
fnut-10-1088053 July 28, 2023 Time: 11:15 # 1

TYPE Original Research
PUBLISHED 31 July 2023
DOI 10.3389/fnut.2023.1088053

OPEN ACCESS

EDITED BY

J. Bruce German,
University of California, Davis, United States

REVIEWED BY

Daniel Gero,
University Hospital Zurich, Switzerland
Angela M. Zivkovic,
University of California, Davis, United States

*CORRESPONDENCE

Alaina L. Pearce
azp271@psu.edu

RECEIVED 02 November 2022
ACCEPTED 18 July 2023
PUBLISHED 31 July 2023

CITATION

Pearce AL and Brick TR (2023) Validation of
computational models to characterize
cumulative intake curves from video-coded
meals.
Front. Nutr. 10:1088053.
doi: 10.3389/fnut.2023.1088053

COPYRIGHT

© 2023 Pearce and Brick. This is an
open-access article distributed under the terms
of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction
in other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted which
does not comply with these terms.

Validation of computational
models to characterize
cumulative intake curves from
video-coded meals
Alaina L. Pearce1,2* and Timothy R. Brick3,4

1Social Science Research Institute, Pennsylvania State University, University Park, PA, United States,
2Department of Nutritional Sciences, Pennsylvania State University, University Park, PA, United States,
3Department of Human Development and Family Studies, Pennsylvania State University, University Park,
PA, United States, 4Institute for Computational and Data Sciences, Pennsylvania State University,
University Park, PA, United States

Introduction: Observational coding of eating behaviors (e.g., bites, eating rate)

captures behavioral characteristics but is limited in its ability to capture dynamic

patterns (e.g., temporal changes) across a meal. While the Universal Eating

Monitor captures dynamic patterns of eating through cumulative intake curves, it

is not commonly used in children due to strict behavioral protocols. Therefore,

the objective of this study was to test the ability of computational models to

characterize cumulative intake curves from video-coded meals without the use

of continuous meal weight measurement.

Methods: Cumulative intake curves were estimated using Kisslieff’s Quadratic

model and Thomas’s logistic ordinary differential equation (LODE) model. To test

if cumulative intake curves could be characterized from video-coded meals, three

different types of data were simulated: (1) Constant Bite: simplified cumulative

intake data; (2) Variable Bite: continuously measured meal weight data; and (3)

Bite Measurement Error: video-coded meals that require the use of average bite

size rather than measured bite size.

Results: Performance did not differ by condition, which was assessed by

examining model parameter recovery, goodness of fit, and prediction error.

Therefore, the additional error incurred by using average bite size as one

would with video-coded meals did not impact the ability to accurately

estimate cumulative intake curves. While the Quadratic and LODE models

were comparable in their ability to characterize cumulative intake curves, the

LODE model parameters were more distinct than the Quadradic model. Greater

distinctness suggests the LODE model may be more sensitive to individual

differences in cumulative intake curves.

Discussion: Characterizing cumulative intake curves from video-coded meals

expands our ability to capture dynamic patterns of eating behaviors in populations

that are less amenable to strict protocols such as children and individuals with

disordered eating. This will improve our ability to identify patterns of eating

behavior associated with overconsumption and provide new opportunities for

treatment.
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1. Introduction

Observational coding of meal eating behaviors (e.g., bites,
eating rate) provides the ability to assess complex patterns of
behavior within a meal. For example, pediatric obesity has been
associated with an “obesogenic” style of eating characterized
by larger bites, faster eating and bite rates, and shorter meal
durations (1, 2). These behaviors, termed meal microstructure,
were originally assessed in observationally-coded animal studies
on behavioral and physiological control of food intake (3–
5). However, observational coding is limited in its ability to
capture dynamic patterns (i.e., temporal changes) within a meal
as it relies on averaged eating or bite rates. In contrast, the
Universal Eating Monitor developed by Dr. Harry Kissileff
assessed dynamic patterns of meal microstructure by continuously
measuring food weight over the course of a meal (6). Similarly,
a drinkometer was recently developed that provides continuous
weight measurement of liquid meals and has been used to
investigate differences in meal microstructure after surgery-
induced weight loss (7, 8). When graphed over time, continuous
weight measurements create a cumulative intake curve (6), which
is another quantification meal microstructure that differs in adults
with obesity and disordered eating (4, 9–14). Both the Universal
Eating Monitor and the drinkometer provide precise measurement
of meal microstructure, however, the underlying technology of
continuous weight measurement presents unique challenges for a
pediatric population.

The use of continuous food weight measurement is uncommon
in children (2) due, in part, to two key challenges. First, behavioral
protocols required to continuously measure food weight during
eating may be difficult for children to follow (e.g., not touching the
plate) and restrict typical eating behaviors (e.g., playing with food).
Second, it is uncommon to use multi-item meals with Universal
Eating Monitors (14, 15) and the “drinkometer” requires the use of
liquid meals (8). This limits the utility of these protocols in studies
with children, where the standard is to serve multi-item meals (2).
Some studies have utilized multiple scales or added observational
coding to continuous weight measurement when using multi-item
meals (16, 17), however, this substantially increases researcher
burden. A possible solution is to use observational coding to
characterize cumulative intake curves from bite timing and average
bite size. Observational coding is common in studies of eating
behavior (2). In the case of children, this approach commonly
relies on recording the precise timing of each bite of food in the
meal videos (2). Although the size/weight of each bite can only be
approximated from video, it remains unclear if average bite sizes
can be used to accurately characterize cumulative intake curves.

This study will test the ability to characterize cumulative intake
curves from average bite sizes using the two existing computational
models: (1) a quadratic model (Eq. 1) proposed by Kissileff et al.
(18); and (2) a logistic ordinary differential equation (LODE; Eq. 2)
proposed by Thomas et al. (19). A key distinction between these
models is that while quadratic functions may predict non-feasible
cumulative intake patterns (e.g., reductions in intake at the end
of the meal; see Figure 1), the first-principles approach used to
develop the LODE model requires estimated curves to closely
reflect biologically plausible patterns of intake (19). This study aims
to improve the applicability of cumulative intake curves by: (1)

comparing the use of averaged and measured bites; (2) validating
the LODE model; and (3) comparing performance of Quadratic and
LODE models. The ability to use average bite sizes would expand
the tools available to assess cumulative intake curves in different
populations and meal scenarios (e.g., non-laboratory, multi-item).

2. Materials and methods

2.1. Cumulative intake curve models

2.1.1. Quadratic model
Kissilef et al. (18) identified the quadratic model as the best

fitting model for cumulative intake curves (Eq 1).

E (t) = a2
+ b+ c (1)

E(t) is total gram intake at time t during the meal. The linear
coefficient (b) reflects the eating rate, the quadratic coefficient (a2)
reflects the change in eating rate across an eating episode, and the
intercept (c) is a non-interpreted term for the fit of the line.

2.1.2. LODE model
Thomas et al. (19) used a first-principles approach to propose

a new model for characterizing cumulative intake curves that met
three key theoretical assumptions (19): (1) eating rate depends on
total weight consumed at each point throughout the eating episode;
(2) the initial phase of eating includes a short stimulatory period
where eating rate is proportional to amount consumed; and (3) a
second phase later in the meal is characterized by reduced eating
rate due to satiation. The LODE model (Eq. 2) was derived from
equations in Thomas et al. (19) (see Supplementarymaterials) and
can take a similar form to exponential decay with k = Emaxr + θ

Emax
.

E (t) = ekt−1
ekt

Emax +
r
θ

(2)

E(t) is total gram intake at time t during the meal, Emax is equal
to total gram intake during the eating episode, θ is a non-zero
initial rate of eating, which we term the initial state or state, and
r, which we term doubling rate or rate, reflects eating duration as
1
r approximates the time it takes to double food intake. Parameters
r and θ are independent. While the s-shape curve defined by the
LODE model allows it to capture both stimulatory and satiating
periods of eating, only the “top” or “satiating” portion is usually
predicted when modeling intake (Figure 1B) (14, 19).

2.1.3. Theoretical comparison (Figure 1)
There are three primary distinctions between the Quadratic

and LODE models: (1) the LODE model can simultaneously
capture the stimulation and the satiating phases of eating while
the Quadratic model can only capture one phases at a time; (2)
LODE model predicted intake asymptotes at total grams consumed
while the Quadratic model inverted-U shape predicts eventual
decline in total intake; and (3) the LODE model parameters are
independent, allowing them to capture unique information about
the cumulative intake curves.
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FIGURE 1

Theoretical comparison of the quadratic model and the logistic ordinary differential equation (LODE) model. Regions shaded in green reflect
theoretically feasible intake while regions shaded in red reflect theoretical infeasible (e.g., negative) intake. (A) Examples of Quadratic model
cumulative intake curves; (B) Examples of LODE model cumulative intake curves.

2.2. Simulation process and model
validation

As with any new method, the LODE model needs to be
validated to ensure the model estimates can reasonably be
interpreted as reflecting the participants’ true values. Since we
cannot rely on known tests (e.g., t-tests), we must rely on
confidence intervals to determine if estimates differ from each
other. To validate a model, we need to show that a model estimate
does not differ from the true value by showing it falls within the
estimated confidence interval. Therefore, remainder of the section
“2. Materials and methods” is focused on how we generated and
simulated a reasonable set of data in order to estimate confidence
intervals to evaluate Quadratic and LODE model performance
(Figure 2). In section “2.2.1. Generating model,” we discuss the
process used to establish a reasonable set of cumulative intake
patterns for children and identify the associated Quadratic and
LODE parameter values. In section “2.2.2. Simulated data,” we
outline how we simulate data needed for this study. Finally, in
section “2.2.3. Parameter recovery,” we discuss how simulated data
were used to estimate parameter confidence intervals. Analyses are
publicly available (osf.io/xfk5w/) and were completed in R (20)
using the bitemodelr package (21).

2.2.1. Generating model
In order to be reasonably sure the intake data generated would

reflect child eating behaviors, we first generated distributions of
microstructure behaviors based on characteristics (e.g., means)
of children’s behaviors reported in Fogel et al. (1). This study
was chosen as a reference because it reported a seven different
eating behaviors while most studies in children only report only
one or two behaviors (2). Using this set of child microstructure
behaviors, we generated cumulative intake curves to establish

distributions of Quadratic and LODE model parameters that
reasonably characterize child eating behavior (see Figure 2).

We first sought to create a set of distributions from
which to generate data by referencing central tendencies and
variability reported in Fogel et al. (1). We began with 500
cases (see Supplementary materials). Cumulative intake curves
were generated using total number of bites, average bite size,
and meal duration. Each bite was set to the average bite size
and bite timings were generated by randomly sampling points
(n = number of bites) from a logistic distribution truncated at
zero (22) to approximate the theoretical shape of cumulative intake
curves. Sampled points were the scaled to reflect meal timing:
meal duration

(
sampled value

max (sampled value)

)
. Lastly, bite timings were jittered

to allow for variability in cumulative intake curves around the
referenced distribution. All bite timing data were validated to
ensure: (1) bite times were less than or equal to meal duration, (2)
bite timings were positive, and (3) meal time increased successively
at each bite (i.e., t < t+1). This approach allowed eating rates to vary
across the meal and resulted in variable cumulative intake curve
shapes. After generating cumulative intake curves for each of the
500 cases in the microstructure dataset, parameter estimates were fit
for both the Quadratic and LODE models using an iterative process
until parameter fit was stable and parameters predicted feasible
intake patterns (see Supplementary materials). This resulted in
distributions of Quadratic and LODE model parameters that
captured reasonable patterns of child meal microstructure and
cumulative intake.

2.2.2. Simulated data
To simulate data, we randomly selected model parameters

from our distribution of feasible values (see “2.2.1. Generating
model”). For each model, 100 samples were randomly drawn from
the generated multivariate normal distribution because it is a
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FIGURE 2

Overview of the simulation process and model validation. The Generating Model section depicts steps described in section “2.2.1. Generating
model.” The Simulation section depicts steps described in “2.2.2. Simulated data” (for detailed depiction of simulation conditions see Figure 3). The
Parameter Recovery section depicts the two of the approaches used for validating parameter recovery described in section “2.2.3. Parameter
recovery.” LODE, logistic ordinary differential equation.

typical sample size for eating behavior studies in children (2). The
randomly selected parameter values were considered to be the true
parameters for all analyses (Figure 2). Using these true parameters,
cumulative intake data were simulated according to three different
conditions (see Figure 3): (1) Constant Bite: simplified cumulative
intake data with constant bite size; (2) Variable Bite: simulated
continuously measured intake with variable bite size; and (3) Bite
Measurement Error: simulated video coded data with variable bite
size and measurement noise added to both bite size and bite timing.
These conditions allowed us to determine if measurement error
due to using average bite size impacts the ability to characterize
cumulative intake curves.

2.2.2.1. Constant bite condition

This condition simulated simplified cumulative intake data
which do not reflect human behavior as people do not have constant
bite sizes. For each model, 100 samples were randomly drawn
from the multivariate normal distribution for number of bites,
total intake in grams, and model-specific parameters (e.g., Emax,
θ, and r for the LODE model; see “2.2.1. Generating model”).
This resulted in a test dataset for each model which were treated
as the true parameters for the cumulative intake curves. These
datasets were used to simulate cumulative intake data for each
model by calculating two variables: (1) cumulative intake at each
bite using average bite size and number of bites; and (2) bite
timings using the true parameters and cumulative intake at each
bite. Since the bite timing was calculated directly from the true
parameters and cumulative intake, there was no measurement error
in this condition.

2.2.2.2. Variable bite condition

This condition simulated an idealized case of continuous
weight measurement with bites that varied in size. After following
the Constant Bite simulation procedure, process noise (i.e., jitter)
was added to cumulative intake at each bite so that bite sizes
would vary, which better approximates of human eating behavior
(Figure 3). There was no measurement error because bite timing
was calculated from cumulative intake at each bite.

2.2.2.3. Bite measurement error condition

This condition simulates video coded bite data which require
the use of average bite size and has less precise bite timings. After
following the Variable Bite simulation procedure, measurement
noise was added in two ways after bite timings were calculated:
(1) cumulative intake at each bite was recalculated using average
bite size, reflecting measurement error incurred when using average
bite size; and (2) bite timings were jittered to reflect additional
error from manually coding bite timing. Since error was added after
calculation bite timings, both cumulative intake and bite timing
have measurement error.

2.2.3. Parameter recovery
Quadratic and LODE model performance was assessed by

examining how closely the recovered cumulative intake curves
matched the true cumulative intake curves. In sections “2.2.3.1.
“Confidence intervals” and “2.2.3.2. Distinguishability,” we discuss
how confidence intervals were used to test the accuracy of
recovered parameter estimates and whether estimates could be
used to distinguish different cases. In sections “2.2.3.3. Goodness
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FIGURE 3

Process used to simulate data conditions. Solid arrows indicate the steps for the constant bite condition, dashed arrows indicate the steps for the
variable bite condition, and the dotted arrows indicate the steps for the Measurement Error condition.

of Fit Index” and “2.2.3.4. Cumulative intake curve error,” we
discuss how we measured error in recovered parameters and
cumulative intake curves.

2.2.3.1. Confidence intervals

To determine if the parameter estimates reflect the true values,
we tested if the true parameter fell within the 95% confidence
bounds of the recovered estimate. To do so, we first recovered
parameter estimates for the Quadratic and LODE models and
then constructed data-driven likelihood profile confidence intervals
(23) by identifying the upper and lower bounds of the interval
for each parameter using an iterative process (see Supplementary
materials). This approach was chosen because likelihood profile
confidence intervals are more robust than standard error-based
approaches for arbitrarily complex models (24, 25). Parameter
recovery was assessed by the proportion of true values that fell
within recovered confidence bounds for each parameter, which
we would expect to be 95 of the 100 true values for a 95%
confidence interval.

2.2.3.2. Distinguishability

Confidence intervals can also be used to determine whether
estimates are distinct from each other. When a value falls outside
an estimate’s confidence interval, it can be interpreted as being
distinct from the estimate. Therefore, to index the distinctness
of each recovered estimate, we counted the number of times the
parameter estimate fell within the confidence intervals of other
estimates in the same condition (i.e., Constant Bite, Variable Bite,
or Bite Measurement Error). A parameter estimate was considered
distinct if it was distinguishable from 85% of the estimates in the
simulated condition (i.e., falls within less than 15 other confidence
intervals). Low distinguishability indicates the same cumulative
intake data could have been used to recover all the different
parameter estimates, which reduces power and ability to use

parameter estimates as predictors of individual differences or in
interactions. In essence, this is an estimate of parameter variability
relative to the precision of the parameter.

2.2.3.3. Goodness of Fit Index

Goodness of fit was calculated by scaling the difference between
the recovered and true parameters by the median of the parameter
distribution (see “2.2.1. Generating model”). Scaling by the median
allows for comparisons across parameters that differ in magnitude.
We used the absolute value since parameters differ in whether they
are expected to be positive (e.g., linear coefficient) or negative (e.g.,
quadratic coefficient). Therefore, goodness of fit was always positive
with smaller values indicating better fit.

2.2.3.4. Cumulative intake curve error

To estimate error in recovered cumulative intake curves, the
true and predicted cumulative intake or timings were compared
across bites. Predicted cumulative intake was calculated for each
bite using the recovered parameters and the true bite timing while
predicted bite timing was calculated using the recovered parameters
and true cumulative intake at each bite. Root mean squared error
(RMSE) was calculated to compare true cumulative intake or
timing for each bite with the values predicted from recovered
parameter estimates. RMSE reflects raw error and has the benefit
of maintaining units for interpretation. To index predictive value,
a pseudo-R2 was used to determine the proportion of variance in
true cumulative intake or bite timing explained by the predicted
values. Due to approximation error in recovered parameters, non-
feasible predicted values were possible (e.g., intake before the
meal began, negative intake at the beginning of the meal, bites
resulting in negative intake, etc.) and a model was considered
non-convergent if more than 10% of bites were non-feasible (see
Supplementary materials).
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FIGURE 4

Correlations between the quadratic and logistic ordinary differential equation (LODE) parameters and number of bites and total intake. The r values
reflect Pearson’s correlation values.

2.3. Analyses

Differences between models and model parameters were tested
for distinguishability, goodness of fit, and error in the cumulative
intake curve. Since distinctness was a binary outcome, Fisher’s
Exact Probability Test was used to test the differences the in
proportion distinct. Due to skewed distributions, Mann–Whitney
U tests were used for goodness-of-fit and error.

3. Results

3.1. Descriptive model comparisons
(Figure 4)

As expected from the theoretical basis of the LODE model,
initial state (θ) and doubling rate (r) showed very low correlation
with each other. In contrast, the quadratic and linear coefficients
from the Quadratic model showed a strong negative correlation
with each other. While the intercept was not correlated with
the quadratic coefficient, it was moderately correlated the linear

coefficient. Looking across models, state (θ) was strongly correlated
with all Quadratic model parameters while rate (r) was moderately
correlated with them. Both state (θ) and rate (r) were positively
correlated with the linear coefficient and negatively correlated with
the quadratic coefficient, however, the correlation between rate
(r) and the quadratic coefficient appeared to be influenced by
outlier values (Figure 4). In contrast, while state (θ) was positively
correlated with the Quadratic model’s intercept, rate (r) was
negatively associated it. Similarly, while state (θ) had strong positive
correlations with both number of bites and total intake (grams),
rate (r) was not linearly associated with meal behaviors. The linear
coefficient from the Quadratic model was also correlated with
number of bites and total intake, while the quadratic coefficient was
not correlated with meal behaviors.

3.2. Parameter recovery

Due to skewed distributions, the median and 25th and 75th
percentiles were used for descriptive statistics (see Supplementary
Figures 1–3).
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TABLE 1 Parameter recovery for the quadratic and logistic ordinary differential equation (LODE) models.

Precision of recovered parameters

Quadratic model LODE model

Quadratic (a) Linear (b) Intercept (c) θ r

Distinct estimates, %

Constant bite 12% 41% 8% 80% 42%

Variable bite 13% 43% 8% 83% 41%

Bite Measurement Error 12% 46% 11% 84% 41%

CIs overlapping estimate, med (25th, 75th)

Constant bite 34.0 (22.0, 40.0) 19.0 (11.0, 22.0) 42.0 (34.0, 47.0) 10.0 (7.0, 15.0) 17.0 (13.0, 23.0)

Variable bite 34.5 (34.0, 40.3) 18.5 (11.0, 22.0) 41.0 (33.8, 48.0) 11.0 (7.8, 15.0) 16.0 (13.0, 23.0)

Bite Measurement Error 33.0 (21.0, 34.0) 17.5 (10.0, 20.0) 38.0 (25.8, 42.0) 11.0 (6.8, 14.0) 17.0 (12.8, 21.3)

Goodness of Fit Index, med (25th, 75th)

Constant bite 0.11 (0.05, 0.28) 0.04 (0.02, 0.08) 0.53 (0.26, 0.81) 0.21 (0.12, 0.49) 0.07 (0.03, 0.10)

Variable bite 0.11 (0.05, 0.28) 0.04 (0.02, 0.07) 0.45 (0.24, 0.72) 0.20 (0.09, 0.43) 0.07 (0.03, 0.11)

Bite Measurement Error 0.11 (0.04, 0.25) 0.03 (0.01, 0.06) 0.33 (0.18, 0.63) 0.20 (0.09, 0.39) 0.06 (0.03, 0.10)

Cumulative intake curve error

Quadratic Model LODE Model

Timing Intake Timing Intake

Constant bite 0.06 (0.04, 0.08) 0.71 (0.71, 0.71) 1.13 (0.76, 1.88) 0.71 (0.71, 0.71)

Variable bite 0.05 (0.04, 0.07) 0.71 (0.71, 0.71) 1.20 (0.74, 1.88) 0.71 (0.71, 0.71)

Bite Measurement Error 0.05 (0.03, 0.07) 0.67 (0.60, 0.70) 1.20 (0.75, 1.95) 0.66 (0.60, 0.71)

Psuedo-R2, med (25th, 75th)

Constant bite 1.00 (0.999, 1.00) 1.00 (0.999, 1.00) 0.91 (0.88, 0.94) 1.00 (1.00, 1.00)

Variable bite 1.00 (0.999, 1.00) 1.00 (0.999, 1.00) 0.91 (0.88, 0.94) 1.00 (1.00, 1.00)

Bite Measurement Error 1.00 (0.999, 1.00) 1.00 (1.00, 1.00) 0.91 (0.88, 0.94) 1.00 (1.00, 1.00)

CIs, confidence intervals; med, median; RMSE, root mean squared error; 25th: 25th quartile; 75th: 75th quartile.

3.2.1. Confidence intervals
Across all conditions, the both models had greater the expected

95% recovery of the true parameters by the 95% confidence
intervals (Table 1). Recovery that exceeds the expected 95%
indicates that the type-1 error rate is slightly less than expected
for the recovered 95% confidence intervals (i.e., α < 0.05).
The widths of the recovered confidence intervals were small
(Figure 5), indicating that even small effects could be distinguished.
Ultimately, this indicates that the recovered 95% confidence
interval is a slightly more conservative way to test differences
between estimates. This shows that both the Quadratic and LODE
models are able to recover estimates that reflect true parameter
values when bite size is measured (i.e., similar to continuous weight
measurement) and when average bite size is used (i.e., similar to
video coded bites).

3.2.2. Distinguishability
Across all simulation conditions, the LODE model parameters

were more distinct than the Quadratic model parameters (Table 1).
Across conditions, both LODE parameters were more distinct
than the Quadratic model’s intercept (p’s < 0.001) and quadratic
(p’s < 0.001) coefficients but only state (θ) was more distinct
than the linear coefficient (p’s < 0.001). It is also evident in

Figure 5 that there is greater overlap of confidence intervals
for the individual parameters of the Quadratic compared to the
LODE model. Because cumulative intake curves require all model
parameters to be defined and characterized, one could argue that
a cumulative intake curve would be distinct if any of the model
parameters were distinct. Although considering all parameters for
each model increased the percent of distinct cases, the pattern of
results remained the same. Specifically, 46–53% of the cases were
distinct for the Quadratic model (Constant Bite = 46%, Variable
Bite = 49%, Bite Measurement Error = 53%) while 89–96% of the
LODE model cases were distinct (Constant Bite = 91%, Variable
Bite = 89%, Bite Measurement Error = 96%) when considering
all model parameters. Similarly, when we examined the number
of confidence intervals that each parameter estimate overlapped
with, state (θ) had less overlap than all Quadratic model parameters
across all conditions (p’s < 0.001) while rate (r) had less overlap
than the intercept and quadratic coefficients (p’s < 0.001; Table 1)
across all conditions. Rate (r) had less overlap than the linear
coefficient for the Bite Measurement Error condition (p = 0.026;
Table 1) but did not differ from the linear coefficient for the other
conditions. Overall, this suggests that the LODE model parameters
were more distinct than the Quadratic model, which indicates
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FIGURE 5

95% confidence intervals for the recovered estimates in the Measurement Error condition. Points reflect the true parameter value and lines indicate
the recovered 95% confidence interval. The color blue indicates the confidence bounds included the true parameter value and the color red
indicates the confidence bounds did not include the true parameter value. (A) Quadratic model estimates: intercept, linear coefficient, and quadratic
coefficient. (B) Logistic ordinary differential equation (LODE) model estimates: θ and r.

it may have greater power to identify individual differences in
parameter estimates.

3.2.3. Goodness of Fit Index
There was little difference in parameter goodness of fit between

simulations conditions (Table 1). While the intercept from the
Quadratic model had worse fit for the Constant Bite than Bite
Measurement Error condition (p = 0.020), the other conditions
did not differ (p’s > 0.100). The conditions did not differ in fit
for the other Quadratic parameters or the LODE model parameters
(p > 0.126), suggesting that all are robust to sources of error. The
linear coefficient of the Quadratic model had better fit than the
doubling rate (r) from the LODE model (p’s < 0.003), however,
rate (r) had better fit than the intercept and quadratic coefficients
(p’s < 0.004). The linear and quadratic coefficients had better
fit than state (θ) (p’s < 0.007), but state had a better fit than
the intercept (p’s < 0.001). This indicates that the interpretable

parameters (i.e., not the Quadratic intercept error term) show a
mixed pattern when comparing goodness of fit between models.
Overall, the interpretable parameters of both models had excellent
goodness of fit.

3.2.4. Cumulative intake curve error
While the LODE model always predicted feasible bite timings

and sizes, the Quadratic model had between 1%–13% of simulated
cases across simulation conditions with at least one non-feasible
predicted bite value (see Supplementary Table 3). The Quadratic
model also had two simulated cases fail to converge (>10% of
predicted bites non-feasible): one each in the Constant Bite and
the Bite Measurement Error conditions. These cases were excluded
when calculating RMSE and pseudo-R2.

The amount of error in bite timing was very similar across
simulation conditions for both RMSE (p’s > 0.090) and pseudo-
R2 (p’s > 0.228; Table 1). For error in cumulative intake at each
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bite, RMSE did not differ between the Constant and Variable Bite
conditions (p’s > 0.614), however, there was significant less error
in the Bite Measurement Error condition than the Constant and
Variable Bite conditions (p’s < 0.001; Table 1). The Quadratic
model had less error in bite timing (p’s < 0.001) and a higher
pseudo-R2 (p’s < 0.001) than the LODE model across all conditions.
Overall, cumulative intake curve bite timings predicted using the
LODE model had around one minute more error per bite compared
to the Quadratic model (Table 1). While the Quadratic model had
less error in cumulative intake at each bite than the LODE model
for Constant and Variable Bite conditions (p’s < 0.001), the actual
difference in RMSE was smaller than rounding error and, thus,
do not appear different in Table 1. The models did not differ in
intake RMSE for the Bite Measurement Error condition (p= 0.572)
and there was no difference in intake pseudo-R2 across conditions
(p > 0.499). All pseudo-R2 estimates were very high (minimum
0.88) indicating that recovered estimates for both models were able
to predict almost all variability in the true cumulative intake and
timing across bites. Together, this indicates that while the LODE
model had relatively more error in predicting bite timing, both
models show little error in their prediction of cumulative intake per
bite and had excellent fit between the predicted and true cumulative
intake curves for both cumulative intake and bite timing.

4. Discussion

This study provides evidence that cumulative intake curves
can be characterized from video-coded data without the need
for continuous weight measurement, which greatly expands their
utility. This will alleviate the need for strict behavioral protocols
that are common for continuous measurement of meal weight (e.g.,
not placing a utensil/hand on the plate), which can restrict the range
of eating behaviors and may limit the ability to fully characterize
individual differences or identify targets for intervention. For
example, individuals with anorexia are more likely to tear or
dissect foods and inappropriately use utensils (26, 27), and these
behaviors would likely be restricted in protocols using continuously
measured meal weight. Additionally, typical child eating behaviors
(e.g., playing with food and using hands to eat) are often restricted.
Expanding the characterization of cumulative intake curves to
video-coded meals greatly expands the contexts and populations in
which we can examine dynamic patterns of eating behavior.

To determine whether cumulative intake curves can be
accurately characterized from video-coded bites, this study
examined performance differences between data that simulated
continuously measured meal weight versus video-coded bites. Both
models had high goodness of fit and high predictive value for intake
and bite timing. There was little difference in goodness of fit for
bite timings between simulation conditions, however, there was
significantly less error in the Bite Measurement Error condition
than the Constant and Variable Bite conditions. Together, this
indicates that measurement error incurred by using average bite
sizes did not impair the ability to recover model parameters. While
these results need to be validated in empirical studies, they indicate
cumulative intake curves can be accurately characterized from
video-coded meals.

While both the Quadratic and LODE models have been
previously discussed and theoretically validated in the literature

(4, 18, 19), this study was the first to formally validate parameter
recovery. Both models showed excellent parameter recovery and
goodness of fit. The higher-than-expected parameter recovery rates
for 95% confidence intervals would result in a Type-I error rate
slightly lower than would be expected (i.e., α < 0.05). That is,
the confidence intervals provided a slightly conservative test of
differences between estimates. Both models also had very high
predictive value for both intake and bite timing, however, the
Quadratic model showed relatively less error than the LODE model
when predicting bite timing. While there were also significant
differences in error for predicted cumulative intake between
models, the size of the differences was within rounding error and
too small to make a practical difference. These results validate the
ability of both models to accurately estimate model parameters and
cumulative intake curves.

While the models did not differ in their ability to recover
parameter estimates, they did differ in the distinguishability
of parameter estimates. The Quadratic model parameters were
significantly less distinct than the LODE model parameters. Low
distinctness or distinguishability suggests that some differences
between true cumulative intake curves lead to very small changes
in the estimated parameters. Greater differences in true cumulative
intake curves (e.g., larger intervention effects or group differences)
may be needed to derive statistically distinguishable parameter
estimates from the Quadratic model than the LODE model. The
extent to which this difference in distinctness impacts the power of
point-estimates to detect individual differences in empirical studies
still needs to be examined. The good distinguishability of LODE
model parameters is promising and suggests the LODE model
may be more sensitive to differences in eating behaviors between
individuals or meals.

Similarly, associations between the Quadratic and LODE
model parameters indicate that while the models capture shared
information about cumulative intake curves, the LODE model may
also capture unique information. Greater values for the initial state
(θ) were associated with higher y-intercepts, more positive linear
slopes, and more negative quadratic slopes from the Quadratic
model. While both the initial state (θ) and the linear slope are
thought to reflect initial rates of eating (18, 19), the state (θ)
parameter was also associated with the quadratic coefficient, which
is thought to reflect satiation (18, 19). In contrast, associations with
the doubling rate (r) were smaller, suggesting that r may capture
unique information that is not captured by θ or Quadratic model
parameters. Future experimental studies are needed to understand
the behavioral correlates of doubling rate (r) to better contextualize
the dynamic information it captures.

The differences between the parameterizations of these
two models may have useful implications for researchers. The
independence of LODE model parameters allows them to capture
unique information about the cumulative intake curve while the
correlated Quadratic model parameters capture at least some
amount of shared information. Additionally, while the LODE
model can capture both the stimulation and satiating phases of
eating, the Quadratic model can only capture one phase of eating
at a time. While the cubic model performed well and would be
able to capture two phases of eating (18), it would not resolve the
issue of predicting non-feasible intake patterns (Figure 1). The
Quadratic model had up to 13% of cases with at least one non-
feasible value and two cases that failed to converge. In contrast, the
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LODE model did not predict any non-feasible values. We argue that
although both models perform well, there may be some theoretical
advantages to the LODE model.

This study provides initial evidence that cumulative intake
curves can be characterized from video-coded meals and
validates both the Quadratic and LODE models for characterizing
cumulative intake curves. However, there are limitations that need
to be address in future work. This study used simulated data;
therefore, results need to be validated with behavioral data from
adults and children. A limitation to the use of these models in
empirical studies is the lack of easily accessible software. While
the authors developed an initial suite of scripts that are freely
available (21), a fully functioning package and tutorial are needed
to improve accessibility. Lastly, additional simulation studies are
needed to examine less conservative approaches to estimating
confidence intervals.

Despite the remaining work to be done, this study advances
the field of human ingestive behavior in three important ways:
(1) it provides evidence that cumulative intake curves can be
characterized from video-coded meals; (2) it validates the LODE
model; and (3) it provides a formal comparison of the Quadratic
and LODE models. Although the Quadratic and LODE models
differ in their theoretical foundations, this study showed that
both models accurately characterize cumulative intake curves.
However, the LODE model had two advantages that may lead
to improved ability to characterize individual differences: (1) it
has independent parameters that capture unique information;
and (2) recovered parameter estimates were more distinct, which
suggests it is more sensitive to differences in cumulative intake
curves. The ability to characterize of cumulative intake curves
from video-coded meals greatly expands our ability to capture
dynamic patterns of eating behavior in children and individuals
with disordered eating. Additionally, eliminating the need for
specialized hardware increases the ability of researchers to collect
meal data quickly and cheaply using commodity cameras, or even
by requesting participants record their own meals using their
smartphone, greatly reducing the cost of data intake and potentially
reducing participant burden. Although observational coding of
meal videos is currently a time and resource intensive process
after the data is collected, recent advances in automated coding of
video will hopefully reduce this burden in the near future (28). The
current work also extends the utility of these models to alternative
approaches to bite detection such as the used of wearable devices
(29). Together, this will improve our ability to identify patterns of
eating behaviors associated with overconsumption and provide new
opportunities for treatment.
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