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Canker is a common disease of navel oranges that is visible before harvest,

and penicilliosis is a common disease occurring after harvest and storage.

In this research, the typical fruit surface, canker spots, penicillium spore, and

hypha of navel oranges were, respectively, identified by hyperspectral imaging.

First, the light intensity on the edge of samples in hyperspectral images was

improved by spherical correction. Then, independent component images and

weight coefficients were obtained using independent component analysis.

This approach, combined with use of a genetic algorithm, was used to select

six characteristic wavelengths. The method achieved dimension reduction of

hyperspectral data, and the testing time was reduced from 46.21 to 1.26 s

for a self-developed online detection system. Finally, a deep learning neural

network model was established, and the four kinds of surface pixels were

identified accurately.

KEYWORDS
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Introduction

Navel orange is an important fruit crop grown in Jiangxi Province, China and many
other agricultural areas in subtropical regions. The fruit is generally round, oblate, or
elliptic in shape and usually orange-yellow or orange-red in color (1). The calyx of the
fruit has a few immature pericardial groups, which form the characteristic navel, and
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the core is solid or semi-solid. In the process of transportation
and packaging of navel oranges after harvest, a spore from
a single navel orange can cause an entire batch to start
sporing within a short time (2). Therefore, the post-harvest
sorting of navel orange is conducive to improving their
value and increasing the preservation period, and technology
to accomplish this objective is urgently needed for fruit
production (3).

In present-day fruit sorting operations, machine vision
technology is mainly used to assess fruit appearance quality,
including fruit shape and visible defects, for example, brown
spots, spores, granulation, edema, etc. However, for some
defects, such as decay caused by fungi, machine vision methods
seem ineffective. The main reason is that the skin color of
a decayed area can be close to that of the normal skin
areas, so it is hard to distinguished using images from a
color camera. However, the skin damage is related to the
characteristics of the fruit skin that can be detected by near
infrared spectroscopy (NIRS). Moreover, NIRS can also be
used for non-destructive testing of the internal components
of fruits, such as soluble solids (4), acidity, and other traits
(5, 6). Although NIRS technology can reflect the internal
quality of fruit, only a small part of the fruit surface can
be collected, and the fruit appearance quality cannot be
perfectly determined.

Hyperspectral image technology combines the advantages
of spectrum- and image-based approaches (7). It not only
can achieve fruit appearance image inspection, but can also
collect the surface spectra which can be used to detect the
invisible defect (8, 9). The hyperspectral image is a three-
dimensional image. Through the selection of characteristic
wavelengths of hyperspectral images, simultaneous external
and internal fruit quality testing can be realized; this is
a major development trend in the field of fruit detection
(10). Hyperspectral image technology can be used to detect
meat quality (11), orange spores, cucumber frostbite (12),
guava maturity (13), strawberry ripeness (14), Moisture of
Okra (15), and many other food defects (16–18). However,
hyperspectral images contain large amounts of wavelength
information, thus requiring a long time to collect information;
accordingly, its online detection applications are limited.
Therefore, the study of hyperspectral data dimension reduction
technology has become the key to improving the speed of
online detection. Current dimension reduction methods mainly
include genetic algorithm (19), principal component analysis
(20, 21), independent component analysis (22), and some
deep learning (23) methods. However, most approaches have
only been applied to hyperspectral test platforms, and online
detection has not yet been realized.

In this study, the hyperspectral images of navel orange
samples were dynamically collected using a self-designed online
detection system. The spectra ranged from 975.18 to 2,196.2 nm.

The method employed combined independent component
analysis (ICA) with genetic algorithm (GA) to select the
characteristic spectra. The dimensions of the hyperspectral
images were reduced, and then the cankered and spored fruit
were separated. This study had the following specific objectives:
(1) spectral preprocessing of the collected hyperspectral images;
(2) use of an ICA method to obtain independent component
images and weight coefficients; (3) combining these data
with GA after characteristic selection of wavelengths to
achieve dimensionality reduction of hyperspectral data; (4)
establishment of a deep neural network method of classified
of navel orange surface defects and subsequent automated
classification of fruits with a normal versus defective surface.
Six characteristic wavelengths were selected by ICA-GA, and
the surface defect detection model of navel orange was
established based on LSTM. Finally, the online detection of navel
orange was achieved.

Materials and methods

Experimental materials

The navel orange samples used in this experiment were
collected in November 2019 from Ganzhou City, Jiangxi
Province, China. After harvest, the navel oranges were first
cleaned in the laboratory. Thirty normal navel orange samples
without defects (group 1) and thirty navel oranges with canker
defects on their surfaces (group 2) were selected. Then, the
hyperspectral image of the samples in categories 1 and 2
were acquired. Meantime, one navel orange inoculated with
penicilliosis was stored with some normal navel oranges in the
laboratory. After 30 days, 30 infected navel orange were selected
as samples with penicilliosis on their surfaces (group 3), and the
hyperspectral image data of them were also acquired. Images
of samples from each category are shown in Figures 1A–C,
respectively.

In order to distinguish navel oranges with surface defects
online, it is necessary to identify the above defects on surfaces of
navel orange samples. In this study, navel orange surfaces were
mainly divided into four categories: normal navel orange surface
without defects, cankered surface, penicillium spore surface,
and hypha surface. Figure 1A shows a navel orange without
defects on its surface, and the category is defined as Surface.
Since normal navel oranges have a large surface range, only
rectangular areas A and B were selected. Figure 1B shows the
surface of a navel orange with cankers, as indicated by the arrow
in area C. This type of sample is referred to as Canker. Figure 1C
is the image of a penicilliosis navel orange sample. Areas D
and E were, respectively, the surface of penicillium spores and
penicillium hypha, which are referred to as Spore and Hypha,
respectively.
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FIGURE 1

False-color images of the typical navel orange. (A) Navel orange sample with an intact surface; (B) navel orange sample with canker; (C) navel
orange sample with penicilliosis.

FIGURE 2

Hyperspectral imaging sorting system.

Hyperspectral imaging sorting system

The hyperspectral image system mainly includes a
hyperspectral camera (SWIR-CL-400-N25E, SPECIM, Finland),
two 150-Watt halogen lamps, two focusing lenses, and a
mobile sorting platform setup, as show in Figure 2. Before
collecting hyperspectral images, the lamp was turned on for
about 15 min, and the white and black calibration images of
the hyperspectral camera were captured. The white calibration
image was acquired from a 99.9% reflectance white board
(Spectralon SRT-99-100, Labsphere Inc., North Sutton, NH,
USA) 30 cm below the camera. The black calibration image was
acquired when the lens was completely shielded.

The hyperspectral images of samples were corrected using
Equation (1):

I =
Idata − Iblack
Iwhite − Iblack

(1)

Here, Idata represents the acquired hyperspectral image,
Iblack represents the black calibration image, Iwhite represents the
white calibration image, and I represents the corrected image.
The exposure time and the frame rate of the hyperspectral
camera were 1.8 ms and 120 f/s, respectively.

Spectral preprocessing

The average spectrum of rectangular areas A (in Figure 1)
corrected by the black and white calibration images is shown
in Figure 3. It can be seen that there is considerable noise at
both ends of the spectrum, at ranges of 946.43–975.18 nm and
2,196.2–2,256.82 nm, respectively. Therefore, in the subsequent
processing, these two parts of spectra were eliminated, and
the spectral range within 975.18–2,196.2 nm between the
two black rectangular boxes in Figure 3 was used. The red
asterisk in Figure 3 represents the three wave peaks of the
surface spectral curve of navel oranges, which are respectively,
1,078.31, 1,266.07, and 1,655.72 nm. The hyperspectral images
corresponding to these three bands were selected to produce
false color images of navel oranges, like the one shown in
Figure 1.

As navel oranges are spherical fruits, the reflected light
on the upper surface of the navel oranges collected by the
hyperspectral camera is the strongest. In contrast, the reflected
light at the edges of the navel oranges is very weak. In order
to improve the reflected light intensity on the surface of the
spherical fruits and increase the light intensity at the edges, the
hyperspectral images of each spherical fruit were corrected (24).
This is achieved through the following correction process: (1)
the binary-value image of the sample is built using a 1,078.31 nm
wavelength; (2) the center of gravity of the binarization region is
found, and the image is then segmented into 16 equal parts; (3)
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FIGURE 3

Reflection spectrum of a normal navel orange surface.

TABLE 1 Spectra number of each category.

Category Spectra
number

Selected spectra
number

Spectra number of
training dataset

Spectra number of
validation dataset

Spectra number of test
dataset

Spore 1,954 1,300 1,065 123 112

Hypha 1,374 1,300 1,044 135 121

Canker 3,302 1,300 1,016 161 123

Surface 3,775 1,300 1,035 121 144

Total 10,405 5,200 4,160 540 500

FIGURE 4

Correction of the spherical fruit. (A) segmentation of the mask image, (B) 3D reconstruction of spherical fruit.
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FIGURE 5

False-color images after spherical correction. (A) Navel orange sample with an intact surface; (B) navel orange sample with cankers; (C) navel
orange sample with penicilliosis.
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FIGURE 6

Spectral curves of the four categories of surface after spherical correction and standard normal variable (SNV) transformation.

the height of the sample based on the distance from the center
of gravity to points in each of the 16 equal parts is calculated;
(4) the height of each pixel in the segmented binary image
according to four quadrants is calculated, and the reflected light
intensity is then corrected. Then, standard normal variate (SNV)
transformation is used to eliminate baseline drift.

Establishment of deep neural network
model

Deep neural networks are widely used in deep learning
and image recognition (25–27). In this study, a long short-
term memory (LSTM) deep neural network was applied to
217 spectra in the range of 975.18–1,146.75 nm to establish a
classification model. Before establishing a LSTM deep neural
network, training and validation datasets for training model

should be provided. From Figure 3, it can be seen the reflection
is the strongest at a wavelength of 1,078.31 nm. Based on the
1,078.31 nm hyperspectral images, the tool “Image Labeler”
in MATLAB (MathWorks Ltd., Natick, MA, USA) was used
to select the most representative pixels on the surface of
navel oranges from the prediction dataset. For this dataset,
15 penicilliosis navel oranges, six rotten navel oranges, 30
cankered navel oranges, and 16 normal navel oranges were
selected. After sample selection, the image “label” and file
“gTruth” were generated for each navel orange. The image
“label” contains the features selected from each navel orange.
The file “gTruth” contains the file storage location of the
corresponding file and the storage location and classification
name of the corresponding image “label.”

Thus, 10,405 data points were obtained for training. As
shown in Table 1, 1,300 data points for each category were
randomly selected as the modeling data, thus obtaining a total of
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FIGURE 7

Six independent component images by independent component analysis. (A) ICA01, (B) ICA02, (C) ICA03, (D) ICA04, (E) ICA05, (F) ICA06.

5,200 modeling data points. These data were randomly divided
into a training dataset, validation dataset, and test dataset
according to the approximate ratio of 0.8:0.1:0.1.

The LSTM model is mainly composed of five layers: (1)
sequenceInputLayer, (2) bilstmLayer, (3) fullyConnectedLayer,
(4) softmaxLayer, and (5) classificationLayer. The second layer
has 200 hidden layer nodes, and the fifth layer has four output
categories. The numbers of hidden layer nodes are selected
by comparing the results using 50, 100, 150, 200, and 250
hidden layer nodes. The LSTM cell with a Forget Gate can be
mathematically expressed as follows:

ft = σ
(
Wfhht−1 +Wfxxt + bf

)
,

it = σ
(
Wihht−1 +Wixxt + bi

)
,

c̃t = tanh
(
Wc̃hht−1 +Wc̃xxt + bc̃

)
,

ct = ft · ct−1 + it · c̃t,

ot = σ
(
Wohht−1 +Woxxt + bo

)
,

ht = ot · tanh (ct) (2)

Where ft is the forget gate, and the value of ft can decide what
information will be thrown away from the cell state. Where ct
denotes the cell state of LSTM. Wi , Wc̃ , and Wo are the weights.

FIGURE 8

Pseudo-color image of a penicilliosis navel orange sample.

Selection of characteristic wavelengths

The data collected by the hyperspectral imaging system are
usually very large. Therefore, a method of model establishment
that uses a small number of characteristic wavelengths
cannot only reduce the time spent in modeling, but also
effectively avoid the problem of information similarity between
adjacent wavelengths while reducing the over-fitting of the
model. Therefore, using characteristic wavelengths to establish
prediction models can reduce data calculation and meet the
efficiency requirements of online detection.
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FIGURE 9

Separating matrix of ICA03, ICA04, ICA05.
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FIGURE 10

Selection of characteristic wavelengths.

The extraction methods of characteristic wavelengths
include principal component analysis (PCA) and independent
principal component analysis (ICA). ICA has a superior
applicability to solve the problem of blind source separation in

spectral analysis (28). Accordingly, this study adopted the ICA
method to extract characteristic spectra. The main steps are as
follows. First, the binarization extraction of the hyperspectral
image is conducted to obtain a mask, which is used to
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TABLE 2 List of 21 characteristic wavelengths.

Number of
wavelengths

Characteristic wavelengths (nm)

21 980.930, 1,032.55, 1,078.31, 1,118.26, 1,163.83,
1,197.95, 1,266.07,
1,288.74, 1,362.33, 1,390.60, 1,424.50, 1,458.38,
1,537.36, 1,655.72,
1,695.15, 1,762.73, 1,835.94, 1,903.51, 1,931.66,
1,982.34, 2,145.61

Italic values are the result of wavelength selection.

separate the background and the fruit area. According to the
position of fruit pixels in the mask, the hyperspectral image is
subjected to two-dimensional decomposition, thus obtaining a
two-dimensional array. The array included the spectra of the
fruit surface, but not the background part in the mask. Then,
the first six independent components and the corresponding
weight coefficients were obtained by ICA analysis of spectral
data. Finally, six independent components were reconstructed
according to the positions of the mask pixel points, and the
values of independent components. Then the characteristic
wavelengths can be selected by the ICA analysis based on the
corresponding weight coefficients.

Genetic algorithm

For online detection, the number of characteristic
wavelengths should be reduced as much as possible. Therefore,
on the basis of the selected wavelengths using ICA analysis,
a genetic algorithm (GA) was applied to select characteristic
wavelengths once more (29, 30). A genetic algorithm is a kind
of efficient global search optimization algorithm that can find
the optimal solution within a large solution space, and its
global search ability can greatly improve search efficiency while
avoiding local minimal solutions. In this paper, the main genetic
algorithm program was written using the software MATLAB.
The characteristic wavelengths were selected by GA based on
the accuracy of the test dataset as the fitness function. The
following main parameters were used for the genetic algorithm:
six characteristic wavelengths were selected without repetition
each time. That is, the number of individuals was six, the
population contained six individuals, the maximum genetic
algebra was 30, and the generation gap was 0.9.

Results and discussion

Spherical fruit correction

The segmented and reconstructed navel orange 3D image is
shown in Figure 4.

For the corrected hyperspectral images, the 1,078.31,
1,266.07, and 1,655.72 nm wavelength images were extracted
and fused into false-color images, as shown in Figure 5.
Compared with Figure 1, the light intensity of the edge was
significantly improved.

After spherical correction, the hyperspectral images of
navel oranges were decomposed into two dimensions, and
the spectra were preprocessed using standard normal variate
(SNV) transformation to eliminate baseline drift. Corrected
characteristic spectra of normal Surface, Canker, Spore, and
Hypha samples are shown in Figure 6. In the wavelength range
of 975.18–1,146.75 nm, the spectral value of Surface is the
highest, while the spectral value of Spore is the lowest. In the
wavelength range of 1,146.75–1,430.15 nm, the spectral curves
of Canker, Spore, and Hypha show some differences. At the
wavelength of 1,430.15 nm and 1,937.29 nm, the spectral values
of Surface and Hypha were the lowest. The four types of spectra
all had a double-peak structure, and at 1,430.15 nm, there was a
significant trough. At 1,937.29–2,196.26 nm, the spectral curves
of Canker, Spore, and Hypha samples all increased, while the
Surface spectral curve was relatively stable.

Model using full bands

The LSTM01 model was obtained by using the whole
spectra, which included 217 bands. After training, the accuracy
of the training, validation, and test dataset were 91.80, 90.56, and
92.81%, respectively. The modeling time was about 3,265.691 s,
and the average test time for each orange was about 46.21 s.

Characteristic wavelengths using
independent component analysis

Six independent component images were obtained, as
shown in Figure 7. ICA01–ICA06 represent the first through
sixth independent component images, respectively. Figure 7
shows the ICA result of a navel orange sample with penicilliosis.
It can be seen that ICA03, ICA04, and ICA05 are sensitive
to penicilliosis navel orange images. ICA03 and ICA05 are
sensitive to penicillium hypha images, and ICA04 is sensitive to
penicillium spore category images.

Figure 8 is a pseudo-color image of a penicilliosis navel
orange sample synthesized by ICA03, ICA04, and ICA05. The
figure shows that the spore region (A) and hypha region (C) are
relatively obvious, and the region (B) between regions (A) and
(C) is the transitional region between spores and hyphae. On
this basis, the characteristic wavelength can be selected through
the weight coefficients of the wavelength variates of the three
independent components.

Figure 9 shows the separating matrix values of the
wavelengths for independent components ICA03, ICA04, and
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FIGURE 11

Result of the three LSTM models for four typical samples. (I) Sample hyperspectral images and corresponding images for models (II) LSTM01, (III)
LSTM02, (IV) LSTM03.

ICA05. It can be seen that ICA03 and ICA05 have similar curve
trends in the range of 975.18–1,390.6 nm. The curves both
contain two wave peaks. In the range of 1,390.6–2,196.26 nm,
the three independent component curves showed obvious
differences. According to the curve trend of the independent
component, the characteristic wavelengths were selected based
on the peaks and troughs of the curves. In the selection process,
in order to contain as much information about the classified
features as possible, the selection of feature wavelengths also
included the peaks and troughs of the spectral curves of the
four categories in Figure 6. Thus, a total of 21 characteristic
wavelengths were selected, which are marked with asterisks in
Figure 10 and Table 2.

The LSTM02 model was obtained by training the LSTM
model with 21 characteristic wavelengths. The accuracies of the
training dataset, validation dataset, and test dataset were 94.87,
94.07, and 95.01%, respectively. The modeling time was about
328.4015 s, and the average test time for each orange was about

3.71 s. Compared with the LSTM01 model trained with full
spectra, it can be seen that the accuracy has been improved,
the modeling time has been reduced by about 10 times, and the
number of wavelengths used has been reduced from 217 to 21.

Characteristic wavelengths using
genetic algorithm

Based on the 21 characteristic wavelengths selected by
ICA, GA was used for further dimension reduction, and the
six characteristic wavelengths are 1,118.26, 1,362.33, 1,424.50,
1,537.36, 1,695.15, and 1,982.34 nm. In Table 2, the values
specified in italic font are the six characteristic wavelengths.
Then, the LSTM03 model was established with six characteristic
wavelengths. The accuracies of the modeling set, prediction
set, and verification set were 94.03, 93.148, and 93.41%. The
modeling time was about 105.223 s, and the average test time
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FIGURE 12

Discrimination results of 20 navel orange samples.

for each orange was about 1.26 s. It can be seen that through the
selection of wavelengths by GA, the number of wavelengths is
reduced from 21 to 6, and the time required for modeling is also
reduced by about three-fold compared with the LSTM02 model.

Prediction results

The prediction results show that the prediction accuracy
of LSTM01, LSTM02, and LSTM03 models were 92.81, 95.01,
and 93.41%, respectively. Although the prediction accuracy of
LSTM03 model was slightly lower than that of LSTM02, the
prediction time of LSTM03 model for each navel orange was the
shortest, only 1.26 s, the prediction time of LSTM02 was 3.7 s,
and the prediction time of LSTM01 is the longest, 46.21 s. Thus,
in order to ensure the accuracy and efficiency at the same time,
the LSTM03 model was better than LSTM02, which is conducive
to the online monitoring of fruits by accurately predicting the
location of penicillium spore defects.

Figure 11 shows the classification results of four navel
oranges in the application of the three LSTM models. In the
column (I), (A) and (B) are pseudo-color images of penicilliosis
navel oranges, while (C) and (D) are pseudo-color images of
navel oranges with canker. The proportions and positions of
penicillium disease and canker on the navel orange surface

differ. In the column (II), the prediction results of the LSTM01
model are shown. It can be seen that part of the hypha area
was misjudged as canker in (A) and (B), but the location of
penicillium disease was fairly accurate. The predictions for (C)
and (D) were relatively accurate. A smaller canker part was
detected in circular region B. However, two canker regions
were connected in elliptic region A. In the column (III), the
prediction results of the LSTM02 model are shown; (A) and
(B) show that the prediction results of penicilliosis were good,
but some hypha area were still misjudged as canker. The
canker locations in (C) and (D) also had high recognition rates.
Compared with the predicted results of the LSTM01 model, two
canker parts in the elliptic region A were identified separately,
while the smaller canker was not successfully identified and
was instead misjudged as normal surface, as shown in circular
region B. Among the results of LSTM03 in the column (IV), the
prediction results showed that hypha areas in (A) and (B) are
accurately identified. The discriminant results of canker in (C)
and (D) are similar to that of the LSTM02 model, and the overall
area of the discriminant result is slightly smaller than that of the
LSTM02 model.

Figure 12 shows the classification results for 20 navel
oranges using the LSTM03 model. The first and second rows
are the discriminant results of hyperspectral data from navel
orange samples collected on the first and fifth days after
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picking, respectively. It can be seen that the hyperspectral image
data collected on the fifth day included misjudged hyphae,
especially the edge part of navel oranges. The third row is the
discrimination result of hyperspectral image data with canker,
which shows that this model can accurately identify the canker
location and size on navel orange surfaces. The fourth row shows
the discrimination results of hyperspectral image data collected
after 30 days in the laboratory. This model can accurately
identify penicilliosis on navel oranges.

Conclusion

Based on ICA and wavelength optimization by GA, a
total of six characteristic wavelengths were selected to establish
a deep learning neural network model. The model was
used to classify and detect surface defects of navel oranges.
The categories included penicillium spore, penicillium hypha,
canker, and normal navel orange surfaces. The characteristic
wavelengths were, respectively, 1,118.26, 1,362.33, 1,424.50,
1,537.36, 1,695.15, and 1,982.34 nm. Through the selection
of characteristic wavelengths, the test time of the LSTM03
model for each navel orange sample was reduced from 46.21 s
(with the full spectrum model) to 1.26 s. It was conductive to
the hyperspectral online detection of fruit, and its prediction
accuracy was also improved. It can be seen that this method
can be used to detect the surface defects of navel oranges
online. However, the hyperspectral images were collected in
this experiment through translation movement of navel orange
samples. Thus, only images from the upper surface of the
navel orange were collected, while lower surface images were
not. Therefore, a major research focus includes capturing and
analyzing images of the entire surface of navel oranges in
subsequent online detection work.
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