63 CK 44.67 ± 28.05 p = 0.257

64 CK-MB 32.33 ± 46.01 p = 0.957

65 HBDH 171.00 ± 71.68 p = 0.072

66 CHO 5.33 ± 1.50 p = 0.068

67 TG 1.17 ± 0.46 p = 0.577

68 HDL 1.41 ± 0.53 p = 0.195

69 LDL 2.66 ± 0.97 p = 0.217

*p < 0.05, **p < 0.01. WBC, white blood cell; Neu, neutrophil; LY, lymphocyte; Mon,
monocyte; Eos, eosinophil; Bas, basophil; RBC, red blood cell; HGB, hemoglobin; HCT,
hematocrit; MCV, mean corpuscular volume; MCH, mean corpuscular hemoglobin;
MCHC, mean corpuscular hemoglobin concentration; RDW, red blood cell distribution
width; PLT, platelet; PCT, plateletcrit; MPV, mean platelet volume; PDW, platelet
distribution width; P-LCR, platelet-large cell ratio; ALT, alanine aminotransferase;
AST, aspartate aminotransferase; ALP, alkaline phosphatase; GGT, gamma glutamyl
transferase; TP, total protein; ALB, albumin; GLO, globulin; TBIL, total bilirubin;
DBIL, direct bilirubin; IBIL, indirect bilirubin; TBA, total bile acid; UA, uric
acid; CR, creatinine; GLU, glucose; CEA, carcinoembryonic antigen; NSE, neuron-
specific enolase; PT, prothrombin time; INR, international normalised ratio; APTT,
activated partial thromboplastin time; TT, thrombin time; FiB, fibrinogen; DD,
D-dimer; LDH, lactate dehydrogenase; CK, creatine kinase; HBDH, α-hydroxybutyrate
dehydrogenase; CHO, cholesterol; TG, triglyceride; HDL, high-density lipoprotein; LDL,
low-density lipoprotein.

development were identified, such as “Regulation of intrinsic
apoptotic signaling pathway in response to DNA damage” and
“Response to misfolded protein” (Supplementary Table S7).
Therefore, we considered the potential benefits of small-
molecule targeted therapy rather than those of immunotherapy.

Using the ZINC database, 224,205 natural products and
3,725 small molecular structures with clear identification and
in vitro activity were downloaded and saved in mol2 format
for further molecular docking analysis. The X-ray crystal
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FIGURE 3

Expression and mutation characteristics of LRP1B in different cancer species. (A) Display of 24 cancer species with LRP1B mutation frequency
greater than 15%; (B) Differential expression of LRP1B in 32 cancer subtypes and/or corresponding normal tissues (gray columns) where normal
data are available. *p < 0.05, **p < 0.01, and ***p < 0.001.

structure of APC (PDB ID: 3 NMW) was used as the receptor
protein. Furthermore, we generated active pockets to achieve
the effective docking of small molecules. Docking results
showed that the total scores of 57 small molecules were
higher than 9, of which 15 components scored higher than
10 (Supplementary Table S8). We further analyzed previous
publications regarding these 15 components to determine
whether they were clearly associated with tumors. Finally, the
key components, cochinchinone B and rottlerin, were identified,
and their spatial structure and hydrogen bonding sites were
revealed based on PyMOL visualization (Figure 5).

Discussion

In recent years, NGS has played a pivotal role in the
process of solid tumor treatment becoming individualized.
Personalized therapeutics based on various molecular markers
are becoming increasingly popular in both research and clinical
settings because of their high efficacy and reduced side effects
(15). Although the number of cancers sequenced has increased
exponentially, fewer patients are amenable to NGS-directed
targeted therapy or immunotherapy. The understanding of the
biological significance of genetic alterations still needs to be
improved. In this study, we collected information from 177
patients who underwent NGS. We identified the mutation
characteristics of the two cohorts and analyzed the association
between TMB, genetic alteration, and clinical information.
Importantly, we identified and analyzed the key regulatory
roles of several indicators, particularly LRP1B and APC.
LRP1B mutations were frequently accompanied by higher TMB
scores in both non-small cell lung cancer and pan-cancer
cohorts and led to better immune benefits, thereby suggesting

that LRP1B mutation stratification may play a guiding role
in immunotherapy. Moreover, we identified APC mutations.
Owing to the low immune correlation, we focused on potential
targeted interventions. We determined that cochinchinone B
and rottlerin may be effective interventions by screening a large
number of small molecular compounds.

Tumor mutational burden has been effectively defined
by the rapid development of NGS and shown to be a
reasonably effective marker for patients who may benefit from
immunotherapy as part of their course of treatment. Many
studies have demonstrated a strong correlation between TMB
and clinical management, especially immunotherapy (16). In
the present study, we provide new insights into the interaction
between TMB, different patient characteristics, and clinical
indicators. First, patients older than 65 years demonstrated
increased TMB expression rates; a similar trend was also
observed in smokers. This result is with the research of Lin et al.
(17). Second, our results showed a correlation between TMB and
several clinical markers, including ferritin and NSE. In addition,
we observed that TMB correlates with several biochemical
markers, including hematocrit and albumin; however, because
of the limitations in sample size, these results need to be
interpreted with caution.

The five most frequently mutated genes, TP53, PIK3CA,
EGFR, LRP1B, and KRAS, were identified; we were able to show
that there were differences in the TMB values between the
mutant and wild-type populations. With the exception of EGFR,
all genes demonstrated increased TMB levels in the mutant
group of the non-small cell lung cancer cohort. This is consistent
with the molecular epidemiology data that suggest that
non-small cell lung cancer individuals with EGFR mutations
often present with an "immune-desert" phenotype, where no
inflammation is observed within the tumor microenvironment
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FIGURE 4

Characteristics of immune infiltration and benefit analysis of immunotherapy for LRP1B mutant subsets. (A–D) Immunocyte association analysis
in lung adenocarcinoma and lung squamous cell carcinoma based on ssGSEA and reported immune cell-related gene sets, respectively; (E,F)
The patients harboring LRP1B mutation had a better objective response rate and a longer progress free survival in the non-small cell lung
cancer cohort of Hellmann; (G) Melanoma population with LRP1B mutant showed better overall survival after immunotherapy. *p < 0.05,
**p < 0.01, ***p < 0.001.

along with low overall TMB, immunological tolerance, and
weak immunogenicity (18). We focused on LRP1B because
its mutation rate in this population was approximately 16%
(altered/profiled = 255/1683, Supplementary Table S5). In our
datasets, the TMB rates in samples with LRP1B mutations
tended to fall into the medium or high categories, and further
analysis of 25 independent cancer types verified this outcome,
thereby suggesting that LRP1B mutations may be a good
biomarker for immune intervention. A series of verifications
based on a clinical immunotherapy cohort supported and
validated the hypothesis that after receiving immunotherapy,
patients in the LRP1B mutation group showed higher ORR,
longer OS and PFS. This significant immune benefit was
observed in patients with both non-small cell lung cancer and
melanoma.

We discovered an effective APC mutation in two
cancer cohorts. As a classic tumor suppressor gene,

inactivated mutations in APC are thought to trigger the
“adenomato-carcinoma sequence.” Adenoma is the most
common precancerous lesion in almost all sporadic colorectal
cancer; the "adenomato-carcinoma sequence" plays an
important role in the development of colorectal cancer.
APC participates in a cytoplasmic complex that promotes
the phosphorylation and ubiquitination of the transcription
factor β-catenin and negatively regulates the canonical WNT
signaling pathway. In addition, APC mutations usually occur as
truncation C-terminal mutations in its mutation cluster region,
resulting in defective regulation of β-catenin phosphorylation
and ubiquitination, but potentially increasing activation of
Asef by the ARM domain (19). Therefore, it is necessary to
explore effective targeted interventions for mutant APC. For our
study, we constructed an active pocket to recognize the binding
efficiency of small molecules in the armadillo repeat domain of
APC protein, the potential intervention effect of cochinchinone
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FIGURE 5

The outcome of molecular docking between APC and key compounds. (A,B) Chemical structure depiction of Cochinchinone B and Rottlerin;
(C,D) Whole and partial display of molecular docking. The X-ray crystal structure of APC protein was used as receptor protein and molecules are
present as ball and stick models. The dotted yellow lines in these pictures represent H-bonds, while the docking nucleotide sites were also
displayed.

B and rottlerin were determined via independent docking with
3725 small molecules. The cochinchinone B is a polyphenol
found in Cratoxylum cochinchinense, and rottlerin is a natural
polyphenolic compound found in Mallotus philippensis that
can be used as an inhibitor of various proteins. cochinchinone
B and rottlerin exert antitumor biological activities in many
tumor cells and may provide a potential intervention in cancer,
especially gastrointestinal tumors.

In addition to the continued exploration and analysis at
the molecular level, the practical clinical significance of NGS

needs further interpretation. In our study, NGS identified at
least one potential clinically actionable genomic alteration,
where targeted drugs are marketed in China and approved by
the National Medical Products Administration. However, this
alteration was found in only 35 patients (19.77%), which is
far below the level of other more developed countries (20).
Of the 24 patients who received NGS-guided treatment, only
7 received targeted therapy, whereas the majority of patients
received NGS-guided immunotherapy. However, 16 of these
patients did derive some clinical benefits from NGS-guided
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treatment changes. These data should be improved because
there is a situation in which the samples that some patients
choose to undergo NGS after a period of treatment or
progression of the disease are those from the beginning
of the disease several months or years ago. Identifying the
potential molecular mechanisms underlying the pathology and
progression currently requires synchronized analysis of primary
tumors to avoid the noise associated with the evolution of its
genome over time.

Of equal importance are the clinical costs. Although
our results show that neither the total hospitalization cost
(U15893.91 vs. U19976.25, p > 0.05) nor the average daily cost
(U1142.37 vs. U1312.15, p > 0.05) was different before and
after the NGS-guided treatment, it should be noted that this was
the total cost before reimbursement of medical insurance. The
cost of chemotherapy before sequencing can be fully reimbursed
by medical insurance on a pro rata basis; however, the cost
of targeted drugs and immune preparations is borne by the
patients, which may result in changes to the cost outcomes
described here. In addition, the cost of NGS is also borne by
the patients and remains expensive when using some of the
comprehensive cancer panels. The average cost is approximately
U15000, making this approach less feasible in economically
restricted environments. The first study to report the cost of
anticancer drugs for matched and unmatched treatments using
NGS in cancer patients found that patients who were treated
with NGS-guided treatment had a higher total treatment cost
($68,729 vs. $30,664; p = 0.003), but the drug costs were largely
attributed to longer treatment times rather than higher monthly
drug costs (21). However, the purely economic argument should
be tempered by the benefits of NGS-guided treatment that
may outweigh the increased costs; these include better clinical
efficacy and more stable hospitalization cycles (coefficient of
variation for hospitalization was 1.70 pre-treatment and 1.25
post-treatment).

Next-generation sequencing has successfully guided the
choice of clinically targeted therapies and immunotherapies,
thereby expanding the application of these drugs beyond
the current limitations associated with cancer variants and
pathological subtypes and providing a new understanding of
cancer management. However, clinical outcomes guided by NGS
alone are still unsatisfactory (22). As previously mentioned,
the interval between the acquisition of samples and the receipt
of NGS data may be long, making the data irrelevant for
cancers with fast progression. In principle, additional NGS
analysis and re-sampling should be routinely applied to identify
novel variations associated with tumor progression in patients
(23). Re-sampling and sequencing can more accurately guide
treatment; however, the actual clinical situation is often not
conducive to this approach, with the high cost of NGS
and the traumatic re-acquisition of pathological tissues. Non-
invasive liquid biopsies to detect circulating tumor DNA
(ctDNA), can overcome the limitations of tissue sequencing

and capture the biological heterogeneity of cancer as well as
the dynamic adaptation to anticancer therapies; thus, making
this approach increasingly attractive to clinicians (24). However,
some practical challenges are associated with ctDNA assays,
including the concentration and stability of ctDNA, purification
of these nucleic acids, and degradation of these biomarkers;
these challenges limit their efficacy in the clinic (25, 26).
Additionally, the process of sample collection and isolation is
an important factor. Improper collection, transportation, and
storage can increase degradation and reduce the resolution of
these assays (27). NGS evaluation in larger panels often takes up
to a week, and prolonged NGS processing may force patients to
start ineffective and/or toxic treatments before receiving their
results (28). Therefore, it is critical to identify novel biomarkers
that can be assayed quickly to differentiate between various
conditions (29). Screening high-sensitivity mutations, reducing
panel sets, and constructing a comprehensive biomarker model
beyond the univariate versions currently being used may help
bring these breakthroughs to the clinic.

Despite generating some positive initial results, our study
has several limitations. Some of the conclusions may be
limited by the sample size and follow-up time, which were
insufficient to evaluate long-term survival benefits and any
additional therapeutic changes implicated by additional NGS
data. However, we discovered the clinical benefits of NGS-
guided treatment, and our results were similar to those reported
by Singh et al. (20) and Marquart et al. (30). Most of the
patients in these cohorts were later-line, meaning that the CGP
of these patients in the earlier stages was underrepresented.
In addition, our data were obtained from a single institution,
which increased selection bias but ensured the uniformity of
the data measurement standards. Notably, improvements in
therapeutic management for cancer patients often lag behind
the breakthroughs in driver gene treatment. Thus, we aim to
analyze a larger sample size with a longer follow-up period,
which should provide more detailed genetic profiles and clinical
information for NGS-guided treatment in ’real-world’ patients.
Further in-depth research on key biomarkers will eventually
reduce the differences in treatment among people with specific
molecular characteristics.

Conclusion

Our study provided the characteristics of specific gene
mutations and demonstrated the benefits of NGS for clinical
strategy development. Immunotherapy accounted for the
majority of management changes in this cohort, and TMB was
shown to play an important role in the genetic mapping of the
clinical response. The effect of LRP1B mutation stratification
on immune benefit and potential targeted intervention of APC
were identified. In conclusion, associating molecular profiles to
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clinical benefits in ‘real-world’ patients is the ultimate goal of
personalized treatment.
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SUPPLEMENTARY FIGURE S1

An overview of the types of mutation and breakdown of the substitution
mutations at the five most common mutation sites in this study. (A–C)
TP53; (D–F) EGFR; (G–I) PIK3CA; (J–L) LRP1B; (M–O) KRAS.

SUPPLEMENTARY FIGURE S2

Curve fitting correlation between TMB and clinical indicators.
Unadjusted data is fitted according to locally weighted scatterplot
smoothing, showing the trend of association between data. Especially
with the increase of NSE and ferritin, the level of TMB increased
significantly. MCHC, mean corpuscular hemoglobin concentration; ALB,
albumin; TBA, total bile acid; NSE, neuron-specific enolase.

SUPPLEMENTARY FIGURE S3

Analysis of tumor mutation characteristics based on TCGA Database. (A)
Further analysis of the ten key sites with the highest mutation rate in
each solid tumors (n = 25); (B) Mutation characteristics analysis of 9475
samples, the top 15 genes with the highest mutation frequency were
displayed in waterfall map.

SUPPLEMENTARY FIGURE S4

The correlation between key targets (the top 10 sites with the highest
mutation rate of 25 solid tumors and 5 key mutation sites identified in
clinical samples) and TMB level in various tumors.

SUPPLEMENTARY FIGURE S5

Survival risk analysis of 5 key targets, risk ratios were calculated based
on expression and clinical information. The primary sarcomas in
retroperitoneum, peritoneum, connective, subcutaneous and other soft
tissues are summarized and collectively referred to as SARC.

SUPPLEMENTARY FIGURE S6

KEGG derived gene sets were used to implement GSEA, which focused
on single gene-LRP1B for the phenotype.

Frontiers in Nutrition 13 frontiersin.org

https://doi.org/10.3389/fnut.2022.989989
https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/
https://www.frontiersin.org/articles/10.3389/fnut.2022.989989/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fnut.2022.989989/full#supplementary-material
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/


fnut-09-989989 September 13, 2022 Time: 15:17 # 14

Liu et al. 10.3389/fnut.2022.989989

References

1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer
statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36
cancers in 185 countries. CA Cancer J Clin. (2018) 68:394–424. doi: 10.3322/caac.
21492

2. Brown NA, Elenitoba-Johnson KSJ. Enabling precision oncology through
precision diagnostics. Annu Rev Pathol. (2020) 15:97–121. doi: 10.1146/annurev-
pathmechdis-012418-012735

3. Weinstein JN, Collisson EA, Mills GB, Shaw KR, Ozenberger BA, Ellrott K,
et al. The cancer genome atlas pan-cancer analysis project. Nat Genet. (2013)
45:1113–20. doi: 10.1038/ng.2764

4. Berger MF, Mardis ER. The emerging clinical relevance of genomics in cancer
medicine. Nat Rev Clin Oncol. (2018) 15:353–65. doi: 10.1038/s41571-018-0002-6

5. Frampton GM, Fichtenholtz A, Otto GA, Wang K, Downing SR, He J, et al.
Development and validation of a clinical cancer genomic profiling test based on
massively parallel DNA sequencing. Nat Biotechnol. (2013) 31:1023–31. doi: 10.
1038/nbt.2696

6. Goldberg KB, Blumenthal GM, Pazdur R. The first year of the food and
drug administration oncology center of excellence: landmark approvals in a
dynamic regulatory environment. Cancer J. (2018) 24:131–5. doi: 10.1097/ppo.
0000000000000316

7. Skoulidis F, Heymach JV. Co-occurring genomic alterations in non-small-
cell lung cancer biology and therapy. Nat Rev Cancer. (2019) 19:495–509. doi:
10.1038/s41568-019-0179-8

8. Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V, Bajamonde A, et al.
Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic
breast cancer that overexpresses HER2. N Engl J Med. (2001) 344:783–92. doi:
10.1056/nejm200103153441101

9. Vyas S, Chang P. New PARP targets for cancer therapy. Nat Rev Cancer. (2014)
14:502–9. doi: 10.1038/nrc3748

10. Sicklick JK, Kato S, Okamura R, Schwaederle M, Hahn ME, Williams CB, et al.
Molecular profiling of cancer patients enables personalized combination therapy:
the I-PREDICT study. Nat Med. (2019) 25:744–50. doi: 10.1038/s41591-019-0407-
5

11. Hulsen T, Jamuar SS, Moody AR, Karnes JH, Varga O, Hedensted S, et al.
From big data to precision medicine. Front Med. (2019) 6:34. doi: 10.3389/fmed.
2019.00034

12. Singal G, Miller PG, Agarwala V, Li G, Kaushik G, Backenroth D, et al.
Association of patient characteristics and tumor genomics with clinical outcomes
among patients with non-small cell lung cancer using a clinicogenomic database.
JAMA. (2019) 321:1391–9. doi: 10.1001/jama.2019.3241

13. Hellmann MD, Nathanson T, Rizvi H, Creelan BC, Sanchez-Vega F, Ahuja
A, et al. Genomic features of response to combination immunotherapy in patients
with advanced non-small-cell lung cancer. Cancer Cell. (2018) 33:843–852.e4. doi:
10.1016/j.ccell.2018.03.018

14. Kawasaki Y, Sato R, Akiyama T. Mutated APC and Asef are involved in the
migration of colorectal tumour cells. Nat Cell Biol. (2003) 5:211–5. doi: 10.1038/
ncb937

15. Mosele F, Remon J, Mateo J, Westphalen CB, Barlesi F, Lolkema MP, et al.
Recommendations for the use of next-generation sequencing (NGS) for patients
with metastatic cancers: a report from the ESMO Precision Medicine Working
Group. Ann Oncol. (2020) 31:1491–505. doi: 10.1016/j.annonc.2020.07.014

16. McNamara MG, Jacobs T, Lamarca A, Hubner RA, Valle JW, Amir E. Impact
of high tumor mutational burden in solid tumors and challenges for biomarker
application. Cancer Treat Rev. (2020) 89:102084. doi: 10.1016/j.ctrv.2020.10
2084

17. Lin C, Shi X, Zhao J, He Q, Fan Y, Xu W, et al. Tumor mutation
burden correlates with efficacy of chemotherapy/targeted therapy in advanced
non-small cell lung cancer. Front Oncol. (2020) 10:480. doi: 10.3389/fonc.2020.0
0480

18. Dong ZY, Zhang JT, Liu SY, Su J, Zhang C, Xie Z, et al. EGFR
mutation correlates with uninflamed phenotype and weak immunogenicity,
causing impaired response to PD-1 blockade in non-small cell lung cancer.
Oncoimmunology. (2017) 6:e1356145. doi: 10.1080/2162402x.2017.1356145

19. Zhang Z, Chen L, Gao L, Lin K, Zhu L, Lu Y, et al. Structural basis for the
recognition of Asef by adenomatous polyposis coli. Cell Res. (2012) 22:372–86.
doi: 10.1038/cr.2011.119

20. Singh AP, Shum E, Rajdev L, Cheng H, Goel S, Perez-Soler R, et al. Impact and
diagnostic gaps of comprehensive genomic profiling in real-world clinical practice.
Cancers. (2020) 12:1156. doi: 10.3390/cancers12051156

21. Chawla A, Janku F, Wheler JJ, Miller VA, Ryan J, Anhorn R, et al. Estimated
cost of anticancer therapy directed by comprehensive genomic profiling in a
single-center study. JCO Precis Oncol. (2018) 2:PO.18.00074. doi: 10.1200/po.18.0
0074

22. Letai A. Functional precision cancer medicine-moving beyond pure
genomics. Nat Med. (2017) 23:1028–35. doi: 10.1038/nm.4389

23. Lassalle S, Hofman V, Heeke S, Benzaquen J, Long E, Poudenx M, et al.
Targeted assessment of the EGFR status as reflex testing in treatment-naive non-
squamous cell lung carcinoma patients: a single laboratory experience (LPCE, Nice,
France). Cancers. (2020) 12:955. doi: 10.3390/cancers12040955

24. Buono G, Gerratana L, Bulfoni M, Provinciali N, Basile D, Giuliano M, et al.
Circulating tumor DNA analysis in breast cancer: Is it ready for prime-time?Cancer
Treat Rev. (2019) 73:73–83. doi: 10.1016/j.ctrv.2019.01.004

25. Sedlackova T, Repiska G, Celec P, Szemes T, Minarik G. Fragmentation of
DNA affects the accuracy of the DNA quantitation by the commonly used methods.
Biol Proced Online. (2013) 15:5. doi: 10.1186/1480-9222-15-5

26. Thakur BK, Zhang H, Becker A, Matei I, Huang Y, Costa-Silva B, et al.
Double-stranded DNA in exosomes: a novel biomarker in cancer detection. Cell
Res. (2014) 24:766–9. doi: 10.1038/cr.2014.44

27. Chen M, Zhao H. Next-generation sequencing in liquid biopsy: cancer
screening and early detection. Hum Genomics. (2019) 13:34. doi: 10.1186/s40246-
019-0220-8

28. Rangachari D, Drake L, Huberman MS, McDonald DC, VanderLaan PA,
Folch E, et al. Rapidly fatal advanced EGFR-mutated lung cancers and the need for
rapid tumor genotyping in clinical practice. Cancer Treat Commun. (2016) 9:41–3.
doi: 10.1016/j.ctarc.2016.07.001

29. Ossandon MR, Agrawal L, Bernhard EJ, Conley BA, Dey SM, Divi RL, et al.
Circulating tumor DNA assays in clinical cancer research. J Natl Cancer Inst. (2018)
110:929–34. doi: 10.1093/jnci/djy105

30. Schwaederle M, Daniels GA, Piccioni DE, Fanta PT, Schwab RB,
Shimabukuro KA, et al. On the road to precision cancer medicine: analysis of
genomic biomarker actionability in 439 patients. Mol Cancer Ther. (2015) 14:1488–
94. doi: 10.1158/1535-7163.mct-14-1061

Frontiers in Nutrition 14 frontiersin.org

https://doi.org/10.3389/fnut.2022.989989
https://doi.org/10.3322/caac.21492
https://doi.org/10.3322/caac.21492
https://doi.org/10.1146/annurev-pathmechdis-012418-012735
https://doi.org/10.1146/annurev-pathmechdis-012418-012735
https://doi.org/10.1038/ng.2764
https://doi.org/10.1038/s41571-018-0002-6
https://doi.org/10.1038/nbt.2696
https://doi.org/10.1038/nbt.2696
https://doi.org/10.1097/ppo.0000000000000316
https://doi.org/10.1097/ppo.0000000000000316
https://doi.org/10.1038/s41568-019-0179-8
https://doi.org/10.1038/s41568-019-0179-8
https://doi.org/10.1056/nejm200103153441101
https://doi.org/10.1056/nejm200103153441101
https://doi.org/10.1038/nrc3748
https://doi.org/10.1038/s41591-019-0407-5
https://doi.org/10.1038/s41591-019-0407-5
https://doi.org/10.3389/fmed.2019.00034
https://doi.org/10.3389/fmed.2019.00034
https://doi.org/10.1001/jama.2019.3241
https://doi.org/10.1016/j.ccell.2018.03.018
https://doi.org/10.1016/j.ccell.2018.03.018
https://doi.org/10.1038/ncb937
https://doi.org/10.1038/ncb937
https://doi.org/10.1016/j.annonc.2020.07.014
https://doi.org/10.1016/j.ctrv.2020.102084
https://doi.org/10.1016/j.ctrv.2020.102084
https://doi.org/10.3389/fonc.2020.00480
https://doi.org/10.3389/fonc.2020.00480
https://doi.org/10.1080/2162402x.2017.1356145
https://doi.org/10.1038/cr.2011.119
https://doi.org/10.3390/cancers12051156
https://doi.org/10.1200/po.18.00074
https://doi.org/10.1200/po.18.00074
https://doi.org/10.1038/nm.4389
https://doi.org/10.3390/cancers12040955
https://doi.org/10.1016/j.ctrv.2019.01.004
https://doi.org/10.1186/1480-9222-15-5
https://doi.org/10.1038/cr.2014.44
https://doi.org/10.1186/s40246-019-0220-8
https://doi.org/10.1186/s40246-019-0220-8
https://doi.org/10.1016/j.ctarc.2016.07.001
https://doi.org/10.1093/jnci/djy105
https://doi.org/10.1158/1535-7163.mct-14-1061
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/

	From tumor mutational burden to characteristic targets analysis: Identifying the predictive biomarkers and natural product interventions in cancer management
	Background
	Materials and methods
	Study design and patients
	Library construction and next-generation sequencing
	Mutation analysis
	Analysis and verification of pan-cancer samples in the database
	Targeted therapy screening based on molecular docking
	Statistical analysis

	Results
	Analysis of the clinical and mutational characteristics of the patients who underwent next-generation sequencing
	Clinical treatment guided by next-generation sequencing
	Comparing tumor mutational burden values between subgroups
	Analysis of key mutation targets based on verification sets
	Exploration of typical mutants in the LRP1B gene
	Benefit analysis of immunotherapy for LRP1B mutant subsets
	APC mutation characteristics analysis and screening of targeted intervention molecules

	Discussion
	Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	Supplementary material
	References


