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Introduction: strategy of periodic food restriction and fixed eating windows, 
could beneficially modify individuals by losing body weight, regulating glucose or 
lipid metabolism, reducing blood pressure, and modulating the immune system. 
Specific effects of IF and its mechanisms have not yet been assessed collectively. 
Thus, this systematic review aims to summarize and compare clinical trials that 
explored the immunomodulatory effects of IF.

Methods: After screening, 28 studies were included in this systematic review.

Results: In addition to weight loss, IF could benefit health subjects by strengthening 
their circadian rhythms, migrating immune cells, lower inflammatory factors, and 
enriching microbials. In addition of the anti-inflammatory effect by regulating 
macrophages, protection against oxidative stress with hormone secretion and 
oxidative-related gene expression plays a key beneficial role for the influence of 
IF on obese subjects.

Discussion: Physiological stress by surgery and pathophysiological disorders by 
endocrine diseases may be partly eased with IF. Moreover, IF might be used to 
treat anxiety and cognitive disorders with its cellular, metabolic and circadian 
mechanisms. Finally, the specific effects of IF and the mechanisms pertaining to 
immune system in these conditions require additional studies.
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1. Introduction

Fasting has recently received increasing attention for its advantages on body health (1). 
Dietary habits that involve fat-rich foods and snacks may lead to chronic diseases (2). 
Intermittent fasting (IF), as a dieting strategy, combines periodic energy restriction and fixed-
duration eating windows (3). Different types of IF that incorporate varied combinations of 
fasting and eating windows have been proposed; examples include alternate-day fasting (36 h of 
fasting and 12 h of ad libitum eating) (4) and time-restricted fasting (16 h of fasting and 8 h of 
ad libitum eating) (5) (Figure 1).

It has been shown that IF is effective for decreasing body weight (6), and it can help to 
regulate glucose or lipid metabolism and reduce blood pressure (7) (Figure 1). In one study, 
numerous subjects with metabolic syndrome experienced improvements in lipid and glucose 
metabolism after IF (8). Another study had also noted that healthy and lean people may 
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experience metabolic improvements by resetting their dietary intake 
with a schedule of fasting and eating (9). As studies of additional 
parameters including pre-inflammatory markers have been 
conducted, other effects of fasting have been observed.

One area of great interest is the influence of fasting on the immune 
system, which responds to stressful and harmful events in the body 
(10). The immune system can be regulated by weight reduction; changes 
in lipid and glucose metabolism; and other processes, such as circadian 
rhythm changes (10–14). Whether the influence of fasting on the 
immune system would benefit different populations—including healthy 
people, people with metabolic syndromes, and those with other 
physiological or pathophysiological conditions—is subject to discussion.

In this systematic review, we summarize clinical trials that studied 
the immunomodulatory effects of IF. All types of subjects were 
included and divided into different groups including healthy subjects, 
obese subjects and others, to clarify the cross-effect between IF and 
subjects under different physiological and pathophysiological 
situations, including pregnancy, perioperative period，endocrine 
disease, cancer and autoimmune diseases. The purpose of this 
systematic review is to analyze and compare current trials on this topic 
and to provide insight into the possible influence of IF on the 
immune system.

2. Methods

This systematic review was conducted and presented according 
to the Preferred Reporting Items for Systematic Review and Meta-
Analysis Protocols (PRISMA) guidelines (Supplementary Table S1) 
and Assessment of Multiple Systematic Reviews 2(AMSTAR 2) tools 
(Supplementary Table S2). Various databases were searched, 
including Cochrane, PubMed, and Embase, from January 2005 to 
August 2022. The terms used for the literature research were “time-
restricted feeding,” “time-restricted eating,” “intermittent fasting,” 
“feeding schedule,” “food timing,” “meal frequency,” “compressed 
feeding,” and “restricted food intake.” These terms were then united 
with “OR.” In addition, the terms “normal human,” “adult,” “patient,” 
and “human” were linked with “OR.” The terms “immune,” 

“immunity,” “immunologic,” “lymphocyte,” “chemokine,” 
“interleukin,” “C-reactive protein,” “CRP,” “neutrophils,” “oxidative 
stress,” “oxidative burst,” “inflammatory,” “inflammation,” 
“immunoglobulin,” “autoimmune,” “lipid peroxidation,” 
“homocysteine,” “malondialdehyde,” “MDA,” “glutathione,” and 
“GSH” were united with “OR” and then added together with the 
aforementioned terms.

The inclusion criteria were as follows: randomized control trials 
and cohort studies; age > 18 years; one type of IF conducted; and at 
least one immunomodulatory marker analyzed. Exclusion criteria 
were as follows: intervention not strictly followed; no fasting 
procedure included in the intervention; IF combined with other eating 
interventions, such as liquid diet, protocol; and review articles.

A total of 3,558 potentially eligible articles were collected from the 
databases. After screening, 89 articles were selected for full-text 
review, of which 61 were excluded for unexpected interventions 
(Figure 2). Twenty-eight studies were later grouped into effects on 
healthy people, effects on obese subjects, and effects on other subjects 
according to the trial set. These grouping procedures were performed 
by two independent researchers before August 2022. The following 
parameters were extracted from the original articles for comparison: 
participants, trial length, intervention, control group, 
immunomodulatory effect, metabolic information, and body weight.

The Cochrane Collaboration tool (Supplementary Table S3) was 
applied to assess risk of bias in all included studies. The levels of 
evidence were as follows: randomized trials, nonrandomized 
controlled trials, historically controlled cohort studies, and single-arm 
noncontrolled trials. Because different trials had different levels of 
bias, a meta-analysis was not performed.

3. Results

3.1. Effects on non-obese healthy people

Eleven studies measured the immunomodulatory effect of IF on 
healthy people, and some included assessment of body weight changes 
or metabolic differences (Table 1).

FIGURE 1

Content and presumed influences on body of intermittent fasting.
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Various parameters were selected to investigate the 
immunomodulatory effects of IF in the eleven studies. Two studies 
measured the effects on immune cells but had different results. 
Madeo et al. found that almost all cell subsets remained the same 
(18), whereas Gasmi et al. observed that neutrophils, lymphocytes, 
and natural killer cells changed after a twelve-week trial of IF (17). 
Several studies have focused on classic inflammatory biomarkers. 
Lower levels of C-reactive protein (CRP), leptin, and adiponectin 
were observed in a study by Varady et al. (5). Similar results were 
reported by Paoli, both in an one-year (long-term) and an 8-week 
(short-term) trial (1)). However, Lauridsen et  al. found that 
measurements of parameters such as tumor necrosis factor alpha 
(TNF-α), interleukin 6 (IL-6), and interleukin 10 (IL-10) were not 

significantly changed after a course of IF (3). Mao et al. reported 
that lower levels of TNF-α and IL-8 could be observed after 5 weeks 
of IF (21). A study by Mcallister et al. (19) measured cortisol levels 
and found no significant change and these results were replicated 
in a study by Moro et al. (9). Moro et al. also reported a significant 
decrease in testosterone levels (9). Two studies measured microbial 
diversity after IF and concluded that IF generated great richness 
(20). Li et  al. attempted to explain this change and found that 
sirtuin1 (SIRT1) expression was higher after IF compared with 
baseline levels (20), which was regarded as a stimulator for circadian 
genes and correlated with microbial diversity. A study by Wegman 
et  al. also measured Sirt-1–related genes and reported similar 
results (15).

FIGURE 2

Search and study selection for systematic reviews (PRISMA) flow chart.
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TABLE 1 Effects on non-obese healthy objects.

Reference Intervention Control Participants Trial 
length

Immune 
immunomodulatory effect

Glucose 
metabolism

Lipid metabolism Others Body weight

Varady et al. 

(5)

ADF RCT BMI26 12w CRP: ↓(p < 0.01) Leptin: ↓(p < 0.03) 

Adiponectin: ↑(p < 0.01)

TC: ⌀ LDL: ⌀ HDL: ⌀ TC*: 

↓(p < 0.01)

DBP: ↓ (p < 0.05) SBP: ⌀ ↓, −6.5 ± 1.0% (p < 0.001), on 

average 5.2 kg.

Wegman et al. 

(15)

ADF Crossover BMI23 3w Gene-upregulated*: SIRT1, SIRT3, SOD2, 

TFAM

Insulin: ↓(p = 0.0023)

Paoli et al. (16) TRF Before-after 

study

resistance-trained 

male

8w Adiponectin: ↑(p = 0.0000) Leptin: 

↓(p = 0.0001) IL-1b: ↓(p = 0.0235) TT: 

↓(p = 0.0476) IGF-1: ↓(p = 0.0397) IL-6*: 

↓(p = 0.0035) TNF-α*: ↓(p = 0.0001)

Insulin: ↓(p = 0.0303) 

Glucose: ↓(p = 0.0011)

TG: ↓(p = 0.0201) HDL: 

↑(p = 0.0142) LDL: ⌀

↓(p = 0.0448)

Lauridsen 

et al. (3)

IF Before-after 

study

lean 4w TNF-α: ⌀ IL-6: ⌀ IL-10: ⌀ Adiponectin: ⌀ 

Leptin: ⌀ Cortisol: ⌀

Glucose: ⌀ Insulin: ⌀ 

HOMAIR: ⌀ HbA1c: ⌀

HDL: ⌀ LDL: ⌀ TG: ⌀ TC: ⌀ ALT: ⌀ SBP: ⌀ DBP: ⌀ ↓(p = 0.05), on average 

1.0 kg.

Gasmi et al. 

(17)

TRF RCT Young and aged 12w Red cells: ⌀ Monocytes: ⌀ Neutrophils: ↓ 

White blood cells: ↓ Lymphocytes: ↓ 

Natural killer cell: ↓

↓ young, (p < 0.05)

Madeo et al. 

(18)

ADF Cross-

sectional

healthy middle-

aged

4w Monocytes: ⌀ Lymphocyte: ⌀ B cell: ⌀ 

CD4 T cell: ⌀ β-hydroxybutyrate*: ↓, 

(p = 0.003)

TC: ↓(p = 0.004) HDL: ⌀ 

LDL: ↓(p = 0.011) VLDL: 

↓(p = 0.009) TG: ↓(p = 0.010)

SBP: ↓(p = 0.006) DBP: 

↓(p = 0.0302)

↓, (p < 0.0001), on average 

3.5 kg.

McAllister 

et al. (19)

TRF RCT BMI28 4w Cortisol*: ↓ Adiponectin*: ↑ CRP: ↑ Glucose: ⌀ Insulin*: ↑ LDL: ↑ HDL: ⌀ TG: ↓ TC: ↓ SBP: ↑ (P = 0.04) DBP: 

⌀

Li et al. (20) TRF RCT healthy man 25d IL-1β: ⌀ TNF-α: ⌀ Gene-upregulated: 

Bmal1(p = 0.0020), Clock(p = 0.0302), 

SIRT1(p = 00068) Microbial richness: ↑ 

(p < 0.005)

TC: ↓ (p < 0.0001) TG: 

↓(p = 0.0052) LDL: ⌀ HDL: 

↑(p < 0.0001)

AKP: ↓(p < 0.009) AST: 

↓(p = 0.0268) ALT: 

↓(p = 0.0174) Albumin: ↓, 

(p < 0.0001)

Moro et al. (9) TRF RCT cyclist 4w TT: ↓(p = 0.0497) CRP: ⌀ ESR: ⌀ IL-6: ⌀ 

Adiponectin: ⌀ TNF: ⌀ TSH: ⌀ T3: ⌀ 

Cortisol*: ↓(p = 0.0005) IGF-1: ⌀

Glucose: ⌀ Insulin: ⌀ TC: ⌀ TG: ⌀ Cr: ⌀ ↓,2%(P = 0.04)

Paoli et al. (1) TRF RCT healthy 2 m/12 m TT: ↓(p < 0.001) IGF-1: ↓(p = 0.039) 

Adiponectin: ↑(p = 0.001) Leptin: 

↓(p < 0.001) Il-6: ↓(p = 0.038) IL-1β: 

↓(p < 0.001) TNF-α: ↓(p = 0.042)

Glucose: ↓(p < 0.0001) 

Insulin: ↓(p < 0.0001) 

HOMA-IR: 

↓(p < 0.0001)

TC: ⌀(p = 0.289) HDL: 

↑(p < 0.001) LDL: 

⌀(p = 0.129) TG: 

↓(p < 0.0001)

↓(p = 0.001), on average 

2.89 kg.

Mao et al. (21) TRF RCT healthy 5w TNF-α: ↓(p = 0.024) IL-8: ↓(p = 0.045) CRP: 

⌀ WBC: ⌀ Microbial-diversity: ↑ (p = 0.049) 

Resistin: ⌀ Leptin: ⌀ Ghrelin: ⌀ gene-

upregulated: SIRT1, BMAL1, PER2, SIER1

HOMA-IR: ↓, 

(p < 0.001, p = 0.002) 

Glucose: ↓(p = 0.005)

HDL: ⌀ LDL: ⌀ TC: ⌀ TG: ⌀ SBP: ⌀ DBP: ⌀ AST: 

↓(p = 0.046) ALT: ⌀ 

ALP: ⌀ GGT: ⌀

↓(P = 0.009), on average 

1.6 kg.

WBC, White blood cells; NEUT, Neutrophile Granulocyte; PLT, Platelet; Hgb, hemoglobin; BCR/ABL, BCR/ABL gene; TT, testosterone; CRP, C-reactive protein; IGF-1, Insulin-Like Growth Factor 1; HOMA-IR, Homeostasis model assessment of insulin resistance; IF, 
intermittent fasting; RCT, randomized control study; CML, chronic myelogenous leukemia; PCOS, polycystic ovary syndrome; TC, total cholesterol; TG, triacylglycerol; LDL, low-density lipoprotein cholesterol; HDL, high-density lipoprotein cholesterol; AST, aspartate 
aminotransferase; ALT, glutamic-pyruvic transaminase; NK cell, natural killer cell; IL, interleukin; TNF, tumor necrotic factor; BP, blood pressure; ADF, alternative day fasting; TRF, time restricted feeding; TNF-a, tumor necrosis factor-alpha; SBP, systolic blood 
pressure; DBP, diastolic blood pressure; LDH, lactate dehydrogenase; GGT, gamma-glutamyl transpeptidase; ALP, alkaline phosphatase; HbA1c, glycosylated hemoglobin; VLDL, very low-density lipoprotein cholesterol; Cr, creatinine; ESR, erythrocyte sedimentation 
rate; TSH, Thyroid Stimulating Hormone; T3, triiodothyronine; ⌀, no significant results; ↑, significantly increasing; ↓, significantly decreasing. Some changes in values and p-values are missing as they were not presented in the original manuscript. 
*Indicates that the p-value was calculated based on the final and baseline values of participants in the TRF group because no comparison was made between changes in values in a TRF group and a normal diet control group in the original manuscript.
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In eight trials, the decrease of body weight was observed after 
several weeks; three additional studies did not assess this factor. With 
regard to glucose metabolism, seven studies measured levels of fasting 
insulin and fasting glucose and conducted the test of homeostatic 
model assessment of insulin resistance (HOMA-IR) (1). Two studies 
found no significant changes in these parameters (3, 9), whereas 
improvements in these parameters were observed in five other studies 
(1, 15, 16, 19, 21).

Nine studies measured parameters related to lipid metabolism, 
including total cholesterol (TC), triglycerides (TG), low-density 
lipoprotein (LDL), and high-density lipoprotein (HDL). Six of them 
found improvements in multiple parameters; IF was associated with 
higher HDL, lower TC, lower TG, and lower LDL (1, 5, 18, 20). The 
remaining three studies found no significant changes in these 
parameters (3, 9, 21). Effects on different parameters, such as systolic 
blood pressure, diastolic blood pressure, and alanine transaminase, 
have been reported in other studies (18, 20).

Sleep quality and appetite were evaluated in some studies (5, 19, 
21), and there was no significance after IF (21). Another study showed 
that during fasting, satiety and fullness of subjects were lower than 
controlled group, but no differences were found in nausea scores 
between two groups (3). Alertness, focus perceiving and mood 
perceiving were measured insignificantly in one study (19).

3.2. Effects on obese subjects

The effects of IF on obese subjects have received much attention. 
Twelve studies that assessed this topic were identified (Table 2).

Heilbronn et  al. found that levels of TNF-α, IL-6, and IL-10 
changed insignificantly during 8 weeks of IF, whereas macrophage 
counts increased significantly (25). Changes in CRP levels have been 
measured in several trials; however, almost no significant differences 
were observed (2, 10, 23, 24, 29). Conversely, Varady et al. found that 
8-isoprostane decreased after 10 weeks of IF (6); these results were 
similar to those of a trial by Peterson et al. (23). Haus et al. reported 
that adiponectin and leptin levels decreased after a course of 24 weeks 
(29), and these results were confirmed by Varady et al. in a before–
after study (22). Significant changes in IL-6 and TNF-α levels were 
observed in a study by Zouhal et al. (26). After a four-month trial 
conducted by Safavi et  al., subjects had lower CRP levels (8). 
Mindikoglu et al. attempted to determine the immunomodulatory 
effects of gene expression like AP5Z1 after finding almost no 
significant change on inflammatory parameters (10). Heilbronn et al. 
also found that gene expression like PLIN5 may result in immune 
system changes (28).

Significant body weight reductions were observed in all studies 
except that of Horne et al., which only identified significant changes 
in galectin-3 levels (27). Because metabolic syndrome is often related 
to obesity, glucose and lipid metabolism have been extensively 
researched in obese subjects. Mindikoglu et  al. compared fasting 
glucose and insulin levels before and after 4 weeks of IF and found no 
significant changes (10). Varady et al. also found no improvements in 
glucose metabolism in obese subjects who completed IF, but that study 
did identify higher level HDL (2). Six studies found that fasting 
insulin, fasting glucose, and HOMA-IR levels were improved after IF 
than before (6, 8, 23, 24, 26, 29). Augmentation of lipid metabolism 
was observed in a study by Varady et  al. in obese subjects (22). 

However, other studies on lipid metabolism did not show such 
significant results. In addition to the collected metabolic findings, four 
studies found that IF could reduce blood pressure levels (10, 23, 
24, 26).

3.3. Effects in other conditions

Five studies focused on the effects of IF on special populations, 
including individuals in special physiological states, such as during 
pregnancy or before or after an operation, and individuals with 
conditions such as polycystic ovary syndrome (PCOS), multiple 
sclerosis (MS), or chronic myelogenous leukemia (CML) (Table 3).

Ozturk et  al. conducted a study of Ramadan IF in pregnant 
women. Total antioxidant status, total oxidant status, and related 
indices were measured; however, none showed significant changes 
after 4 weeks of the intervention. Pregnancy complications and birth 
weights were measured but showed no significant results between the 
IF-treated group and the controlled group (30). A study by Ginhoven 
et al. focused on IF during the perioperative period; 30 subjects who 
underwent kidney donation surgery were randomly assigned into a 
1-day fasting group and a four-day restriction group. Many indicators 
were examined including CRP, white blood cells (WBCs), B cells, T 
cells, natural killer cells, IL-10, IL-6, TNF-α, and lipopolysaccharide. 
No statistically significant preoperative differences between groups 
were observed, with the exception of IL-8, which peaked at 6 hours 
after surgery in both groups but was significantly higher in the 
restriction group (p = 0.018). After surgery, the restriction group 
showed lower natural killer cell counts, lower WBC counts, and lower 
TNF-α levels (34).

Yassin et al. conducted a retrospective study of the effects of IF in 
subjects with CML. Forty-nine subjects were enrolled and tested 
before, during, and after fasting. BCR-ABL expression levels were 
measured and showed no significant difference among the three time 
points. Various hematological parameters, including WBC, 
hemoglobin, and platelet levels, showed no significant changes (31).

An eight-hour IF was conducted in 15 women with PCOS for 
5 weeks; participants reported significant decreases in body weight 
(32). Metabolic parameters were also assessed, and lipid metabolism 
had insignificant changes, whereas fasting insulin levels and 
HOMA-IR decreased significantly after IF compared with their 
baseline levels (32). Total testosterone decreased by approximately 
10%, but changes in luteinizing hormone (LH) and follicle-stimulating 
hormone (FSH) levels were not significant (32). A reduction in high-
sensitivity CRP (hsCRP) and alanine transaminase (ALT) levels was 
observed, and insulin-like growth factor 1 (IGF-1) was upregulated 
(32). Fitzgerald et  al. found that IF could alter T-cell subsets and 
metabolic markers in subjects with multiple sclerosis. The subjects in 
that study lost an average of 3.0 kg after the eight-week trial and had 
no significant changes in leptin and adiponectin levels. Individuals in 
the IF group showed significant reductions in memory T cells and 
increased naïve cell subsets (33).

4. Discussion

For non-obese healthy people, it is believed that the body could 
maintain a steady state in which lipid and glucose metabolism are 
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TABLE 2 Effects on obese subjects.

Reference Intervention Control Participants Trial 
length

Immune 
immunomodulatory effect

Glucose 
metabolism

Lipid 
metabolism

Others Body 
weight

Varady et al. 

(22)

ADF Before-after 

study

Obese 8w CRP: ⌀ Homocysteine: ⌀ Adiponectin: 

↓, −30% (p < 0.05) Leptin: ↓, −21 ± 6% 

(p < 0.05) Resistin: ↓, −23 ± 6%

TC 4w: ↓, 

−20%(p < 0.05) LDL 4w: 

↓, −31%(p < 0.05) HDL 

4w: ⌀ TG: 4w ↓, −19%

↓, −3.83%, on 

average 5.7 kg.

Varady et al. 

(2)

ADF RCT Obese 12 m CRP: ⌀ Homocysteine: ⌀ Glucose: ⌀ Insulin: ⌀ HDL: ↑ BP: ⌀ *↓, −6%

Peterson et al. 

(23)

TRF RCT Prediabetes 5w 8-isoprostane: ↓, −11 pg./ml (p = 0.05) 

TNF-α: ⌀ cortisol: ⌀

Glucose: ⌀ Insulin: 

↓(p = 0.13)

HDL: ⌀ LDL: ⌀ TC: 

↑(p = 0.0007)

SBP: ↓, -11 mmHg (p = 0.03) 

DBP: ↓, -10 mmHg (p = 0.03)

*↓(p = 0.12)

Bowen et al. 

(24)

ADF RCT Obese 24w 

(16w + 82)

CRP: ↓ Insulin: ↓ Glucose: ↓ HDL*: ↑ LDL*: ↓ TC*: 

↓ TG*: ↓

SBP*: ↓ DBP*: ↓ *↓, on average 

11.2 kg.

Haus et al. (5) ADF RCT Obese 24w Adiponectin: ↓ Leptin: ↓ IL-6: ↑ 

TNF-α: ⌀

Glucose: ↓, (p = 0.031) 

Insulin: ↓, (p = 0.115) 

HOMA-IR: ↓, (p = 0.031)

↓, (p < 0.001)

Heilbronn 

et al. (25)

IF RCT Obese 8w TNF-α: ⌀ IL-6: ⌀ IL-10: ⌀ Macrophage: 

↓

HOMA-IR: ↓ ↓

Varady et al. 

(6)

TRF RCT Obese 10w 8-isoprostane: ↓(p = 0.02) TNF-α: ⌀ 

IL-6: ⌀

Glucose: ⌀ Insulin: ↓, 

(p = 0.02, p = 0.04) 

Insulin resistance: ↓, 

(p = 0.03, p = 0.04)

LDL: ⌀ HDL: ⌀ TG: ⌀ SBP: ⌀ DBP: ⌀ ↓,3.2%(4 h) 

↓,3.2%(6 h)

Zouhal et al. 

(26)

IF RCT Obese 30d IL-6*: ↓, (p = 0.02) TNF-α*: ↓, 

(p = 0.019)

AST: ⌀ ALT: ⌀ LDH: ⌀ Urea: 

⌀

↓,2.7% (P = 0.002)

Mindikoglu 

et al. (10)

IF Before-after 

study

Metabolic 

syndrome

4w leptin: ⌀ Adiponectin: ⌀ CRP: ⌀ 

Homocysteine: ↑ (p = 0.0004) IL-1: ⌀ 

IL-6: ⌀ IL-8: ⌀ TNF-α: ⌀ Gene-

upregulated: AP5Z1, YPS8, INTS6, 

IGFBP5, POLRMT, KIT, CROCC, PIGR, 

CALU Gene-downregulated: POLK, 

CD109, SRGN, CAMP

HOMA-IR: ⌀ Glucose: 

⌀ Insulin: ⌀

TG: ⌀ HDL: ⌀ TC: ⌀ 

LDL: ⌀

SBP: ↓(P = 0.023) DBP: 

↓(p = 0.002) ALT: ⌀ AST: ⌀ 

GGT: ⌀ ALP: ⌀ Albumin: ⌀

↓(p < 0.0001), on 

average 2,5 kg.

Horne et al. 

(27)

IF RCT Metabolic 

syndrome

4w/13w/26w Galectin-3: ↑(p = 0.021)

Heilbronn 

et al. (28)

IF RCT obese women 8w Gene-nonregulated: LIPE, ACACA, 

FASN, DGAT1 Gene-upregulated: 

PLIN5 Gene-downregulated: SOD1, 

SOD2 β-hydroxybutyrate:↑(p < 0.05)

↓(p < 0.05)

(Continued)
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effective and the immune system works well (18). From some 
perspectives, IF could still benefit healthy people. After IF, WBC 
subsets in two trials changed in different ways (17, 18). The reduction 
in neutrophils may have resulted from the migration to extravascular 
lymphoid tissues (17). This process requires a long intervention, so 
another shorter trial conducted by Madeo et al. did not show such 
results (18). More studies showed that the elimination of old damaged 
cells would process during fasting, and more active immune cells 
would be generated when fasting ended (35). In this way, IF could 
protect various tissues against diseases with more active immune cells 
by hormesis mechanisms that increase cellular stress resistance (36). 
A decrease in natural killer cells is mainly linked to a decrease in IL-2 
or IGF-1. Neither of which were measured in the trial by Madeo et al., 
but it could be observed in two studies by Paoli et al. (1, 16). Besides 
IGF-1, other measurements also show significant changes. 
Adiponectin may interact with adenosine 5′-monophosphate-
activated protein kinase (AMPK) (19), which then helps to regulate 
insulin resistance (9). High level of adiponectin would stimulate fatty 
acid oxidation in skeletal muscle and inhibit glucose production in the 
liver, which benefit to energy homeostasis (37). Meanwhile, 
adiponectin is an anti-inflammatory agent, a reduction of 
inflammatory markers including CRP and TNF-α could be observed 
in some studies (1, 5). Changes in gene expression provide more 
information on immunomodulatory effects: Wegman et al. concluded 
that an increase in SIRT1 and sirtuin3 (SIRT3) expression could 
be detected after a 3-week trial (15). For SIRT1, other studies have also 
shown an increase level (21). SIRT1 is linked to circadian rhythms and 
cellular mechanisms, such as cell repair, division, metabolism, and 
growth (20). It could be concluded that IF could protect bodies from 
cardiovascular diseases. SIRT3 is a member of the sirtuin family of 
histone deacetylases, which are primary mitochondrial protein 
deacetylases. Moreover, it could regulate cell metabolism, thus 
maintaining myocardial energy steady. SIRT3 is also believed as a 
protection for cardiomyocytes from oxidative stress-mediated cell 
damage (38). Besides that, some animal studies showed more exciting 
results through SIRT3 regulation of IF. High expressions of SIRT3 in 
cerebral cortical and hippocampal cells could benefit for treating 
anxiety and cognitive disorders, which was found as considerable 
overlap mechanisms by which IF and exercise enhance brain function 
of Alzheimer’s Disease patients (39, 40). A study by Mao et  al. 
investigated clock genes and showed that levels of genes such as 
BMAL1 and PER2 were elevated in a five-week trial (21), indicating 
that IF could partly modulate the immune system by improving the 
circadian rhythm. The reinforcement of circadian rhythm could 
benefit body immune through promoting system recovery and the 
clearance of harmful cellular element (41). Another potential 
immunomodulatory effect involves microbial diversity in two studies 
(20, 21): Low gut microbial diversity is associated with metabolic 
disease (42), and high diversity may be due to the high expression of 
SIRT1 and high levels of HDL (20) and improve body immune system, 
such as liver function mentioned in the study by Li et al. Emerging 
evidence showed that SIRT1 could promote gut microbial population 
shifts by influence inflammation and circadian rhythm (43). It has also 
been suggested that IF could benefit healthy people lose weight (9), 
even cyclists and men who practice resistance training (9, 16). After 
the trial, it was concluded that IF could lose almost fat and maintain 
muscle mass with the measurement of muscle area of the thigh and 
arm. Healthy individuals might already have high insulin sensitivity R
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TABLE 3 Effects in other conditions.

References Intervention Control Participants Trial 
length

Immune 
immunomodulatory 
effect

Glucose 
metabolism

Lipid 
metabolism

Others Body 
weight

Ozturk et al. (30) IF RCT Pregnant 4w Oxidative stress index (OSI): ⌀ 

Total oxidant status (TOS): ⌀ Total 

anti-oxidant status (TAS): ⌀

Nashwan et al. (31) IF Retrospective 

study

CML WBC, NEUT, PLT, HGB*: ⌀ BCR/

ABL*:⌀

Bing he et al. (32) Eating on 8:00–16:00 Before-after study PCOS 5w TT: ↓(p = 0.048) CRP: ↓(p = 0.040) 

IGF-1: ↑(p = 0.006)

Glucose: ⌀ Insulin: ↓ 

(p = 0.017) HOMA-

IR: ↓(p = 0.025)

TG: ⌀(p = 0.715) TC: 

⌀(p = 0.328) LDL: 

⌀(p = 0.984)

AST: 

↓(p = 0.113) 

ALT: 

↓(p = 0.027)

↓(p < 0.001), on 

average 1.3 kg.

Fitzgerald et al. (33) IF RCT Obese, multiple 

sclerosis

8w Leptin: ⌀ Adiponectin: ⌀ Memory 

T cell subsets: ↓ Naïve subset: ↑ 

Th1 cell: ↓

↓

Ginhoven et al. (34) IF RCT Kidney 

donation，BMI25

CRP: ⌀ WBC, B cell, T cell: ⌀ NK 

cell: ↓after surgery (P < 0.001) 

IL-10, IL-6: ⌀ TNF-α: ⌀ before 

surgery, ↓after surgery Cytokine: ⌀ 

IL-8: ↑(p = 0.018)

WBC, White blood cells; NEUT, Neutrophile Granulocyte; PLT, Platelet; Hgb, hemoglobin; BCR/ABL, BCR/ABL gene; TT, testosterone； CRP, C-reactive protein; IGF-1, Insulin-Like Growth Factor 1; HOMA-IR, Homeostasis model assessment of insulin resistance; 
IF, intermittent fasting; RCT, randomized control study; CML, chronic myelogenous leukemia; PCOS, polycystic ovary syndrome; TC, total cholesterol; TG, triacylglycerol; LDL, low-density lipoprotein cholesterol; HDL, high-density lipoprotein cholesterol; AST, 
aspartate aminotransferase；ALT, glutamic-pyruvic transaminase；NK cell, natural killer cell; IL, interleukin; TNF, tumor necrotic factor; BP, blood pressure; ADF, alternative day fasting; TRF, time restricted feeding; TNF-a, tumor necrosis factor-alpha; SBP, systolic 
blood pressure; DBP, diastolic blood pressure; LDH, lactate dehydrogenase; GGT, gamma-glutamyl transpeptidase; ALP, alkaline phosphatase; HbA1c, glycosylated hemoglobin; VLDL, very low-density lipoprotein cholesterol; Cr, creatinine; ESR, erythrocyte 
sedimentation rate; TSH, Thyroid Stimulating Hormone; T3, triiodothyronine; ⌀, no significant results; ↑, significantly increasing; ↓, significantly decreasing. Some changes in values and p-values are missing as they were not presented in the original manuscript. 
*Indicates that the p-value was calculated based on the final and baseline values of participants in the TRF group because no comparison was made between changes in values in a TRF group and a normal diet control group in the original manuscript.
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at baseline; thus, IF seems to have less influence on glucose metabolism 
in these non-obese and healthy individuals (18). Things were similar 
when focusing on lipid metabolism. A decrease in leptin was found in 
many studies (1, 16), which might suggest that IF could partly 
strengthen lipid metabolism in healthy individuals. To sum up, IF 
could benefit immune system of healthy people through migration of 
immune cells, regulation of oxidative-related and circadian-related 
genes, increasing gut microbial diversity and improvement of 
muscle-fat ratio. Trials with longer durations and more factors 
including anxiety degree, cognition state, microbial diversity (44–46), 
key gene expression, and inflammatory markers are needed to better 
clarify the immunomodulatory effects of IF on healthy people.

Most obese subjects would harbor inflamed adipose tissue, which 
could cause a persistent, low-grade, inflammatory response. Obesity 
is often associated with the metabolic syndrome, because fat 
accumulation would cause insulin resistance (47). And evidence 
accumulated that persistent inflammation of adipose tissue is a central 
mechanism through which obesity promotes cancer risk (48). From 
the perspective of immune cells, A decrease in macrophages was 
observed in a study by Heilbronn et al. (25). Most cytokines that are 
produced by adipose tissue originate from nonfat cells and 
macrophages (29), thus the result confirmed that IF could be beneficial 
for inflammation associated with obesity. Recent studies have 
suggested that IF inhibits the nuclear factor kappa-B signaling 
pathway, which is an important regulator of downstream parameters 
including TNF-α and IL-6 (25), which is consistent with the results 
that IF could partly eliminate the inflammation caused by adipose 
tissue, with lower CRP and TNF-α (26). There were insignificant 
changes of some inflammatory markers in some studies, which might 
be related with short trial duration and inadequate weight loss (6). The 
concentration of galectin-3, which plays various roles in humans, was 
measured increasingly by Horne et al. in 2021 (27). It has been shown 
that galectin-3 could stimulate the expression of some antiviral genes 
and protect against inflammation, which may result in improvements 
in glucose metabolism. Although changes in inflammatory factors 
were less significant in obese people compared with healthy subjects, 
the immunomodulatory effect of IF observed in obese people might 
reflect a suppression of oxidative stress (26). Heilbronn et al. found 
that the ketone bodies, especially β-hydroxybutyrate, which protects 
against lipotoxicity and stimulates lipid oxidation, was significantly 
elevated in obese subjects (28). As it was regarded as an epigenetic 
regulator in terms of histone methylation, acetylation, IF could help 
to delay various age-related diseases. A decrease in 8-isoprostane, a 
marker of oxidative stress in lipids, was observed in two studies (6, 
23). Oxidative stress is a definition of the imbalance between the 
production and elimination of reactive oxygen species (49). Some 
other studies have suggested that, though IF might have little effect on 
inflammation, it may greatly influence oxidative stress, which is linked 
to insulin resistance (26). Interestingly, improvements in glucose 
metabolism were observed in two studies that reported decreased 
oxidative stress markers (6, 23). Significant changes in leptin, which is 
regarded as a special body weight regulating hormone, were also noted 
(29), meaning that the resistance to leptin is partly improved in obese 
subjects. Besides the ability to regulate metabolic syndrome, including 
lowering glucose and lipid synthesis (50), leptin is one of the mediators 
responsible for the inflammatory state (51). In addition to the findings 
about immune cells and inflammatory markers, other study conduct 
tests of gene expression. Heilbronn et al. found that genes related to 

oxidative stress were down-regulated such as SOD1 and SOD2 (28), 
and Mindikoglu et  al. found that the expression of other genes 
including the tumor activators POLK, NIFK, SRGN, CAMP, and D109, 
were downregulated (10), which are consistent with remitting 
oxidative effect and lowering cancer risk by IF. To sum up, besides the 
advantages of IF on obese subjects including losing body weight, 
regulate lipid metabolism and improve insulin resistance, which was 
almost suggested in all studies, IF could reduce oxidative stress and 
remit inflammatory state through macrophage adjustment and 
hormone secretion. Moreover, although evidence is accumulating that 
gut microbial is involved in the etiology of obesity (52) and altered by 
modified IF (4), relevant researches were still rare. Another issue 
waiting for more studies was the influence between IF and nervous 
system on obese subjects. Neuroinflammation, which has emerged as 
a crucial cause of cognitive dysfunction, such as Alzheimer’s Disease, 
could be caused through inflamed adipose tissue of obesity (53). A 
study in obese rat showed that IF could prevent memory loss in 
comparison to ad libitum by regulating body metabolism (54), which 
offering a new sight for the advantages of IF to 
remit neuroinflammation.

Pregnancy is a state of high oxidative stress, which contributes to 
preeclampsia and restriction of fetal growth (30). Maternal IF resulted 
in detrimental influence on fetal development and maternal stress 
stage by changing the metabolite profiles in animal studies (55). 
However, IF has no significant influence on the high oxidative stress 
and fetal development in the human study (30). The reason could 
be the different circadian rhythms between rats and humans. A case 
related with gestational diabetes mellitus was reported that IF is a 
useful intervention to reduce maternal body weight, plasma glucose, 
and psychological distress without any adverse effects (56). Surgery is 
regarded as a shock or an acute stress, and IF is able to improve 
resistance to this stress. In a study by Ginhoyen et al. (34), a higher 
preoperative IL-8 level may counter the proinflammatory influence of 
subsequent surgery, thus TNF-α was lower in the food-restriction 
group after surgery. Compared with subjects in the non-fasting group, 
subjects in the restriction group showed a more moderate 
postoperative inflammatory response. For healthy people in special 
physiological states, such as those observed during the perioperative 
period, IF could reduce acute stress. More trials are needed to identify 
the influence on pregnant subjects, including the fetal and maternal 
safety, anti-stress effect and body metabolism regulation. It is worth 
nothing that study include in this review on pregnant subjects was a 
Ramadan IF trial, which might be less convincing as subjects in this 
study had experienced such interventions before.

PCOS is an endocrine condition closely linked to metabolic 
disorders. Because obesity is closely related to PCOS, it is not 
surprising that IF could provide benefits by reducing insulin 
resistance and easing hyperandrogenemia (32). Whether IF could 
be applied in subjects with cancer remains unclear (57), because it 
may also affect chemotherapy. In a study of subjects with CML, 
Yassin et  al. reported that fasting did not result in significant 
immunological effects with measurements including BCR-ACL 
levels and hematological parameters (31). It was suggested that IF 
in some patients who have cancer could be capable of decreasing 
chemotherapy-related toxicity and tumor growth, however (58), 
more clinical trials were needed to clarify. MS is an autoimmune 
disease characterized by degeneration of the central nervous system 
(59). The epidemiology of this condition includes a history of 
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childhood obesity. Although no significant changes in leptin or 
adiponectin levels have been observed in studies of IF in MS, an 
observed difference in T-cell subsets in intestines might explain the 
immunological effects of IF that have been reported in studies (33, 
60), which was also a kind of possible therapy for MS (59). The 
components of the intestinal microbiome could also raise the 
propensity to develop MS strongly (59). Researches about gut 
microbial of the influence of IF on subjects who have MS were 
expected as a result of migration of intestine immune cell subsets. 
As mentioned before, IF is beneficial for nervous system by cellular, 
metabolic and circadian mechanisms and a promising therapy for 
brain disorders, future research should disentangle whether positive 
effects of IF could be applied in clinical situations (61). Besides IF, 
other types of diet, including energy-restricted fasting and 
ketogenic diet (62), were also evaluated as nutrition therapy for MS 
(63). Some advantages were concluded that ketone bodies produced 
in these diets could serve as an alternative energy source for the 
brain (62), and during 3-day cycles of a fasting mimicking diet, it 
was found that the clinical symptoms of experimental autoimmune 
encephalomyelitis mice. More results was put forward that the 
improvement of this diet was related with immune system, 
including reducing inflammatory cytokines and immune cell 
migration. However, these diets might cause deficiency of various 
nutrients in long term (63). To sum up, a special diet could serve as 
a unique nutrition therapy for MS with disadvantages of nutrition 
deficiency, which was nowadays a popular and promising topic.

The different evidence levels should be taken into consideration 
when analyzing the results of these studies. Of the 28 selected trials, 
19 were randomized, controlled, parallel, or crossover studies. Some 
trials were cohort studies, and the trial focusing on CML was a 
retrospective study; the lack of a control group in that trial may lead 
to inaccurate conclusions. Trials differed in terms of baseline 
characteristics, study durations, meal types, and IF types. These 
differences may interfere with the final results. For example, Gasmi 
et  al. studied whether young people and old people would act 
differently while undertaking IF (17), Paoli et al. compared all factors 
in a 2-month trial and in a 1-year trial (1), and Varady et al. focused 
on whether the influence of IF would vary with different durations of 
eating windows (6). In the future, more studies on this topic should 
be conducted to provide new data.

This systematic review finds substantial evidence that IF can 
modulate the immune system in non-obese healthy people, obese 
people, and subjects in other physiological or pathophysiological 
states and these effects were clinically relevant with cognitive 
improvement, lipid and metabolism regulation, and inflammatory 
state remission. The mechanisms influenced and regulated to drive 
changes in each population differ. For example, non-obese healthy 
people can metabolize lipids and glucose efficiently, so the 
immunomodulatory effect is reflected in immune cell subset 
migration, lower inflammatory factors, upregulation of circadian 
rhythm–related gene expression, and greater microbial diversity. 
Although weight reduction has also been observed in healthy 
people, changes in parameters of lipid and glucose metabolism 
remained insignificant in most cases. In obese people, IF contributes 
to body health by regulating macrophages, which is related to the 
inflammatory stage of adipose tissue. Although many inflammatory 
factors did not show significant changes in obese subjects, other 

important factors, including 9-isoprastane, leptin, and galectin-3, 
had significant changes. The gene expression of cancer activators 
and lipid oxidative activators provides insights into the mechanisms 
behind these immunomodulatory effects. In pregnant women, IF 
seems safe to be conducted and possibly useful to treat endocrine 
disorders during pregnancy. Moreover, IF is able to improve 
resistance to the stress of surgery. IF can be  beneficial for the 
immune system of individuals with PCOS by improving endocrine 
function. Limited trials studying the effects of IF on cancer have 
been conducted. For nervous system, IF is believed to be applicable 
to treat anxiety and cognitive disorders by cellular, metabolic and 
circadian mechanisms. However, more trials are needed to better 
understand the effects and mechanisms by which IF modulates the 
immune system.

5. Conclusion

Our systematic review, analyzing data from IF studies in different 
populations, suggests that IF could have immunomodulatory effects 
in healthy people, obese people, and people with special physiological 
and pathophysiological conditions. Different mechanisms may 
contribute to these effects. IF can benefit non-obese healthy 
individuals by strengthening circadian rhythms, migrating immune 
cells, lower inflammatory factors, and enriching microbial diversity. 
In addition of the anti-inflammatory effect by regulating macrophages, 
protection against oxidative stress with hormone secretion and 
oxidative-related gene expression plays a key beneficial role for the 
influence of IF on obese subjects. Physiological stress by surgery and 
pathophysiological disorders by endocrine diseases may be partly 
eased with IF. Moreover, IF might be  used to treat anxiety and 
cognitive disorders with its cellular, metabolic and circadian 
mechanisms. Finally, the specific effects of IF and the mechanisms 
pertaining to immune system in these conditions require 
additional studies.
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