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Cyanidin-3-O-glucoside (C3G) is the most widely distributed anthocyanin and

it can reportedly reduce the risk of osteoporosis, but themolecular mechanism

by which C3G promotes bone formation is poorly understood. In the current

study, RNA sequencing (RNA-seq) was used to investigate the mechanism of

action of C3G in osteogenesis. MC3T3-E1mouse osteoblasts were divided into

a C3G (100 µmol/L)-treated group and a vehicle-treated control group, and

di�erentially expressed genes (DEGs) in groups were evaluated via RNA-seq

analysis. The functions of the DEGs were evaluated by Gene Ontology (GO)

and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses, and the

genes were validated by quantitative real-time PCR. The RNA-seq analysis

identified 34 genes that were upregulated in C3G-treated cells compared to

vehicle-treated cells, and 17 that were downregulated GO and KEGG pathway

analyses indicated that these genes were highly enriched in functions related

to lysosomes and glycolipid biosynthesis, among others. The di�erential

expression of ATPase H+-transporting V0 subunit C (Atp6v0c), chemokine

(C-X3-C motif) ligand 1 (Cx3cl1), and lymphocyte antigen 6 complex, locus A

(Ly6a) genes was validated by quantitative real-time-PCR. Because these genes

have been previously implicated in osteoporosis, they are potential target

genes of C3G action in MC3T3-E1 cells. These results provide molecular level

evidence for the therapeutic potential of C3G in the treatment of osteoporosis

and other disorders of bone metabolism.

KEYWORDS
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Introduction

Osteoporosis is a disorder of bone metabolism characterized by reduced bone

mineral density and a high risk of bone fracture (1). It is a global public health

problem (2) that will worsen with the increasing life expectancy of the human

population. Osteoblasts and osteoclasts are responsible for bone remodeling, which

maintains the integrity of the skeleton (3, 4). Primary cause of osteoporosis is

dysfunctional osteoblasts and osteoclasts activity (5). Promoting the proliferation and
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differentiation of osteoblasts is an effective way to enhance bone

mineral density and prevent osteoporosis (6).

Cyanidin-3-O-glucoside (C3G) is an anthocyanin that

is widely distributed in nature (7, 8). C3G evidently has

antioxidant and anti-inflammatory effects, therapeutic effects on

disease, such as obesity, type 2 diabetes mellitus, and prostate

cancer (9, 10), and promotes bone formation and reduces bone

loss (11–16). In a study conducted in the United Kingdom,

women with high dietary anthocyanin intake had higher bone

mineral density (11, 12). In rodents, C3G supplementation

can reportedly improve bone quality and reduce bone loss

(13, 17, 18), and in other studies it has enhanced osteoblast

differentiation and mineralization (19, 20). C3G may be a

natural product supporting the prevention and treatment of

osteoporosis (21).

To date most studies investigating the molecular etiology of

osteoporosis have focused on components of signaling pathways

related to bone development such as mitogen-activated protein

kinase (MAPK) (22, 23), nuclear factor kappa B (NF-κB)

(22), bone morphogenetic protein (BMP) (24), and Wnt (25)

pathways. Recent studies have also revealed roles for the

chemokine (C-X3-C motif) ligand 1 (CX3CL1)/chemokine (C-

X3-C motif) receptor 1 (CX3CR1) signaling axis (26) and

glycosylphosphatidylinositol-anchored proteins (27).

Anthocyanins from black rice, which is enriched in C3G (28)

and blackberry (29) were shown to affect osteoblast proliferation

and differentiation by modulating the expression of target

genes including alkaline phosphatase (Alp), osteopontin

(Opn), osterix (Osx), and bone gamma-carboxyglutamic

acid-containing protein (Bglap) (20). C3G increased the

mineralization capacity of osteoblasts via the extracellular

signal regulated kinase 1/2 (ERK1/2) signaling pathway (19).

Several molecular mechanisms of C3G have been investigated

in bone cells, but its effects on gene regulation involved in bone

formation remain largely unknown.

RNA sequencing (RNA-seq) technology combined with

bioinformatics have enabled the large-scale identification

of genes associated with normal biological processes and

pathogenic processes (30). In current study, gene expression

profiles of ME3T3-E1 osteoblast-like cells with and without

C3G treatment were investigated by RNA-seq and a functional

analyses of differentially expressed genes (DEGs) was conducted

to identify those that potentially mediate the protective effects of

C3G in osteoporosis.

Materials and methods

Chemicals and reagents

C3G with the purity over 98% was purchased from

Meilunbio (Dalian, China). TRIzol reagent, primers of

quantitative polymerase chain reaction (qRT-PCR), a reverse

transcription kit and SYBR Green MasterMix were purchased

from Takara Bio (Ostu, Japan). Pancreatin were purchased

from Hyclone (Logan, UT, USA). Dimethylsulfoxide (DMSO),

phosphate buffered saline (PBS), and other chemicals were

purchased from Sigma-Aldrich (Sigma, USA).

Cell culture

Murine preosteoblast MC3T3-E1 cells obtained from the

Cell Bank of the Chinese Academy of Science (Shanghai, China)

were cultured in alpha-minimal essential medium supplemented

with 10% fetal bovine serum and 1% penicillin/streptomycin (all

from Hyclone, Logan, UT, USA) at 37◦C and 5% CO2. In a

previous study, 100 µmol/L C3G promoted cell proliferation of

MC3T3-E1 cells (19), therefore, 7∗105/ml MC3T3-E1 cells were

seeded in 6-well plates in the present study. After the cells had

adhere, the cells were synchronized for 24 h using serum-free

medium. After completion of the synchronization treatment, the

serum-free medium was replaced with complete medium with

or without 100 µmol/L C3G, and the cells were culture for a

further 24 h.

RNA-seq analysis

Total RNA was extracted from cells using TRIzol reagent

and RNA integrity was evaluated via agarose gel electrophoresis

and spectrophotometry using a NanoDrop ND-1000 instrument

(Thermo Fisher Scientific, Waltham, MA, USA). An RNA

library was constructed with the KAPA Stranded RNA-seq

Library Prep Kit (Illumina, San Diego, CA, USA), and the

quality of the library was assessed using 2100 Bioanalyzer

(Agilent Technologies, Santa Clara, CA, USA). Quantification

of the library was performed via quantitative real-time PCR

(qRT-PCR). Sequencing was performed over 150 cycles using

the Xten/NovaSeq system (Illumina). Raw RNA-seq data were

submitted to NCBI Gene Expression Omnibus (accession

number. GSE149731).

Functional analysis of identified genes

FastQC v0.11.8 was used to analyze the raw RNA-seq

data (http://www.bioinformatics.babraham.ac.uk/projects/

fastqc/) (31). Fragments per kilobase of gene/transcript model

per million mapped fragments values for gene and transcript

levels were calculated with the Ballgown package (https://

www.bioconductor.org/packages/release/bioc/html/ballgown.

html) of R v2.10.0 software. R was used to generate volcano

plots and heatmaps to further analyze gene expression profiles.

Gene Ontology (GO) functional enrichment analysis of

DEGs (www.geneontology.org/) was performed, and genes
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TABLE 1 Primer sequences used in the study.

Gene Sequence (5′-3′) Gene Sequence (5′-3′)

LSM12-f CAGCGTTCACAAGCCCAACAAC Cx3cl1-f CTACTAGGAGCTGCGACACG

LSM12-r CACTGAAGCCACCACCACCATC Cx3cl1-r TGTCGTCTCCAGGACAATGG

Foxp1-f CAAGCTGTGCACCCCATACA Adprhl2-f TGAGCCGAGAGGAAGTGGTGTC

Foxp1-r TGTACAAGAAACGGAGGGCG Adprhl2-r GCAGCGCAGGAAGCAGTAGATG

Ly6a-f CCTGCTGGGTAGGTAGGTGCTC Txndc5-f GCCGCTGCTCGTAACTCTGTG

Ly6a-r CCTCTTCACTGTGCTGGCTGTG Txndc5-r CCGCTCGTGGGAGGTAGGTG

Cenpx-f CGGAAGGAACTGGTGAGCAGAC Ppp1r15a-f AGCATGGGCACGCCTTAGAAAC

Cenpx-r ACGGACAGCAGCCTCTAGTACG Ppp1r15a-r CCGCCTCCCTCCCAAGTACAG

Defb25-f ATGCACCTGTGTCCGGATG Tmem55b-f CGTACGGAGCCGGTAAACA

Defb25-r ATGGCATCAACTCTAGAGCAA Tmem55b-r TCTTGATGGGAGTGGCTTCG

Pigc-f AGTAGTCCCCTTCCAAGCCG Camk2g-f CCGCCCGAGATCATCAGAAA

Pigc-r GCTAAATTCCTGCACCAAGCTC Camk2g-r CTTGACACCGCCATCTGACT

Atp6v0c-f ACGAACAGCCTGACACATGCAC Gm20521-f CTCTAGCCGGGAGGATGAAAG

Atp6v0c-r GCCTGGGTGGGAGATGAGTGG Gm20521-r CCAACGTAGATAGAGCGGGC

Ccdc115-f GGTGGAGGAGGGTTGGCTCTC Nkiras2-F CGGGAGCAGGTGCGTTTCTATG

Ccdc115-r GCACGCACGCAGACCTGAG Nkiras2-R ACGTAGCCATCGGTGCAGGAG

Ugt1a7c-f TTGCCTTAGGCTGCACTTCT Tex2-f GAGTGGTTCAGGCGGTTCATCC

Ugt1a7c-r TCCGGAACAACCACTACGAC Tex2-r GCTGCTGCTGCGGCTGTG

Nfya-f CAGCCGTTAATGGTGCAAGT Iqcd-f GCGAGAAGCAGGACGAATAC

Nfya-r GAGGCACCAACTGTATCTGCT Iqcd-f CCACCCGCTTCTTGGAATTG

GAPDH-f TTGTCTCCTGCGACTTCAACA

GAPDH-r GTGGTCCCAGGGTTTCTTACTCC

involved in biological process, cellular component, and

molecular function GO categories were identified (32, 33).

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway

analysis (www.genome.jp/kegg/) was conducted to identify

signaling pathways associated with the DEGs. All pathways were

based on the KEGG database (33).

Quantitative real-time PCR

RNA was extracted from C3G-treated and untreated

MC3T3-E1 cells (n = 3 replicates each) using TRIzol reagent.

cDNA was synthesized using a reverse transcription kit, and

SYBR Green MasterMix was used for qRT-PCR in a reaction

volume of 20 µL. qRT-PCR was performed on a real-time

PCR machine (ABI 7500, Applied Biosystem, Foster, California,

USA). The primer sequences used are shown in Table 1. The

glyceraldehyde 3-phosphate dehydrogenase (Gapdh) gene was

used as the internal control to calculate target gene expression

levels via the cycle threshold (2−11Ct) method.

Statistical analysis

Data are presented as mean± standard deviation. Statistical

analyses were performed using SPSS v22.0 software (SPSS Inc,

Chicago, IL, USA). Comparisons between two groups were

performed with the student’s t-tests, and p < 0.05 was deemed

to indicate statistical significance.

Results

Identification of DEGs

Expression profiles of 11,238 genes in C3G-treated and

untreated MC3T3-E1 cells were determined by RNA-seq, which

yielded 51 DEGs (p < 0.05, fold change ≥1.2). A heatmap

(Figure 1A) and a volcano plot (Figure 1B) were used to

represent the abundance of these different transcripts, with

expression levels ranging from high (red) to low (green), and

there were 34 upregulated and 17 downregulated DEGs. Details

of all DEGS are shown in the Supplementary Table 1.

GO analysis of DEGs

The top 10 biological process terms from the GO analysis

of DEGs are presented in Table 2. All biological process terms

are listed in Supplementary Table 2. The top three biological

process terms for upregulated DEGs were lysosomal lumen

acidification (GO:0007042; Atp6v0c, Ccdc115), regulation of

lysosomal lumen pH (GO:0035751; Atp6v0c, Ccdc115), and
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FIGURE 1

Heatmaps and volcano plot of DEGs in C3G-treated vs. untreated control MC3T3-E1 cells. (A) Heatmap of 34 upregulated and 17 downregulated

DEGs. (B) Volcano plot of upregulated (red dots) and downregulated (green dots) DEGs and genes expressed at a normal level (gray dots).

lysosome organization (GO:0007040; Atp6v0c, Ccdc115). The

top three biological process terms for downregulated DEGs

were cellular responses to stress (GO:0033554; Adprhl2, Faap24,

Gm20521, Ppp1r15a, Rad1), response to stress (GO:0006950;

Adprhl2, Camk2g, Cx3cl1, Faap24, Gm20521, Ppp1r15a,

Rad1), and vacuolar acidification (GO:0033135; Ppp1r15a,

Smad7) for downregulated DEGs. Several significantly

enriched entries were related to cellular responses to stress

[GO:0033554; ADP-ribosylhydrolase-like 2 (Adprhl2), FA

core complex-associated protein 24 (Faap24), Gm20521,

protein phosphatase 1 regulatory subunit 15A (Ppp1r15a),

Rad1], cell–cell junction organization [GO:0045216; Nectin1,

Mothers against decapentaplegic homolog 7 (Smad7)], and

cellular responses to DNA damage stimuli (GO:0006974;

Faap24, Gm20521, Rad1). With respect to cellular components

(Supplementary Table 3), the most significant terms were

ATPase for upregulated DEGs (Figures 2A,B) and outer

organelle membranes for downregulated DEGs (Figures 2C,D).

The most significant terms pertaining to molecular function

(Supplementary Table 4) were ubiquitin-like protein ligase

binding for upregulated DEGs (Figures 2A,B) and cell adhesion

molecule binding for downregulated DEGs (Figures 2C,D).

Other significant GO terms included lipoprotein metabolic

process [GO:0042157; lysophospholipase-like 1 (Lyplal1),

phosphatidylinositol glycan anchor biosynthesis class C (Pigc),

Pigk]; glycosylphosphatidylinositol (GPI) anchor biosynthetic

process (GO:0006506; Pigc, Pigk); glycolipid biosynthetic

process (GO:0009247; Pigc, Pigk); GPI-anchor metabolic

process (GO:0006505; Pigc, Pigk); glycolipid biosynthetic

process (GO:0009247; Pigc, Pigk); glycolipid metabolic process

(GO:0006664; Pigc, Pigk); protein lipidation (GO:0006497;

Pigc, Pigk); and lipoprotein biosynthetic process (GO:0042158;

Pigc, Pigk).

KEGG pathway analysis of DEGs

KEGG pathway analysis revealed five significantly enriched

signaling pathways (Table 3). Four were upregulated including

GPI-anchored protein (GPI-AP) biosynthesis signaling pathway

(mmu00563; Pigc, Pigk), tuberculosis [mmu05152; Atp6v0c,

Fc receptor, IgG, low affinity IV (Fcgr4), nuclear transcription

factor Y subunit alpha (Nfya)], Systemic lupus erythematosus

[mmu05322; Fcgr4, histone H2B (Hist1h2bq)], and Phagosome

(mmu04145; Atp6v0c, Fcgr4) (Figure 3), and one was
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TABLE 2 Top 10 enriched BP terms of up-regulated and down-regulated DEGs.

ID Term DEG(s) p-Value FDR Enrichment

Up-regulated

GO:0007042 Lysosomal lumen

acidification

Atp6v0c, Ccdc115 0.000051713 0.031235009 4.286395308

GO:0035751 Regulation of lysosomal

lumen pH

Atp6v0c, Ccdc115 0.000121475 0.036685321 3.915514623

GO:0007035 Vacuolar acidification Atp6v0c, Ccdc115 0.000280141 0.056401623 3.552624083

GO:0042157 Lipoprotein metabolic process Lyplal1, Pigc, Pigk 0.000496347 0.060730184 3.30421487

GO:0034508 Centromere complex

assembly

Cenpx, Hjurp 0.000502733 0.060730184 3.298662336

GO:0051452 Intracellular pH reduction Atp6v0c, Ccdc115 0.000686147 0.064043499 3.163582969

GO:0006506 GPI anchor biosynthetic

process

Pigc, Pigk 0.000841882 0.064043499 3.074749022

GO:0045851 pH reduction Atp6v0c, Ccdc115 0.00089723 0.064043499 3.047095975

GO:0006505 GPI anchor metabolic process Pigc, Pigk 0.000954291 0.064043499 3.020319376

GO:0009247 Glycolipid biosynthetic

process

Pigc, Pigk 0.002633397 0.083516259 2.579483631

Down-regulated

GO:0033554 Cellular response to stress Adprhl2, Faap24, Gm20521,

Ppp1r15a, Rad1

0.001529696 0.114686788 2.815395

GO:0006950 Response to stress Adprhl2, Camk2g, Cx3cl1,

Faap24, Gm20521, Ppp1r15a,

Rad1

0.002156548 0.114686788 2.66624084

GO:0033135 Regulation of peptidyl-serine

phosphorylation

Ppp1r15a, Smad7 0.004392513 0.114686788 2.357286896

GO:0045216 cell-cell junction organization Nectin1, Smad7 0.004863323 0.114686788 2.313066923

GO:0051179 localization Camk2g, Cx3cl1, Nectin1,

Ppp1r15a, Smad7, Tex2,

Txndc5, Ubl4a

0.006595983 0.114686788 2.180720442

GO:0006974 Cellular response to DNA

damage stimulus

Faap24, Gm20521, Rad1 0.008369015 0.114686788 2.077325642

GO:0090257 Regulation of muscle system

process

Camk2g, Smad7 0.009416313 0.114686788 2.026119096

GO:2001234 Negative regulation of

apoptotic signaling pathway

Cx3cl1, Gm20521 0.009662976 0.114686788 2.014889099

GO:0022409 Positive regulation of cell-cell

adhesion

Cx3cl1, Smad7 0.009996352 0.114686788 2.000158469

GO:0001818 Negative regulation of

cytokine production

Cx3cl1, Smad7 0.010420254 0.114686788 1.982121684

downregulated protein processing in endoplasmic reticulum

[mmu04141; Ppp1r15a, thioredoxin domain-containing 5

(Txndc5)] (Figure 3).

qRT-PCR analysis of DEGs

Among the top 10 upregulated genes identified by

RNA-seq, seven [lymphocyte antigen 6 complex, locus A

(Ly6a); centromere protein X (Cenpx), defensin beta 125

(Defb25), Pigc, Atp6v0c, UDP glucuronosyltransferase family

1 member A7 (Ugt1a7c), and Nfya] exhibited significant

differences in expression in comparative qRT-PCR analysis of

C3G-treated and untreated MC3T3-E1 cells, whereas LSM12

homolog (Lsm12), forkhead box P1 (Foxp1), and Ccdc115

mRNA levels did not differ significantly between the groups

(Figure 4A). Among the top 10 downregulated DEGs, four

[Cx3cl1, ADP-ribosylserine hydrolase 12 (Adprh12), Txndc5,
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FIGURE 2

GO analysis of DEGs in C3G-treated MC3T3-E1 cells and untreated control MC3T3-E1 cells. Enriched GO terms corresponding to DEGs in the

biological process (BP), cellular component (CC), and molecular function (MF) categories are shown. (A–D) GO terms based on upregulated

(A,B) and downregulated (C,D) DEGs.

TABLE 3 Signaling pathway enrichment of up-regulated and down-regulated DEGs.

ID Term DEG(s) p-Value FDR Enrichment

Up-regulated

mmu00563 Glycosylphosphatidylinositol (GPI)-anchor biosynthesis Pigc, Pigk 0.000600808 0.019225871 3.221263961

mmu05152 Tuberculosis Atp6v0c, Fcgr4, Nfya 0.002024514 0.032392223 2.693679229

mmu05322 Systemic lupus erythematosus Fcgr4, Hist1h2bq 0.018196375 0.173813623 1.740015125

mmu04145 Phagosome Atp6v0c, Fcgr4 0.028375513 0.173813623 1.547056275

Down-regulated

mmu04141 Protein processing in endoplasmic reticulum Ppp1r15a, Txndc5 0.000600808 0.199802063 1.961455096
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FIGURE 3

Enriched KEGG pathways of upregulated DEGs and downregulated DEGs. (A,B) Dot plots showing the enrichment score (–log10[p-value]) of

significantly enriched pathways (A) and the gene ratio of the top 10 most significantly enriched pathways (B). (C) Bar plot showing the top 10

enrichment scores (–log10[p-value]) of significantly enriched pathways. (D,E) Dot plots showing the enrichment score (–log10[p-value]) of the

significantly enriched pathways (D) and the gene ratios of the top 10 most significantly enriched pathways (E). (F) Bar plot showing the top 10

enrichment scores (–log10[p-value]) of significantly enriched pathways.

and calcium/calmodulin-dependent protein kinase II gamma

(Camk2g)] were expressed at significantly lower levels in

C3G-treated MC3T3-E1 cells as determined by qRT-PCR,

whereas phosphatidylinositol-4,5-bisphosphate 4-phosphatase

(Tmem55b), Gm20521, Nkieas2, and testis expressed 2 (Tex2)

were upregulated. There were no significant differences in

Ppp1r15a or IQ motif-containing D [Iqcd] expression between

treated and untreated cells (Figure 4B).

Discussion

Osteoblasts are specialized fibroblasts that secrete and

mineralize bone matrix and play a critical role in osteoporosis.

MC3T3-E1 cells can be induced to differentiate into osteoblasts

and are used as in vitro models to investigate the molecular

mechanisms of osteogenesis (34). In current study, RNA-seq

of MC3T3-E1 cells treated with the anthocyanin C3G revealed

many DEGs as well as GO terms related to lysosomes—e.g.,

lysosomal lumen acidification, regulation of lysosomal lumen

pH, and lysosome organization. This is consistent with

previous report that lysosomes play an important role in

biogenesis, mineralization, and trafficking of nanovesicles in

osteoblasts (35).

GPI metabolism and lipidation were implicated in the

effects of C3G on osteoblasts, as revealed by functional

enrichment analyses of DEGs. Phosphorylation of ERK1/2 in

osteoblasts promotes the expression of GPI-anchored proteins

that maintain cell membrane integrity, which affects osteoblast

proliferation (27). Other biological processes including cellular

responses to stress (36), cell–to-cell junction organization (19)

and cellular responses to DNA damage (37) have been linked

to the effects of C3G on osteoblasts. The most significantly

enriched KEGG pathways were involved in GPI-anchored

protein biosynthesis (upregulated), lupus erythematosus

(upregulated), and phagosome (upregulated), and protein

processing in endoplasmic reticulum (downregulated).

GPI is a ubiquitous glycolipid in eukaryotes (38) that

anchors proteins to cell surfaces (39). To date, more

than 150 GPI-APs have been identified in mammals (40)

including some that are related to bone formation such

as ALP, acetylcholinesterase (AChE) (41), and Ly6a (42).

The related enzymes PIGC and PIGK play critical roles in

GPI synthesis (43). One of the functions of GPI-anchor

biosynthesis signaling is to synthesize GPI-Aps. Whether

C3G can influence the proliferation and differentiation of

osteoblasts by promoting the production of GPI-APs warrants

further investigation.

ATP6V0C is a member of the V-ATPase family of enzymes

that plays an important role in osteogenesis. Loss of function

of V-ATPases results in an osteopetrorickets phenotype due

to reduced bone formation (44), and Atp6v1h+/− mice
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FIGURE 4

qRT-PCR validation of top DEGs. (A,B) Expression levels of top

10 upregulated (A) and downregulated (B) DEGs evaluated by

qRT-PCR (n = 3 replicates). *p < 0.05, **p < 0.01.

exhibit impaired osteoblast growth as well as abnormal ALP

levels (45). V-ATPase deficiency also inhibits osteogenic

differentiation and stimulates adipogenic differentiation

(46). The CX3CL1/CX3CR1 axis—which has been linked

to various diseases including rheumatoid arthritis, spinal

cord injury, and osteoarthritis (47)—was identified as

a possible target for osteoporosis immunotherapy (48).

Cx3cr1 is expressed in osteoclast precursors, implying

that CX3CL1/CX3CR1 signaling can regulate osteoclast

differentiation and thus affect the development of osteoporosis

(49). Ly6a is involved in skull development, fat formation,

osteogenesis, and chondrogenesis (50). Ly6a-deficient mice

exhibit reduced bone formation and osteoclast counts and

increased mineralization of trabecular bone, and develop

features of consistent with age-related osteoporosis in

humans including low bone mass, brittleness, and changes

in the mechanical properties of bone (51). Inspired by the

results described above, we will perform further studies of

investigating the roles of the genes identified in present

study,for example via the generation of stable osteoblastic

cell lines lacking or overexpressing specific genes. That will

be necessary to clarify the molecular mechanisms underlying

osteoblast mineralization.

However, the present study had several limitations. Firstly,

we did not examine the expression profile of long non-coding

RNAs or microRNAs that may be involved in the effects

of C3G on osteogenesis. Secondly, while qRT-PCR validation

of RNA-seq results is essential, the methods used differ in

terms of sensitivity and specificity, which may explain the

differences in DEGs that were observed in our two datasets.

In order to identify more sensitive targets, we did not use

a higher concentration of C3G but instead selected the

minimum concentration that was shown to promote MC3T3-

E1 cell proliferation in previous experiments. This may be

the reason why Runx2 and other known osteoporosis-related

genes were not identified as DEGs in our RNA-seq analysis

(34). In future work, immunoblotting and other experimental

approaches should be used to validate biological targets of C3G

in MC3T3-E1 cells.

Conclusion

In summary, we identified 51 genes and 5 signaling

pathways (GPI-anchor biosynthesis, tuberculosis, systemic

lupus erythematous, phagosome, and protein processing in

the endoplasmic reticulum) via RNA-seq that may mediate

the effects of C3G in osteogenesis. Based on their known

involvement in osteoporosis, Atp6v0c, Cx3cl1, and Ly6a are

the most promising targets of C3G action in osteoblasts.

These findings provide evidence for the therapeutic potential

of C3G in the treatment of osteoporosis and other disorders of

bone metabolism.
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