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Background: Although fatty acid metabolism has been confirmed to be

involved in the pathological process of idiopathic pulmonary fibrosis

(IPF), systematic analyses on the immune process mediated by fatty acid

metabolism-related genes (FAMRGs) in IPF remain lacking.

Methods: The gene expression data of 315 patients with IPF were obtained

from Gene Expression Omnibus database and were divided into the training

and verification sets. The core FAMRGs of the training set were identified

through weighted gene co-expression network analysis. Then, the fatty

acid metabolism-related subtypes in IPF were identified on the basis of k-

means unsupervised clustering. The scores of fatty acid metabolism and the

expression of the fibrosis biomarkers in di�erent subtypes were compared, and

functional enrichment analysis was carried out on the di�erentially expressed

genes between subtypes. A random forest model was used to select important

FAMRGs as diagnostic markers for distinguishing between subtypes, and a line

chart model was constructed and verified by using other datasets and rat

models with di�erent degrees of pulmonary fibrosis. The di�erence in immune

cell infiltration among subtypes was evaluated with CIBERSORT, and the

correlation between core diagnostic markers and immune cells were analyzed.

Results: Twenty-four core FAMRGs were di�erentially expressed between

the training set and normal samples, and IPF was divided into two subtypes.

Significant di�erences were observed between the two subtypes in biological

processes, such as linoleic acid metabolism, cilium movement, and natural

killer (NK) cell activation. The subtypewith high fatty acidmetabolismhadmore

severe pulmonary fibrosis than the other subtype. A reliable construction line

chart model based on six diagnostic markers was constructed, and ABCA3 and

CYP24A1 were identified as core diagnostic markers. Significant di�erences in
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immune cell infiltration were found between the two subtypes, and ABCA3 and

CYP24A1 were closely related to NK cells.

Conclusion: Fatty acid metabolism and the immune process that it mediates

play an important role in the occurrence and development of IPF. The analysis

of the role of FAMRGs in IPF may provide a new potential therapeutic target

for IPF.

KEYWORDS

fatty acidmetabolism-related genes, idiopathic pulmonary fibrosis, diagnosticmodel,

NK cell, molecular subtype

Introduction

Idiopathic pulmonary fibrosis (IPF) is an interstitial

lung disease that is characterized by dry cough, dyspnea,

and progressive lung function decline (1). The pathological

features of IPF include persistent damage to alveolar epithelial

cells, myofibroblast differentiation, and extracellular collagen

deposition (2). The average survival of IPF is only 3–5 years

(3). IPF has highly heterogeneous clinical manifestations, and

its disease course is highly unpredictable essentially because

its exact pathogenesis has not yet been fully elucidated (4,

5). Therefore, considering that existing treatment options can

only decelerate the progression of IPF without preventing or

reversing it, exploring the causes of IPF heterogeneity on

the basis of molecular typing and identifying corresponding

biomarkers is an effective strategy for meeting the goal of

precision medicine.

Studies have shown that the number and types of

components involved in fatty acid metabolism in patients

with IPF are disordered. The level of serum total fatty acids

in patients with IPF is significantly higher than that in the

normal population (6). However, the level of stearic acid in

the lung tissue of patients with IPF is lower than that in the

lung tissue of normal subjects. Stearic acid supplementation

can inhibit the TGF-β/SMAD2/3 signal transduction pathway,

which is the main signal transduction mechanism in the

progression of pulmonary fibrosis, and can induce the

expression of other profibrotic mediators to promote a series

of processes, including collagen deposition and extracellular

matrix remodeling, synergistically (7, 8). The profibrotic effect

of TGF-β is also related to fatty acid metabolism. Fatty

acid synthase (FASN) is an essential anabolic enzyme that

is responsible for the de novo synthesis of fatty acids. The

level of FASN is directly related to the degree of pulmonary

fibrosis in a mouse model of pulmonary fibrosis. After the

inhibition of FASN expression, the degree of TGF-β-induced

lung fibrosis is significantly reduced (9). Moreover, the immune

cells and immune responses in IPF are closely related to

fatty acid metabolism. Macrophages play an important role

in the pathogenesis of IPF. Macrophages form through

the phagocytosis of extracellular oxidized phospholipids and

produce additional TGF-β, which aggravates pulmonary fibrosis

(10). Clinical studies have also noted a strong link between

fatty acid metabolism and IPF. Statins are traditional drugs for

regulating lipidmetabolism. A recent randomized, double-blind,

placebo-controlled clinical trial suggested that statins can reduce

the number of hospitalizations and mortality in patients with

the acute exacerbation of IPF (11). Nevertheless, existing studies

have only revealed the relationship of fatty acid metabolism

and fatty acid metabolism-related genes (FAMRGs) with IPF,

and a comprehensive analysis of the role of FAMRGs in the

occurrence and development of IPF combined with the immune

microenvironment of lung tissue remains lacking.

In this study, we hypothesized that FAMRGs are closely

related to the immune microenvironment of lung tissue in

IPF. We screened out the key FAMRGs associated with IPF

and compared the differences in immune cell infiltration under

different FAMRG expression patterns. A diagnostic model

for predicting high-risk FAMRG subtypes was established on

the basis of machine learning methods, and the core genes

constituting the model were validated in other datasets and

animal experiments. The results of our study provide references

for the application of fatty acid metabolism as a therapeutic

target for IPF.

Materials and methods

Data source

The IPF-related microarray datasets GSE32537,

GSE53845, GSE10667, GSE110147, and GSE150910 were

downloaded from the Gene Expression Omnibus (GEO)

database (https://www.ncbi.nlm.nih.gov/geo/). These

datasets included lung tissue samples from 315 IPF

and 187 normal individuals, among which GSE53845,

GSE10667, GSE110147, and GSE150910 were used as
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external verification sets (12–15). Raw data were batch-

corrected to remove batch effects for further analysis.

Differentially expressed genes (DEGs) were screened by

using the “limma” package with P < 0.05 and |log2FC| > 0.585

indicating statistically significant differences (16). The

FAMRGs were obtained from the hallmark gene sets in the

Molecular Signature Database (https://www.gsea-msigdb.

org/gsea/msigdb/). A total of 1428 genes were obtained for

further analysis.

Weighted gene co-expression network
analysis

The fatty acid metabolism gene set enrichment score

(FMS) of each sample was calculated through gene set

variation analysis (GSVA), and weighted gene co-expression

network analysis was performed by using the R package

“WGCNA” in accordance with the score (17, 18). The

adjacency matrix consisted of weighted correlation coefficients,

which transformed the adjacency matrix into a topological

overlap matrix and a corresponding dissimilarity matrix.

Then, hierarchical clustering was carried out to identify

modules, construct a systematic clustering diagram, and

divide similar gene expression profiles into different modules.

Finally, Pearson correlation analysis was used to evaluate

the correlation among three phenotypes (FMS, normal

control group, and IPF group) and the genes contained in

each module.

Classification and functional enrichment
analysis of FAMRG-related subtypes in IPF

Unsupervised cluster analysis was performed on patients

with IPF to identify different subtypes on the basis of the

key FAMRGs in the related module genes obtained through

WGCNA. Meanwhile, principal component analysis (PCA)

was used to calculate the fatty acid metabolism level of

each sample to obtain the fatty acid metabolism score. A

consensus clustering algorithm was used to evaluate the cluster

numbers and robustness. The R package “ConsensusClusterPlus”

implemented the above steps for 1000 iterations to guarantee

the robustness of classification (19). Gene set enrichment

analysis (GSEA) was performed on the gene expression

matrix by applying the “clusterProfiler” package, and

“c2.cp.kegg.v7.0.symbols.gmt” was selected as the reference

gene set. The “ggplot2”, “pathview”, and” “circlize” packages

were used to perform Gene Ontology (GO) and Kyoto

Encyclopedia of Genes and Genomes (KEGG) enrichment

analyses on DEGs (20–22).

Screening, validation, and
immunomicroenvironment analysis of
diagnostic markers in the di�erent fatty
acid metabolism subtypes of IPF

Random forest (RF), a machine learning method that is

widely used in the research on diagnostic models, can accurately

calculate the importance of each feature in the dataset (23). In

this study, the “randomForest” package was utilized to select the

key differential genes between subtypes as diagnostic markers,

and the “rms” package was used to construct the prognostic

programs (24). Then, a calibration curve was applied to evaluate

the predictive ability of the nomogram model, and the clinical

value of the constructed model was evaluated by utilizing

decision curve analysis (DCA) and a clinical impact curve

(25). The key differential genes obtained through screening

were verified in the validation set, and the genes with superior

diagnostic efficiency were identified as diagnostic markers.

The degree of immune cell infiltration in lung tissue was

evaluated by using the CIBERSORT algorithm. The differences

in immune cell infiltration between groups were visualized

with the “ggplot2” package, and Spearman correlation analysis

was performed on all immune cells and diagnostic markers to

determine the correlation between them (26, 27).

Animal grouping and modeling

The study protocol met the National Institutes of Health

Guide for the Care and Use of Laboratory Animals (NIH

Publications No. 8023, revised 1978). Male Sprague–Dawley

rats (180–220 g, specific pathogen-free grade) were purchased

from Jinan Pengyue Experimental Animal Breeding Co., Ltd.

[Certificate No. SCXK (Lu)2014-0007, Jinan, China]. The rats

were placed in an environment with 12 h of lighting and 12 h

of darkness per day and allowed to feed and drink freely. A

single intratracheal instillation of bleomycin (BLM, Thermo

Fisher Scientific Co., Ltd., LOT#2198541) was used to induce

pulmonary fibrosis in the rats. After 7 days of adaptive breeding,

in accordance with the documents, the rats were randomly

divided into three groups (eight in each group): (1) the blank

control group, (2) the BLM (2.5 mg/kg) group, and (3) the BLM

(5 mg/kg) group (28). The rats were sacrificed 28 days later.

Part of the lung tissues was placed in 4% paraformaldehyde, and

the rest was frozen in liquid nitrogen and stored at −80◦C for

further examination.

Morphological and histological analyses

The lung tissues were fixed by using 4% paraformaldehyde

for 48 h, embedded in paraffin, and sliced to the thickness of
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5µm. The slices were stained with H&E and Masson trichrome

to evaluate the pathological changes in lung tissues. At the same

time, images were obtained with an optical microscope under

200× magnification. The degrees of alveolitis and pulmonary

fibrosis were scored in accordance with the Szapiel and Ashcroft

scoring standards, respectively (29, 30).

Measurement of non-esterified fatty acid
content

The lung tissues were ground in cold physiological saline

to obtain a 10% lung tissue homogenate. The homogenate was

separated at 2500 rpm for 10min at 4◦C, and the supernatant

was retained for the detection of free fatty acid levels according

to the instructions of the corresponding kit (Nanjing Jiancheng

Bioengineering Institute, Cat#A042-2-1).

Quantitative real-time polymerase chain
reaction

mRNA was extracted from the lung tissue with a

universal RT-PCR Kit (Solarbio Science and Technology

Co., Ltd., Shanghai, China) by following the manufacturer’s

instructions. Samples were treated with DNase and then

purified by using an RNeasy kit (Qiagen, Hilden, Germany).

Glyceraldehyde-3-phosphate dehydrogenase (Gapdh) was

used as the internal reference. The PCR primer sequences

included the following: Muc5b: forward primer: 5′-CCAC

CTACGAGGACTTCAACAT−3′; reverse primer: 5′-

TTACCAGGACAGAGCCATTAGAC−3′, Mmp-7: forward

primer: 5′-GGCATTCCAGAACTGTCACCTA−3′; reverse

primer: 5′-CTTGCGAAGCCAATTATGATGT−3′, Mmp-10:

forward primer: 5′-CCACTCAACCATGGATCTTGC−3′;

reverse primer: 5′-ACAGTGTTCGAGTCCAGCTTCC−3′,

Mmp-13: forward primer: 5′-GCCACCTTCTTCTTGT

TGAGTTG−3′; reverse primer: 5′-GACTTCTTCAGGATTC

CCGCA−3′, Abca3: forward primer: 5′-GGAGCTGGCTACC

ACATGACAC−3′; reverse primer: 5′-GGGAAGAATAA

AGGACAACTCGG−3′, Cyp24a1: forward primer: 5′-CCTT

CGCTCATCTCCCATTC−3′; reverse primer: 5′-ATTA

TCCAGCAGAGAGCCAGGTG−3′, Gapdh: forward

primer: 5′-CTGGAGAAACCTGCCAAGTATG−3′; reverse

primer: 5′-GGTGGAAGAATGGGAGTTGCT−3′.

Statistical analysis

Data were shown as mean ± standard deviation. The

differences between two groups were evaluated through the

independent sample t-test and the nonparametric test. One-

way ANOVA was used to compare the data among groups,

and pairwise multiple comparisons between groups were

made through the least significant difference test. P < 0.05

was considered statistically significant. Statistical analyses and

figures were obtained by using IBM SPSS Statistics 23.0 (IBM

SPSS Software, NY, USA).

Results

Identification of core FAMRGs in IPF

The identification of 35 differentially expressed FAMRGs

through the comparison of the gene expression levels in normal

lung tissue with those in the lung tissue of patients with IPF

(Supplementary Figure S1) indicated that fatty acid metabolism

may be involved in the occurrence and development of IPF

in the patients included in this dataset. Subsequently, we

performed GSVA enrichment analysis in accordance with the

expression levels of all FAMRGs, and the FMS of all samples was

obtained. A scale-free network was constructed by combining

the group information of FMS and samples, and the soft

threshold was set to 5. WGCNA identified a total of 21 modules

and marked them with unique colors. Analyzing the correlation

among gene expression, groups, and FMS revealed that the

MEpurple module (a total of 287 genes) was most associated

with IPF and FMS (Figures 1A–C). The MEpurple module

contained 24 FAMRGs with complex correlations (Figure 1D).

Among these FAMRGs, PTGDS was negatively correlated with

most genes, whereas ACACA, DHCR24, and HSD17B14 were

positively correlated with most genes.

Core FAMRGs divide IPF into two
subtypes

We conducted an unsupervised consensus cluster analysis

on IPF samples on the basis of the expression of the 24

FAMRGs to study the role of FAMRGs in IPF. After the

comprehensive evaluation of clinical significance and typing

effect, k = 2 was selected as the optimal cluster number,

and the two subtypes were named A and B (Figure 1E).

PCA confirmed good discrimination between the two subtypes

(Supplementary Figure S2). The differences in the expression

of the 24 FAMRGs between subtypes A and B are shown

in Supplementary Figure S3. We performed the functional

enrichment analysis of DEGs between A and B subtypes

to explore the differences in biological function between

subtypes. GO enrichment analysis showed that cilium assembly,

cilium movement, cilium-dependent cell mobility, and other

cilium-related biological processes occupied the core position

(Figure 2A). KEGG enrichment analysis revealed that the IL-

17 signaling pathway, linoleic acid metabolism, and other

immune and fatty acid metabolism pathways were important
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FIGURE 1

Identification of core FAMRGs in IPF. (A) WGCNA analysis was performed on the training set to obtain the cluster tree of co-expressed genes. (B)

Construct module-trait relationships, with each module containing the corresponding correlation and P-value. (C) Soft threshold of scale-free

network. (D) The interaction of 24 core FAMRGs. (E) Heatmap of the matrix of co-occurrence information for IPF samples.

signal transduction pathways of DEGs (Figure 2B). GSEA also

verified the presence of significant differences in inflammation

and immune-related processes (cytokine–cytokine receptor

interaction and chemokine signaling pathway) between subtypes

A and B and suggested that natural killer (NK) cells were core

immune cells (Figure 2C). Interestingly, after scoring the fatty

acid metabolism levels of the two molecular subtypes, most of

the samples of subtype A were identified as low-FMS samples,

whereas most of the samples of subtype B were identified as

high-FMS samples (Figure 2D). This finding also statistically

confirmed that the FMS of subtype B was significantly higher

than that of subtype A (Figure 2E). The expression levels of

diagnostic and prognostic biomarkers that were confirmed to

be related to IPF in the two subtypes were compared to explore

the association between the fatty acid metabolism level and IPF.

The expression levels of MUC5B, MMP-7, MMP-10, MMP-13,
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FIGURE 2

By unsupervised clustering of 24 FAMRGs, two di�erent subtypes were identified in IPF. (A) GO analysis of di�erentially expressed genes between

subtypes reveals related biological processes, molecular functions, and cellular components. (B) KEGG enrichment analysis of di�erentially

expressed genes among subtypes. (C) GSEA analysis of key di�erential pathways among subtypes. (D) Distribution proportion of fatty acid

metabolism in samples of di�erent subtypes. (E) Di�erences in fatty acid metabolism between subtypes. (F) Di�erences in the expression levels

of fibrosis-related biomarkers among subtypes. *P < 0.05, **P < 0.01, ***P < 0.001.

and other fibrosis markers in subtype B were significantly

up-regulated compared with those in subtype A, which was

close to severe IPF (Figure 2F). These results suggested that core

FAMRGswere involved in the progression of IPF and had a good

classification function and that high fatty acid metabolism levels

were associated with severe IPF.
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FIGURE 3

Construction and validation of diagnostic lirogram model. (A) Random forest tree constructed by cross validation. (B) Genes ranked in the top

30 by importance score. (C) Rograms were used to predict di�erent fatty acid metabolism levels in IPF patients. (D) Calibration curves to assess

the predictive power of the line-graph model. (E) DCA curve to evaluate the clinical value of the lipopograph model. (F) Evaluate the clinical

impact curve of the lipopograph model based on DCA curve. (G) Expression levels and diagnostic e�cacy of model key genes in dataset

GSE10667. (H) Expression levels and diagnostic e�cacy of model key genes in dataset GSE53845. (I) Expression levels and diagnostic e�cacy of

key genes in the model in dataset GSE110147. (J) Expression levels and diagnostic e�cacy of model key genes in dataset GSE150910. (K)

Expression levels and diagnostic e�cacy of key genes in the model in the four combined data sets. (L) Expression levels of ABCA3 and CYP24A1

in subtypes A and B.
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Construction and evaluation of a
diagnostic nomogram model based on
subtypes and the screening and
verification of diagnostic markers

The differentially expressed FAMRGs between subtypes A

and Bwere screened by constructing RF trees, and the genes with

the top 30 importance scores were displayed (Figures 3A,B).

Among these genes, MFSD2A, ABCA3, UGT1A1, LRP2,

OSBPL6, and CYP24A1 had high importance, and a diagnostic

nomogram model was established on the basis of their

expression (Figure 3C). The calibration curve showed that the

error between the actual risk and the predicted risk was small.

This result confirmed that the nomogram model has high

accuracy in predicting fatty acid metabolism molecular subtypes

(Figure 3D). DCA showed that the “Genes” curve of the related

genes in the line graph model was higher than the gray curve,

indicating that patients could benefit clinically within the high-

risk threshold range from 0 to 1 (Figure 3E). The clinical effect

curve was drawn on the basis of the DCA curve to evaluate

the clinical effect of the nomogram model with increased

intuitiveness. When the high-risk threshold ranged from 0.2 to

1, the curve of “Number High Risk” was close to that of “Number

High Risk with Event,” indicating that the line graph model had

good prediction ability (Figure 3F). The expression levels and

diagnostic values of six genes were externally verified on the

basis of the GSE10667, GSE53845, GSE110147, and GSE150910

datasets and their combined sets to screen out the key genes

among the genes included in the nomogram model. The results

showed that only the ABCA3 and CYP24A1 genes had constant

differences between IPF samples and normal lung tissues and the

AUCwas higher than 0.75. The expression ofABCA3was down-

regulated in subtype B and IPF samples, and the expression

of CYP24A1 was up-regulated in subtype B and IPF samples.

These results confirmed the previous conclusion that subtype

B was closer to severe IPF than subtype A and indicated that

ABCA3 and CYP24A1 may mediate fatty acid metabolism and

play an important role in the pathological evolution of IPF

(Figures 3G–L).

Fatty acid metabolism and expression
characteristics of Abca3 and Cyp24a1 in
rats with di�erent degrees of pulmonary
fibrosis

We tested the level of fatty acid metabolism and the

predictive value of Abca3 and Cyp24a1 in rat models with

different degrees of pulmonary fibrosis to verify the accuracy

of the prediction results. Two rat models with different degrees

of pulmonary fibrosis were prepared through the intratracheal

instillation of different concentrations of BLM. These models

corresponded to patients with subtype A or subtype B IPF.

HE and Masson staining revealed significant differences in the

level of inflammation and fibrosis in lung tissue between the

two models (Figures 4A,B), thus proving that the modeling was

successful (Supplementary Figure S4). Further study revealed

that 5 mg/kg BLM significantly increased the content of non-

esterified fatty acids in lung tissue compared with 2.5 mg/kg

BLM (Figure 4C). The expression levels ofMuc5bmRNA,Mmp-

7 mRNA, Mmp-10 mRNA, and Mmp-13 mRNA in the BLM (5

mg/kg) group were higher than those in the BLM (2.5 mg/kg)

group, and the expression of Abca3mRNA and Cyp24a1mRNA

significantly differed between the two groups (Figure 4D). This

difference verified the predictive value of Abca3 and Cyp24a1.

Di�erences in immune cell infiltration
between subtypes and their correlation
with ABCA3 and CYP24A1

We quantified the level of immune cell infiltration

(Figure 5A) to evaluate the immune landscapes of subtypes A

and B. Our results showed that plasma cells, CD4+ memory-

activated T cells, follicular helper T cells, resting and activated

NK cells, M2 macrophages, activated dendritic cells, and

resting mast cells had significant differences between the A

and B subtypes. These differences indicated that under the

influence of fatty acid metabolic processes, abundant immune

cell heterogeneity existed within the lung tissue (Figure 5B). At

the same time, a certain correlation was found between immune

cells with different degrees of infiltration, and activated NK cells

were negatively correlated with most immune cells (Figure 5C).

Spearman correlation analysis demonstrated that ABCA3 was

more commonly correlated with various immune cells than

CYP24A1. ABCA3 was positively correlated with the infiltration

of eosinophils, CD4+ memory activated and resting T cells,

M1 and M2 macrophages, activated T cells, and resting NK

cells and negatively correlated with the infiltration of plasma

cells, regulatory T cells, resting mast cells, naïve and memory B

cells, activated NK cells, follicular helper and CD8+ T cells, and

resting dendritic cells (Figures 5D,E).

Discussion

Fatty acid metabolism has been extensively studied for a

long time due to its close relationship with IPF. Studies related

to fatty acid metabolism encompass those that measure the

differences in plasma fatty acid content and species between

patients with IPF and healthy people to explore their possibility

as biomarkers to those that confirm that FAMRGs play a core

role in the fibrosis of IPF at the single-cell level (31, 32). In

view of this situation, in this study, we first identified 24 central

genes that may be involved in the pathological processes related

Frontiers inNutrition 08 frontiersin.org

https://doi.org/10.3389/fnut.2022.992331
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Yang et al. 10.3389/fnut.2022.992331

FIGURE 4

Expression levels of fibrosis markers and fatty acid metabolism in rats with di�erent degrees of pulmonary fibrosis. (A) Photomicrographs of lung

sections stained with H&E. (B) Photomicrographs of lung sections stained with Masson Trichrome staining. (C) Content of free fatty acids in lung

tissues of rats in each group. (D) Gene expression levels of fibrosis markers and key diagnostic genes in lung tissues of rats in each group. *P <

0.05, **P < 0.01, ***P < 0.001.

to fatty acid metabolism in IPF and confirmed the relationship

between some of these genes and IPF. For example, SREBF1

is a transcription factor related to lipid metabolism, which is

closely related to the activation of fibroblasts. Activating the

LXR/SREBP-1c axis can inhibit SREBF1-dependent activation

and IPF progression in fibroblasts (33). SCD encodes enzymes

involved in fatty acid biosynthesis and is mainly involved in

the synthesis of oleic acid. Only two of its isoforms, SCD1 and

SCD5, have been identified in humans. SCD1 concentrations are

down-regulated in lung tissue from patients with IPF, and SCD1

inhibition leads to endoplasmic reticulum stress and promotes

pulmonary fibrosis (34).Meanwhile, the classification of patients

with IPF based on these core FAMRGs also suggests that the

linoleic acid metabolism pathway is a differential signaling

pathway between subtypes with different fatty acid metabolism

levels. Non-targeted metabolomics confirmed that linoleic acid

is one of the most significantly different components in the

plasma fatty acid composition of patients with IPF relative to

those in healthy controls with a difference of approximately 2–

3 times (35). Supplementation with Pistacia lentiscus oil, which

contains linoleic acid as the main component, could reduce the

levels of inflammatory cell infiltration and TGF-β in the lung

tissue of rats with pulmonary fibrosis (36). Notably, a strong

relationship exists between the level of fatty acid metabolism

in subtypes and biomarkers that imply IPF progression and

poor prognosis. Among the biomarkers included in this study,

MUC5B is significantly up-regulated in the lung tissues of

patients with IPF. The up-regulation of MUC5B leads to

excessive mucus secretion and damage to the epithelial ciliary

movement, thus inducing and enhancing chronic inflammation

and injury (37, 38). Matrix metalloproteinases (MMPs) are

another type of biomarker included in this study. The MMP
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FIGURE 5

Immune cell infiltration between subtypes. (A) Immune microenvironment of subtypes A and B. (B) Di�erences in immune cell infiltration among

subtypes. (C) Correlation heat maps of immune cells with di�erences. (D) Correlation between ABCA3 gene expression and immune cell

infiltration. (E) Correlation between CYP24A1 gene expression level and immune cell infiltration.

family has numerous members, and its expression is generally

up-regulated in IPF. MMPs are a key molecule involved in lung

extracellular matrix remodeling in patients with IPF. Among

MMPs, MMP-13 is a key MMP that is up-regulated in human

IPF and is mainly involved in regulating epithelial-mesenchymal

transition and collagen deposition (39). MMP-7 is expressed

by airway epithelial cells and macrophages in the lung. It

is related to pulmonary diffusion function and survival rate
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in patients with IPF. Moreover, plasma MMP-7 levels have

been identified as a biomarker for IPF (40, 41). Increased

serum MMP-10 levels are associated with clinical deterioration

within 6 months and overall survival (42). Our study showed

that high fatty acid metabolism levels are positively correlated

with the expression of the above biomarkers. Previous studies

have revealed the pharmacological mechanisms of some small-

molecule compounds in the treatment of IPF by targeting

the fatty acid metabolism pathway, suggesting that fatty acid

metabolism-related targets are potentially valuable in the

development of pharmaceuticals for IPF (43).

The results of our single-cell RNA sequencing study

suggested that fatty acid metabolism and immune processes

are jointly involved in the early progression of IPF (44). In

this study, we found that NK cells were significantly activated

in the lung tissues of patients with IPF, as well as high

levels of fatty acid metabolism. Our GSEA also confirmed that

NK cell-induced cytotoxic effects were the most significantly

differentially regulated immune processes between different

subtypes. The perforin-mediated pathway is the main pathway

of the cytotoxic effects induced by activated NK cells, and

perforin-mediated apoptosis promotes the development of

pulmonary fibrosis by triggering lung tissue inflammation

(45). In addition, the CX3CL1/CX3CR1 axis regulates NK cell

activation and infiltration (46). PXN is considered as a risk

gene in IPF and is overexpressed in activated NK cells. The

inhibition of the FAK/PXN signaling pathway could reduce

proinflammatory cytokine secretion in activated NK cells to

exert protective effects on fibrotic lung tissues (47). NK cells

are also closely associated with key profibrotic processes in

IPF, such as cellular hypoxia. A clinical study found that

activated NK cells, key hypoxia genes, and risk scores were

positively correlated, and the elevated proportion of activated

NK cells in the bronchoalveolar lavage fluid (BALF) of patients

with IPF implied long hospitalization days. These results all

indicated that high NK cell infiltration is a risk factor for poor

prognosis in IPF (48). Another clinical study also confirmed

that the proportion of NK cells in the BALF of patients with

IPF was significantly higher than that in the BALF of patients

with other interstitial lung diseases and observed a significant

difference in survival rates with the cutoff value of 4% (49). These

previous findings, which are consistent with our conclusions,

provide additional levels of evidence for the correlation between

fatty acid metabolism and the immune microenvironment in

IPF. Interestingly, both FAMRGs used to distinguish fatty acid

metabolic subtypes showed a close correlation with NK cells.

ABCA3 is a phospholipid transporter associated with pulmonary

surfactant homeostasis, and mutations in the ABCA3 gene cause

pulmonary fibrosis in children and adults (50, 51). CYP24A1

is an enzyme that regulates vitamin D metabolism through the

activation of a negative feedback loop, while vitaminD3 has been

shown to down-regulate the expression of proinflammatory and

profibrotic markers, such as CCL2, TLR3, fibronectin, and type

I collagen. These two predictive markers were confirmed to

be stable in the validation group and animal experiments, and

corresponding clinical studies have been conducted in the field

of organ fibrosis, proving that their detection is simple and

reliable, thus providing additional possibilities for the use of

new targeted approaches in IPF treatment and management.

However, whether they mediate NK cell activation to regulate

the occurrence and development of IPF still requires further

experimental investigation.

This study has several limitations. First, it was conducted

on the basis of the GEO database. Although we collected

multiple datasets, the sample numbers were relatively

small and our conclusions may still be biased. Second, our

animal experiments only studied the correlation between

total non-esterified fatty acids content and predicted

markers and failed to identify specific fatty acid types

accurately. Third, most datasets were not accompanied by

the important clinical information of the patients, such as

pulmonary function parameters, St. George’s respiratory

questionnaire scores, and whether or not anti-fibrotic drugs

were taken. Therefore, the correlation of predictive markers

with clinical parameters and patient prognosis needs to be

further investigated.

Conclusion

In this study, we identified 24 central genes that are closely

related to fatty acid metabolism in IPF. These genes can divide

IPF into two subtypes. The constructed line chart model has

a good ability to distinguish between subtypes. ABCA3 and

CYP24A1 were verified as key diagnostic markers between

subtypes by using external datasets and animal experiments.

The level of immune cell infiltration among subtypes is strongly

heterogeneous. NK cells are the key immune effector cells,

and ABCA3 and CYP24A1 are closely related to many kinds

of immune cells. To our knowledge, this is the first study

to explore the relationship between fatty acid metabolism

and its related genes and the progression of pulmonary

fibrosis in combination with the immune microenvironment

of lung tissue in IPF. This study initially established the

relationship between fatty acid metabolism and its related

genes in IPF with pulmonary fibrosis progression. However,

further studies are needed to test the clinical value of

our results.
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