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Objective: Branched-Chain Amino Acids (BCAAs) has been identified as a risk

factor for circulatory disease. Nevertheless, the e�ects and mechanisms of

BCAAs on the risk of moyamoya disease (MMD) remain unrecognized. Hence,

we aimed to elucidate the association between circulating BCAAs and the risk

of MMD and clinical subtypes.

Methods: We conducted a case-control study of 360 adult MMD patients

and 89 matched healthy controls consecutively recruited between September

2020 and December 2021. Serum level of BCAAs was quantified by liquid

chromatography-mass spectrometry. The associations between BCAAs and

risk of MMD were evaluated.

Results: Increased level of serum BCAAs was observed in MMD patients

(P < 0.001). After adjusting for traditional confounders, the elevated BCAAs

level was significantly associated with the risk of MMD (Q4 vs. Q1: odds ratio,

3.10 [95% CI, 1.29–7.50]). The risk of subtypes in MMD also increased with each

increment in the quartiles of BCAAs. Furthermore, BCAAs o�ered substantial

improvement in risk reclassification and discrimination for MMD and subtypes.

Conclusion: Higher level of circulating BCAAs was associated with increased

risk of MMD and clinical subtypes. This study will help to elucidate the

pathogenesis of MMD, which may provide the support for facilitating the

treatments and preventions.
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moyamoya disease, branched-chain amino acids (BCAAs), metabolites, biomarkers,
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Introduction

Moyamoya disease (MMD), characterized by progressive

stenosis of distal portion of internal carotid arteries and

abnormal collaterals at the base of brain, is recognized as

the main cause of stroke in East Asians (1). MMD has

been considered as a multifactorial disease, caused by genetic,

immune, inflammation and other factors (2). Although the

RNF213 variants have been identified to be associated with

angiopathy in MMD, the frequency of variants was quite low in

China (2–4). Our recent study has demonstrated that traditional

modifiable factors were related to the risk of MMD (5), while

the well-known risk factors cannot fully account for the etiology

of MMD.

Recently, progress in high-throughput multi-omics

technologies has provided new insight into the pathogenesis

of diseases (6). Circulating metabolites reveal the information

of systemic alterations and disease mechanisms. and could

act as biomarkers that accurately estimate the risk of stroke

(6). Branched-Chain Amino Acids (BCAAs), consisting of

leucine, isoleucine, and valine, is a compound of essential

amino acids that regulates diverse functions, including cell

growth, autophagy, and lipid metabolism (7). BCAAs mainly

participates in biological activities by activating the mammalian

target of rapamycin (mTOR) pathway. It has been shown

to be associated with metabolic disorders, cardiovascular

diseases and cancer (8–10). Despite few metabolomics studies

have been performed in MMD patients (11, 12), the targeted

outcomes and potential mechanisms of BCAAs in MMD was

hitherto unrecognized.

In the current study, we enrolled a large population of

MMD patients and healthy controls (HCs) and analyzed the

characteristics of circulating BCAAs in MMD. We aimed to

demonstrate the association of the serum BCAAs level with

the risk of MMD and clinical subtypes. This work will help

to identify novel biomarkers, and elucidate the pathogenesis

of MMD, which may provide the support for improving the

interventions and preventions.

Materials and methods

Study design and participants

In this study, we prospectively recruited adult MMD

patients at the Department of Neurosurgery, Beijing Tiantan

Hospital from September 2020 to December 2021. Eligible

patients were age 18–60 years, unilateral and bilateral MMD

diagnosed by digital subtraction angiography (DSA) following

the Japanese guidelines (1). Patients were excluded if they

refused to participate in the study or had inadequate Liquid

chromatography-mass spectrometry (LC-MS) data of BCAAs.

Finally, 360 adult patients with complete measurement of

BCAAs were enrolled in the study, consisting of 114 patients

of transient ischemic attack (TIA)-type MMD, 145 patients of

infarction-type MMD, and 101 patients of hemorrhagic-type

MMD (Figure 1). Besides, 89 age-matched HCs who underwent

routine physical examination were recruited. The HCs generally

had no comorbidities. The study was approved by the Ethics

Committee of Beijing Tiantan Hospital. Informed consents were

obtained from all participants.

Baseline data collection and laboratory
assessment

Demographic data (age and sex), history of risk factors

(hypertension, diabetes mellitus, hyperlipidemia, cigarette

smoking, and alcohol drinking), clinical features (heart

rate, blood pressure, body mass index [BMI]), clinical

manifestations (TIA, infarction, and hemorrhage) were

collected via chart views.

Fasting blood samples were collected after admission

from all participants. Routine and biochemical blood tests

were conducted to measure the levels of potential circulating

biomarkers: white blood cell (WBC) count, lymphocyte (LY)

count, neutrophil count, monocyte count, red blood cell

(RBC) count, hemoglobin (HGB), hematocrit (HCT), mean

corpuscular volume (MCV), mean corpuscular hemoglobin

(MCH), mean corpuscular hemoglobin concentration (MCHC),

platelet (PLT) count, glucose, creatinine, uric acid, triglyceride

(TG), total cholesterol (TC), high-density lipoprotein

cholesterol (HDL-C), low-density lipoprotein cholesterol

(LDL-C), apolipoprotein A1 (ApoA1), apolipoprotein B

(ApoB), and homocysteine (Hcy). Hcy ≥ 15.0 µmol/L

was considered as hyperhomocysteinemia (HHcy). Besides,

peripheral inflammatory biomarkers including neutrophil-

to-lymphocyte ratio (NLR), monocyte-to-lymphocyte ratio

(MLR), platelet-to-lymphocyte ratio (PLR), systemic immune-

inflammation index (SII) (PLT count × neutrophil count/LY

count), and monocyte-to-HDL cholesterol ratio (MHR) were

calculated. Serum samples were also collected at baseline from

all individuals. The serum samples were stored at−80 ◦C in the

Central Laboratory of Beijing Tiantan Hospital. We used LC-MS

techniques to quantitatively profile the serum metabolites of

BCAAs. The level of BCAAs was calculated as the sum of levels

of leucine, isoleucine, and valine.

Statistical analysis

All statistics analyses were performed using SPSS version

26.0 (IBM Corporation, Armonk, NY, USA) and R version

4.1.2 (R Development Core Team). Baseline characteristics were

presented and compared between MMD patients and HCs.

The categorical variables were presented as frequencies, and
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FIGURE 1

Schematic diagram of the study. (A) Illustration of the study methods and purpose. (B) Flow chart of the study participants. MMD, moyamoya

disease; LC-MS, liquid chromatography-mass spectrometry; BCAAs, branched-chain amino acids; TIA, transient ischemic attack.

continuous variables were expressed as mean with standard

deviation (SD) or median with interquartile range (IQR).

Categorical data were compared using theχ2 test or Fisher exact

test between groups, and continuous data were compared with

two-tailed Student t-tests or Mann-Whitney U tests. One-way

ANOVA or Kruskal-Wallis test was used to test the trend for

continuous variables across BCAAs, and the Cochran-Armitage

trend χ2 test was conducted for categorical variables. The

logistic regression models were performed to identify the

independent factors for MMD and its subtypes. The crude

model was the unadjusted regression model of BCAAs. The

model 1 adjusted for covariates including age and sex. The

model 2 further adjusted for BMI, WBC count, neutrophil

count, glucose, TG, TC, HDL-C, LDL-C, APO-A1, Hcy, NLR,
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TABLE 1 Baseline characteristics of HCs and MMD patients.

Variables HCs TIA Infarction Hemorrhage P value

(n = 89) (n = 114) (n = 145) (n = 101)

Age, y, mean± SD 39.81± 11.57 40.51± 10.27 42.33± 9.96 41.78± 10.61 0.260

Sex, Female/Male 1.41:1 1.43:1 1.10:1 1.97:1 0.190

History of risk factors, n (%)

Hypertension 0 (0) 35 (30.7) 67 (46.2) 29 (28.7) < 0.001*

Diabetes mellitus 0 (0) 16 (14.0) 39 (26.9) 4 (4.0) < 0.001*

Hyperlipidemia 0 (0) 17 (14.9) 28 (19.3) 9 (8.9) < 0.001*

Cigarette smoking 2 (2.2) 20 (17.5) 34 (23.4) 17 (16.8) < 0.001*

Alcohol drinking 0 (0) 14 (12.3) 20 (13.8) 8 (7.9) 0.003*

Clinical features, mean± SD

Heart rate, bpm 77.79± 9.73 78.77± 6.41 77.83± 6.72 79.30± 5.92 0.332

SBP, mmHg 123.64± 11.77 132.81± 12.09 134.16± 13.40 129.16± 12.25 < 0.001*

DBP, mmHg 78.46± 8.35 81.55± 9.04 83.16± 9.68 80.32± 8.96 0.001*

BMI, kg/m2 23.96± 3.39 25.87± 4.88 25.96± 4.37 24.32± 4.11 < 0.001*

Laboratory results, median± IQR

WBC count, 109/L 6.03± 1.88 6.93± 2.57 7.02± 2.39 6.43± 2.46 < 0.001*

LY count, 109/L 1.91± 0.71 2.08± 0.79 1.97± 0.80 1.72± 0.84 < 0.001*

Neutrophil count, 109/L 3.44± 1.62 4.24± 1.98 4.35± 1.73 3.88± 1.86 < 0.001*

Monocyte count, 109/L 0.35± 0.14 0.36± 0.18 0.36± 0.16 0.34± 0.17 0.289

RBC count, 1012/L 4.69± 0.65 4.64± 0.72 4.68± 0.71 4.60± 0.59 0.306

HGB, g/L 144.00± 19.00 141.50± 22.00 143.00± 27.00 137.00± 22.00 0.042*

HCT, L/L 0.42± 0.05 0.41± 0.06 0.41± 0.08 0.41± 0.05 0.041*

MCV, fL 90.10± 5.10 90.10± 5.90 89.20± 5.30 90.00± 5.40 0.759

MCH, pg 30.70± 2.00 30.95± 2.00 30.70± 2.50 30.80± 2.30 0.648

MCHC, g/L 341.00± 15.00 342.50± 12.00 344.00± 13.00 339.00± 12.00 0.039*

PLT count, 109/L 233.00± 87.00 249.50± 72.00 250.00± 80.00 244.00± 76.00 0.304

Fasting glucose, mmol/L 5.04± 0.62 5.12± 1.01 5.22± 1.42 4.91± 0.67 < 0.001*

Creatinine, µmol/L 57.70± 19.20 53.95± 20.05 57.80± 20.80 53.10± 21.75 0.271

Uric acid, µmol/L 310.60± 103.50 313.25± 119.60 312.00± 118.30 292.90± 113.30 0.135

TG, mmol/L 0.87± 0.62 1.24± 0.91 1.20± 0.75 1.13± 0.85 < 0.001*

TC, mmol/L 4.62± 0.98 4.23± 1.40 3.93± 1.26 4.35± 1.14 < 0.001*

HDL-C, mmol/L 1.53± 0.41 1.31± 0.42 1.25± 0.31 1.34± 0.35 < 0.001*

LDL-C, mmol/L 2.69± 0.87 2.36± 1.20 2.15± 1.04 2.55± 1.07 < 0.001*

ApoA1 , g/L 1.39± 0.28 1.32± 0.31 1.25± 0.33 1.30± 0.29 0.001*

ApoB, g/L 0.77± 0.27 0.84± 0.28 0.81± 0.28 0.82± 0.31 0.159

Hcy, µmol/L 10.62± 3.97 11.11± 6.87 12.29± 6.12 11.90± 4.97 0.003*

HHcy, n (%) 8 (9.0) 29 (25.4) 40 (27.6) 22 (21.8) 0.007*

NLR 1.79± 0.87 2.01± 0.87 2.15± 1.18 2.31± 1.38 0.001*

MLR 0.19± 0.10 0.17± 0.09 0.19± 0.10 0.20± 0.11 0.094

PLR 126.27± 76.03 120.74± 51.88 127.39± 52.94 144.74± 74.85 0.011*

SII, 109/L 414.33± 289.40 508.17± 289.65 569.37± 414.91 543.60± 448.84 0.001*

MHR 0.23± 0.11 0.28± 0.18 0.29± 0.17 0.24± 0.16 < 0.001*

HCs, healthy controls; MMD, moyamoya disease; TIA, transient ischemic attack; SD, standard deviation; SBP, systolic blood pressure; DBP, diastolic blood pressure; BMI, body mass

index; IQR, interquartile range; WBC, white blood cell; LY, lymphocyte; RBC, red blood cell; HGB, hemoglobin; HCT, hematocrit; MCV, mean corpuscular volume; MCH, mean

corpuscular hemoglobin; MCHC, mean corpuscular hemoglobin concentration; PLT, platelet; TG, triglyceride; TC, total cholesterol; HDL-C, high-density lipoprotein cholesterol; LDL-C,

low-density lipoprotein cholesterol; ApoA1 , apolipoprotein A1 ; ApoB, apolipoprotein B; Hcy, homocysteine; HHcy, hyperhomocysteinemia; NLR, neutrophil-to-lymphocyte ratio; MLR,

monocyte-to-lymphocyte ratio; PLR, platelet-to-lymphocyte ratio; SII, systemic immune-inflammation index; MHR, monocyte-to-HDL cholesterol ratio.
*P < 0.05, significant difference.
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FIGURE 2

Quantitative analysis of serum BCAAs level between MMD patients and HCs. (A) Comparison of BCAAs level between HCs and MMD patients. (B)

Comparison of BCAAs level between HCs and MMD subtypes. BCAAs, branched-chain amino acids; HC, healthy control; MMD, moyamoya

disease; TIA, transient ischemic attack; ns, not significant. *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001.

SII, and MHR. Furthermore, we evaluated the predictive

performance of models for the risk of MMD and its subtypes

by establishing receiver-operating characteristic (ROC) curves

and calculated the area under the curve (AUC). Moreover,

the performance of BCAAs in the basic model built based on

traditional risk factors were assessed. The net reclassification

index (NRI) and integrated discrimination improvement (IDI)

were calculated in risk classification by adding BCAAs to the

basic model. P < 0.05 was considered statistical significance.

Results

A total of 360 MMD patients (114 cases with TIA, 145 cases

with infarction, and 101 cases with hemorrhage) and 89matched

HCs were included in the study.

Baseline characteristics and BCAAs of
MMD patients and HCs

Baseline characteristics of MMD cases and HCs were shown

in Table 1. History of risk factors for stroke (hypertension,

diabetes mellitus, hyperlipidemia, cigarette smoking, and

alcohol drinking) were more prevalent in MMD patients (P

< 0.05 for all). In MMD patients, the levels of systolic blood

pressure (SBP), diastolic blood pressure (DBP), and BMI were

significantly higher than in HCs. Patients in groups of MMD

subtypes had a higher level of WBC count, neutrophil count,

glucose, TG, Hcy, NLR, SII, and MHR than in HC group (P

< 0.05 for all). Levels of laboratory results including LY count,

HGB, HCT, MCHC, TC, HDL-C, LDL-C, ApoA1, and PLR were

significantly different between groups (P < 0.05 for all). In

addition, patients withMMD and its subtypes had a significantly

higher level of BCAAs than that of HCs (P < 0.05 for all),

while patients with hemorrhagic-type MMD had a lower level

of BCAAs than that of infarction-type (P < 0.05) (Figure 2). The

significant differences of individual BCAAs (leucine, isoleucine,

and valine) between MMD patients and HCs were similar to the

total BCAAs (Supplementary Figure S1).

Characteristics of MMD patients and HCs
according to BCAAs quartiles

Clinical characteristics of MMD patients and HCs according

to the BCAAs quartiles were shown in Table 2. Patients with

higher level of BCAAs tended to be male; have risk factors

of hypertension, diabetes mellitus, hyperlipidemia, cigarette

smoking, and alcohol drinking; have higher levels of blood

pressure, BMI,WBC count, LY count, RBC, HGB, HCT, glucose,

creatinine, uric acid, TG, ApoB, and MHR (P < 0.05 for all).

Characteristics according to the quartiles of individual BCAAs

were summarized in Supplementary Table S1–S3.

Association of BCAAs with the risk of
MMD and its subtypes

Figure 3 showed the associations of serum total BCAAs

with the risk of MMD and its subtypes. The proportion of the
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TABLE 2 Characteristics of HCs and MMD patients according to BCAAs quartiles.

Variables Total (N = 449) BCAAs quartiles†, µmol/L

Q1 (n = 112) Q2 (n = 112) Q3 (n = 112) Q4 (n = 113) P for Trend

Age, y, mean± SD 41.24± 10.53 40.18± 10.85 41.79± 10.61 41.38± 10.13 41.63± 10.60 0.378

Sex, male (%) 187 (41.6) 16 (14.3) 37 (33.0) 61 (54.5) 73 (64.6) < 0.001*

History of risk factors, n (%)

Hypertension 131 (29.2) 22 (19.6) 26 (23.2) 40 (35.7) 43 (38.1) < 0.001*

Diabetes mellitus 59 (13.1) 4 (3.6) 12 (10.7) 10 (8.9) 33 (29.2) < 0.001*

Hyperlipidemia 54 (12.0) 9 (8.0) 7 (6.3) 10 (8.9) 28 (24.8) < 0.001*

Cigarette smoking 73 (16.3) 5 (4.5) 10 (8.9) 20 (17.9) 38 (33.6) < 0.001*

Alcohol drinking 42 (9.4) 1 (0.9) 6 (5.4) 14 (12.5) 21 (18.6) < 0.001*

Clinical features, mean± SD

Heart rate, bpm 78.39± 7.19 77.93± 6.58 77.21± 7.14 79.9± 7.92 78.52± 6.87 0.139

SBP, mmHg 130.61± 13.07 127.77± 11.84 129.36± 12.10 133.16± 14.13 132.12± 13.51 0.002*

DBP, mmHg 81.18± 9.23 80.43± 9.01 80.06± 8.80 82.06± 10.52 82.16± 8.41 0.065

BMI, kg/m2 25.17± 4.35 23.40± 3.72 24.84± 4.30 25.96± 4.53 26.47± 4.21 < 0.001*

Laboratory results, median± IQR

WBC count, 109/L 6.63± 2.27 6.20± 2.10 6.51± 2.67 6.86± 2.53 6.94± 2.10 < 0.001*

LY count, 109/L 1.91± 0.82 1.80± 0.75 1.82± 0.80 1.95± 0.80 2.19± 0.74 < 0.001*

Neutrophil count, 109/L 4.07± 1.85 3.63± 1.58 4.01± 1.86 4.29± 2.09 4.25± 1.82 0.008*

Monocyte count, 109/L 0.35± 0.16 0.32± 0.14 0.34± 0.17 0.37± 0.13 0.35± 0.16 0.014*

RBC, 1012/L 4.64± 0.67 4.41± 0.58 4.65± 0.73 4.79± 0.59 4.86± 0.63 < 0.001*

HGB, g/L 141.00± 24.00 134.50± 15.00 141.00± 23.00 147.00± 25.00 149.00± 22.00 < 0.001*

HCT, L/L 0.41± 0.07 0.39± 0.05 0.41± 0.07 0.43± 0.07 0.43± 0.06 < 0.001*

MCV, fL 90.00± 5.40 90.25± 6.20 89.75± 5.40 89.65± 5.60 89.40± 5.00 0.726

MCH, pg 30.80± 2.30 30.70± 2.70 30.90± 1.90 30.80± 2.20 30.70± 2.10 0.304

MCHC, g/L 342.00± 13.00 339.50± 12.00 343.00± 15.00 343.00± 15.00 344.00± 12.00 < 0.001*

PLT count, 109/L 246.00± 79.00 249.00± 79.00 243.50± 87.00 248.50± 68.00 238.00± 84.00 0.644

Fasting glucose, mmol/L 5.09± 0.90 4.95± 0.77 5.04± 0.80 5.12± 0.86 5.27± 1.50 < 0.001*

Creatinine, µmol/L 55.60± 20.55 49.65± 14.08 53.90± 19.02 59.80± 19.00 62.90± 20.70 < 0.001*

Uric acid, µmol/L 307.70± 115.60 262.15± 89.30 292.70± 97.80 326.75± 99.80 365.50± 124.10 < 0.001*

TG, mmol/L 1.15± 0.81 0.90± 0.53 1.05± 0.78 1.18± 0.75 1.44± 0.95 < 0.001*

TC, mmol/L 4.26± 1.21 4.34± 1.17 4.17± 1.36 4.26± 1.08 4.31± 1.40 0.764

HDL-C, mmol/L 1.34± 0.39 1.48± 0.45 1.34± 0.37 1.33± 0.33 1.22± 0.35 < 0.001*

LDL-C, mmol/L 2.41± 1.13 2.40± 0.99 2.41± 1.24 2.42± 0.94 2.49± 1.23 0.806

ApoA1 , g/L 1.30± 0.29 1.39± 0.31 1.33± 0.26 1.28± 0.27 1.25± 0.34 < 0.001*

ApoB, g/L 0.82± 0.27 0.76± 0.24 0.76± 0.29 0.86± 0.24 0.86± 0.31 0.002*

Hcy, µmol/L 11.43± 5.16 10.63± 4.54 10.66± 4.68 11.85± 4.83 12.78± 6.21 < 0.001*

HHcy, n (%) 99 (22.0) 20 (17.9) 18 (16.1) 25 (22.3) 36 (31.9) 0.006*

NLR 2.06± 1.15 2.01± 1.19 2.06± 1.18 2.14± 1.33 2.01± 1.04 0.652

MLR 0.19± 0.10 0.19± 0.10 0.19± 0.09 0.20± 0.10 0.18± 0.10 0.397

PLR 127.39± 58.01 132.14± 68.32 137.51± 69.92 127.29± 54.66 114.72± 55.28 0.001*

SII, 109/L 505.35± 379.14 493.37± 439.04 526.63± 381.10 577.35± 333.42 476.38± 330.73 0.851

MHR 0.26± 0.16 0.21± 0.11 0.25± 0.14 0.29± 0.16 0.30± 0.18 < 0.001*

HCs, healthy controls; MMD, moyamoya disease; BCAAs, branched-chain amino acids; SD, standard deviation; SBP, systolic blood pressure; DBP, diastolic blood pressure; BMI, body

mass index; IQR, interquartile range; WBC, white blood cell; LY, lymphocyte; RBC, red blood cell; HGB, hemoglobin; HCT, hematocrit; MCV, mean corpuscular volume; MCH, mean

corpuscular hemoglobin; MCHC, mean corpuscular hemoglobin concentration; PLT, platelet; TG, triglyceride; TC, total cholesterol; HDL-C, high-density lipoprotein cholesterol; LDL-C,

low-density lipoprotein cholesterol; ApoA1 , apolipoprotein A1 ; ApoB, apolipoprotein B; Hcy, homocysteine; HHcy, hyperhomocysteinemia; NLR, neutrophil-to-lymphocyte ratio; MLR,

monocyte-to-lymphocyte ratio; PLR, platelet-to-lymphocyte ratio; SII, systemic immune-inflammation index; MHR, monocyte-to-HDL cholesterol ratio.

†Serum levels of BCAAs in quartiles: Q1, < 488.9 µmol/L; Q2, 488.9-564.0 µmol/L; Q3, 564.0-639.7 µmol/L; and Q4, ≥ 639.7 µmol/L.
*P<0.05, significant difference.
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FIGURE 3

The association of circulating BCAAs level with the risk of MMD and clinical subtypes. (A–D) Forest plots for the association of BCAAs with MMD

(A) and subtypes [(B) TIA-type; (C) Infarction-type; (D) Hemorrhagic-type]. E-H. ROC curves with AUC of di�erent models for the risk of MMD (E)

and subtypes [(F), TIA-type; (G) Infarction-type; (H) Hemorrhagic-type]. Model 1, adjusted for age and sex. Model 2, further adjusted for BMI,

WBC count, neutrophil count, glucose, TG, TC, HDL-C, LDL-C, APO-A1, Hcy, NLR, SII, and MHR. BCAAs, branched-chain amino acids; OR, odds

ratio; CI, confidence interval; MMD, moyamoya disease; TIA, transient ischemic attack.

presence of MMD in the quartiles of BCAAs increased from

1st to 4th quartiles. After adjusting for age and sex, subjects in

the second to last quartiles (Q2–Q4) of BCAAs were associated

with a higher risk of MMD than those in the first quartile
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TABLE 3 Performance of models with BCAAs to predict the risk of MMD and its subtypes.

Variables† NRI, continuous IDI

Estimate (95%CI), % P value Estimate (95%CI), % P value

Moyamoya overall

Basic model Ref. Ref.

Basic model+ BCAAs quartiles 35.4 (13.2–57.6) 0.002* 1.7 (0.3–3.2) 0.022*

Basic model+ BCAAs continuous 35.2 (12.4–58.0) 0.002* 2.1 (0.5–3.7) 0.011*

TIA-type

Basic model Ref. Ref.

Basic model+ BCAAs quartiles 38.7 (11.5–65.9) 0.005* 2.6 (0.3–4.9) 0.027*

Basic model+ BCAAs continuous 41.5 (14.5–68.6) 0.003* 2.4 (0.2–4.7) 0.036*

Infarction-type

Basic model Ref. Ref.

Basic model+ BCAAs quartiles 37.6 (12.9–62.4) 0.003* 2.0 (0.1–3.8) 0.038*

Basic model+ BCAAs continuous 24.1 (−1.9–50.1) 0.069 2.2 (0.3–4.1) 0.023*

Hemorrhagic-type

Basic model Ref. Ref.

Basic model+ BCAAs quartiles 48.2 (20.7–75.7) < 0.001* 4.6 (1.7–7.5) 0.002*

Basic model+ BCAAs continuous 40.6 (12.8–68.5) 0.004* 2.7 (0.6–4.8) 0.013*

BCAAs, branched-chain amino acids; MMD, moyamoya disease; NRI, net reclassification index; IDI, integrated discrimination improvement; CI, confidence interval; TIA, transient

ischemic attack.

†Basic model included age, sex, BMI, WBC count, Neutrophil count, glucose, TG, TC, HDL-C, LDL-C, ApoA1 , Hcy, NLR, SII, and MHR.
*P<0.05, significant difference.

(Q1). After additionally adjusting for covariates of BMI, WBC

count, neutrophil count, glucose, TG, TC, HDL-C, LDL-C,

APO-A1, Hcy, NLR, SII, and MHR, cases in Q4 of BCAAs

were significantly associated with a higher risk of MMD than

those in Q1 (odds ratio [OR] 3.10, 95% confidence interval [CI]

1.29-7.50, P = 0.012). The ROC curves with AUC of models

for the occurrence of MMD were constructed in Figure 3. In

contrast to the Crude model and Model 1 (AUC: 0.632, 0.648,

respectively), the Model 2 yielded to a prominent improvement

in the predictive value (AUC: 0.812).

Consistently, the risk of three subtypes of MMD increased

with each increment in the quartiles of BCAAs (Figure 3). Q3

and Q4 of BCAAs were strongly associated with the occurrence

TIA-typeMMD compared with Q1 inModel 2 (OR 3.60, 95% CI

1.17-11.01, P = 0.025; OR 3.95, 95% CI 1.20–13.06, P = 0.024,

respectively). Q4 of BCAAs was significantly associated with the

risk of infarction-type and hemorrhagic-type MMD compared

with Q1 in Model 2 (OR 3.79, 95% CI 1.17–12.30, P= 0.027; OR

4.88, 95% CI 1.65–14.44, P = 0.004, respectively). In contrast to

the Crude model and Model 1, the Model 2 consistently showed

prominent improvements in the predictive values of subtypes

of TIA, infarction, and hemorrhagic MMD (AUC: 0.821, 0.879,

0.816, respectively) (Figure 3).

Besides, the risk of MMD and its subtypes increased

with each increment in the quartiles of individual BCAA

(Supplementary Figure S2). Similarly, Q4 of leucine, isoleucine,

and valine were markedly associated with the risk of MMD

and its subtypes compared with Q1 in Model 2, respectively.

The ROC curves with AUC of individual BCAAs models

for the presence of MMD and subtypes were constructed in

Supplementary Figure S3. Analogously, the predictive values of

MMD and its subtypes of Model 2 were all noticeably enhanced,

compared with the Crude model and Model 1.

Improvement in the prediction models
for the risk of MMD and its subtypes

We compared the performance of different models for

predicting the risk of MMD and its subtypes (Table 3). The

addition of BCAAs to the basic model moderately improved

the performance verified by NRI. The NRI of BCAAs in

quartiles for the presence of MMD was 35.4% (95%CI 13.2–

57.6%). A similar performance for predicting the risk of

MMD was validated for BCAAs and the basic model. The

IDI of BCAAs in quartiles for the occurrence of MMD

was 1.7% (95%CI 0.3–3.2%). In addition, the predictive

performance of BCAAs in MMD subtypes evaluated by NRI

and IDI was consistent. Significant improvements were also

observed after the addition of BCAAs to the basic model by

NRI and IDI.
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Discussion

In this large case-control study of 449 participants, we firstly

investigated the association of serum metabolite of BCAAs

with the risk of MMD and clinical subtypes. We identified

that the serum level of BCAAs was significantly higher in

MMD patients than in HCs. The elevated level of BCAAs was

strongly associated with increased risks of MMD and subtypes.

Collectively, our findings outlined the crucial relevance of

increasing serum BCAAs with the risk of MMD.

Amino acids are important nutrients for humans. As the

precursors of proteins, amino acids participate in various life

activities and metabolism (13). BCAAs is an essential amino

acid that regulates cell growth, autophagy, neurotransmitter

synthesis, carbohydrate and lipidmetabolism (14). The excessive

intake of amino acids and metabolic disorders of BCAAs

would result in the accumulation of serum BCAAs, which have

been verified in animal experiments and clinical studies (15,

16). Therefore, the increment of BCAAs is often considered

as the evidence of metabolic disorders. Current studies have

confirmed that BCAAs is associated with diabetes, obesity,

insulin resistance and other diseases (7). The metabolites

of BCAA pathway accumulate as the risk factor for insulin

resistance, and the association was identified in type 2 diabetes

and cardiovascular disease (7, 17). Previous studies have shown

that abnormal metabolism of BCAAs was associated with a

variety of cardio-cerebrovascular diseases, including coronary

heart disease, heart failure, and carotid artery stenosis (18–

20). Few metabolomics studies have been conducted in patients

with MMD (11, 12). The studies consistently demonstrated that

the level of serum valine in MMD patients was significantly

lower than that in HCs, while the result of isoleucine

was quite the opposite. It seems possible that the inverse

result of valine is due to the different technology of mass

spectrometry used for the serum metabolome. In general, our

findings indicated that the altered levels of BCAAs could be

linked to MMD.

As nutrient signaling molecules, BCAAs mainly transduce

the mTOR pathway (8). BCAAs, especially leucine, participate

in many biological activities by activating mTOR. One

study showed that isoleucine in mitochondria was involved

in the vascular oxidative stress, leading to the endothelial

dysfunction (21). MMD is a multifactorial disease, affected

by genetic and environmental factors (22). Various risk

factors can cause an elevation of free radicals, continuingly

producing excessive reactive oxygen species (ROS) that result

in cellular damage (23). Jung et al. found that the oxidative

stress level of endothelial colony-forming cells (ECFCs)

in patients with MMD was significantly higher than in

HCs (24). The angiogenesis capacity of endothelial cells in

MMD patients was increased by administrating the ROS

scavengers. Endothelial cells are prone to have oxidative stress

response and generate various biologically active substances

by exposed to the microenvironment in plasma, causing a

functional impairment in endothelial cells through various

pathways. Therefore, we hypothesized that high concentration

of BCAAs could induce the activation of mTOR, resulting

in oxidative stress, mitochondrial dysfunction, and apoptosis,

which may be one of the mechanisms involved in the

pathogenesis of MMD.

BCAAs may generate a chronic inflammatory response

by increasing the expression of pro-inflammatory cytokines

(e.g., TNF-α and IL-6), leading to changes in endothelial

and smooth muscle cell phenotypes, and thereby producing

the pathological conditions. Some studies have identified that

isoleucine was positively correlated with IL-6, endotoxin and

oxLDL, (25) while leucine was positively related to TNF-

α and HOMA-IR (26). The supplementation of BCAAs in

blood monocytes stimulated redox through NADPH oxidase

and the generation of ROS throughout the mitochondria

activation of NF-κB, resulting in the release of pro-inflammatory

factors (27). Recent studies have found that the expression

levels of periphery inflammatory factors in MMD were higher

than those in HCs, including TNF-α, IL1-β, IL-6, etc. (28,

29). The microenvironment formed by abnormally secreted

inflammatory factors may promote the proliferation and

angiogenesis of cells in affected vessels (30). The occurrence of

chronic inflammation may generate the vascular damage and

the formation of micro-vessels, leading to the hemorrhage and

infarction (31). In conclusion, BCAAs may have an impact on

endothelial and smooth muscle cells through oxidative stress

and inflammatory responses, and thereby develop the phenotype

of moyamoya vasculopathy.

Our study showed that several factors were associated

with the quartiles of BCAAs. There were growing trends

of diabetes and BMI along with the level of BCAAs. It

has been verified that BCAAs was related to the metabolic

disorders, including diabetes and obesity (7). Although diabetes

and obesity are comorbidities in patients with MMD (2),

BCAAs is still the independent risk factor after adjustment

for glucose and BMI in the multivariate regression models.

In addition, we confirmed that the TG level were positively

correlated with BCAAs. BCAAs exert an influence on the lipid

metabolism (32). It is logically consistent with our previous

case-control study which has shown that the dyslipidemia

was linked to MMD (5). We also detected that the elevated

levels of hematologic indicators (RBC, HGB, HCT) were in

parallel with the increment of BCAAs. Recent study has shown

that BCAAs was related to the iron metabolism, and the

circulating BCAAs was decreased in patients with anemia (33).

Therefore, we concluded that the disorder of BCAAs may

serve as a bridge connecting multiple metabolic abnormalities

and diseases.

In this study, total and individual BCAAs were all

analyzed. The differences among three individual BCAAs tended

to be similar. Although BCAAs is a compound of three

Frontiers inNutrition 09 frontiersin.org

https://doi.org/10.3389/fnut.2022.994286
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Zeng et al. 10.3389/fnut.2022.994286

substances, each BCAA may have distinct effects. Isoleucine

and valine, while not leucine, mediated the metabolic health

(34). It is only isoleucine, not leucine and valine, that

improved the brain perfusion (35). In addition, we found

that circulating BCAAs in MMD patients is higher than

that of HCs. The consequence of significant difference is

the initial trigger of onset or the result of second strike

cannot be clarified based on the current case-control study.

Hence, it is vital to demonstrate the function of each BCAA

metabolite in MMD.

Several limitations should be considered in this study. First,

this is a single-center study with relatively small sample size.

Although the potential bias was inevitable, this is the largest

study to investigate the association of serum BCAAs and MMD.

Second, the study was conducted in a Chinese population

with adult MMD, the findings may not be generalized to the

overall populations of MMD. Third, the information of patient-

level diets was not included in the study. The pattern of diets

may have an impact on the outcomes. Fourth, the results of

serum metabolites are affected by many factors. Although the

confounders have been adjusted in the regression models, we

can only demonstrate the association of serum BCAAs with

the risk of MMD. Further in vitro or in vivo experiments, and

larger prospective cohort studies with follow-up outcomes are

warranted to reveal the effect and mechanism of BCAAs on the

pathogenesis of MMD.

Conclusions

Our study indicated that higher circulating BCAAs level was

associated with increased risk of MMD and clinical subtypes.

This work will help to elucidate the pathogenesis of MMD,

which may provide the support for facilitating the interventions

and preventions.
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