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The gut microbiota is a complex ecosystem that has coevolved with the human 
body for hundreds of millions of years. In the past 30 years, with the progress of 
gene sequencing and omics technology, the research related to gut microbiota has 
developed rapidly especially in the field of digestive system diseases and systemic 
metabolic diseases. Mechanical, biological, immune, and other factors make the 
intestinal flora form a close bidirectional connection with the liver and gallbladder, 
which can be  called the “gut–liver–biliary axis.” Liver and gallbladder, as internal 
organs of the peritoneum, suffer from insidious onset, which are not easy to 
detect. The diagnosis is often made through laboratory chemical tests and imaging 
methods, and intervention measures are usually taken only when organic lesions 
have occurred. At this time, some people may have entered the irreversible stage of 
disease development. We reviewed the literature describing the role of intestinal flora 
in the pathogenesis and biotherapy of hepatobiliary diseases in the past 3–5 years, 
including the dynamic changes of intestinal flora at different stages of the disease, as 
well as the signaling pathways involved in intestinal flora and its metabolites, etc. After 
summarizing the above contents, we hope to highlight the potential of intestinal flora 
as a new clinical target for early prevention, early diagnosis, timely treatment and 
prognosis of hepatobiliary diseases.
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1. Introduction

The gut microbiota is a huge microbial community living in the host’s gut and includes a 
large number of bacteria and a small number of archaea and fungi. The ratio of bacteria to 
human cells (including red blood cells) in healthy adults has been updated to nearly 1:1 in 
2016 (1). The human body and trillions of microorganisms, a dynamic equilibrium system 
of mutual influence and coevolution, coexist. The gut microbiota has the highest density and 
has attracted attention because of remarkable clinical significance (2). The Human 
Microbiome Project, The Human intestinal metagenome Project, and other intestinal 
microbiota research projects have been carried out. Since the migration of humans to the 
birthplace of Africa, gut bacteria have evolved, showing racial specificity especially in bacteria 
that rely on human intestinal conditions (3). The human gut microbiota begins to be acquired 
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from the rupture of the amniotic sac during fetal period. Different 
delivery and feeding methods affect the colonization of the 
microbiota, and the diversity and richness of the microbiota form 
and stabilize in early childhood (4). In addition, gender, age, 
dietary structure, lifestyle, and other factors affect the structure of 
gut microbiota. Compared with that of young people, the gut 
microbiota of the elderly even shows higher diversity and health 
degree, which is speculated to be a good foundation laid by the 
previous generation in early life and continues to old age (5). The 
human gut microbiota can be divided into three intestinal types, 
i.e., Bacteroides (enterotype 1), Prevotella (enterotype 2), and 
Ruminococcus (enterotype 3), in accordance with the dominant 
genus (6). The intestinal type can maintain its stability for a certain 
period and is difficult to transform. However, long-term 
environmental influences and dietary changes may result in 
intestinal-type transformation (7).

At present, the research methods of gut microbiota primarily 
include multi-omics data integration analysis (based on meta-omics, 
metagenomics, macrotranscriptomics, proteomics, and metabolomics) 
and culturomics (based on high-throughput bacterial isolation and 
culture technology) (8). In recent years, the development of sequencing 
technology has made substantial progress in omics research. 
Culturomics, with its advantages of low detection threshold and research 
depth to the strain level, has isolated and cultured a variety of human 
gut microbiota for the first time and has been flourishing (9). The two 
research methods have their own advantages and disadvantages in many 
aspects, and complementary development can promote the research of 
human gut microbiota. At the same time, current sampling methods 
should be improved, or new methods should be designed to improve 
sample accuracy and bacterial culture technique need to be optimized 
(10, 11).

2. Gut microbiota and hepatobiliary 
principal diseases

2.1. Viral hepatitis

Viral hepatitis is a kind of infectious disease caused by a variety of 
hepatitis viruses. The internationally recognized liver hepatitis viruses 
are HAV, HBV, HCV, HDV, and HEV. The hepatitis B caused by HBV 
has extremely high incidence worldwide, easily progresses into chronic 
hepatitis, and further deteriorates to liver cirrhosis and liver cancer 
(12–14). HBV infection manifested as transient infection in BALB/c 
mice and chronic infection in C57BL/6 mice. A research teams used 
antibiotics to remove the intestinal flora of BALB/c mice and 
transplanted fecal microbiota from C57BL/6 mice into BALB/c mice, 
and found that BALB/c mice also showed immune tolerance to HBV 
and chronic infection after transplantation. The outcome of HBV 
infection is highly related to the structure of intestinal flora (15). A 
clinical study found that patients with HBV-induced chronic liver 
disease have intestinal dysbacteriosis. The main manifestations are 
increased potential pathogenic bacteria, such as Klebsiella, Escherichia 
coli, Proteus, and Enterobacter, and decreased beneficial bacteria, such 
as Clostridium, Ruminococcus, and Bifidobacterium (16). However, 
another study showed that Lactobacillus, which are considered 
probiotics, are positively associated with the development of chronic 
hepatitis B, suggesting their contribution to the development of the 
disease (17). An experiment showed that intestinal flora failure can 
cause damage to intestinal barrier function and induce the transfer of 
living commensal bacteria from the gut to the liver (18). Translocated 
bacteria and their components, such as lipopolysaccharide, can activate 
hepatic inflammatory cells, promote the secretion of inflammatory 
factors, inhibit immune response, and prolong the infection time of 
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HBV. At the same time, bile acids (BAs), which are important 
components with bactericidal and regulatory effects in the intestine, are 
dysregulated in the middle and late stages of chronic hepatitis B. The 
main manifestations are increased levels of serum total BAs and primary 
BAs and significantly decreased levels of fecal and secondary BAs. 
Intestinal microbiota analysis showed that changes are related to 
decreased abundance of bacteria involved in BA metabolism (19). The 
intestinal microbiota dysregulation affects the metabolism of BAs in the 
intestine, thus blocking the BA circulation pathway and further 
increasing burden on the liver. For hepatitis A, C, and E, clinical studies 
showed different degrees of intestinal microbiota disorders in infected 
patients (20–22). In the early stage, patients with chronic hepatitis C 
showed abnormal bile acid metabolism. It was found that the 
transcription level of CYP8B1, a key enzyme in the process of cholic acid 
biosynthesis, was reduced, and deoxycholic acid in feces was reduced, 
which was speculated to be mediated by intestinal flora imbalance (23). 
Reduced diversity, Lactobacillus acidophilus and lactic acid levels have 
been found in patients (23). Most of the studies on intestinal microbiota 
related to liver disease progression used 16SrRNA sequencing 
technology. Although the survival status of bacteria is unknown, 
16SrRNA sequencing technology promoted the horizontal study of 
intestinal microbiota efficiently and accurately. However, longitudinal 
studies on the causal and progressive relationship between intestinal 
microbiota and viral hepatitis, such as specific metabolic pathways, 
remain limited. In the future, more macrotranscriptomics, proteomics, 
metabolomics, and culturomics methods should be added for further 
research to provide a solid theoretical basis for new treatment methods, 
such as fecal bacteria transplantation, and guidance for determining the 
appropriate donor.

2.2. Non-alcoholic fatty liver disease

Nonalcoholic fatty liver disease (NAFLD) is a cumulative 
metabolically damaging liver disease characterized by the excess of liver 
free fatty acids and abnormal increase in fat synthesis. In 2021, the Latin 
American Association for the Study of the Liver issued a statement 
renaming this disease metabolically associated fatty liver disease 
(MAFLD) (24). In the same year, the American Association for the 
Study of Liver Diseases objected to the renaming because of terminology 
ambiguity and lack of rigor (25). According to statistics, NAFLD has 
become the most prevalent chronic liver disease in China and a serious 
threat to human health (26). Without intervention, NAFLD will 
gradually develop into non-alcoholic fatty liver disease (NAFL), 
non-alcoholic hepatitis (NASH), NAFLD-cirrhosis, and liver cancer. 
Some studies showed that the dysregulation and decreased diversity of 
gut microbiota in patients with NAFLD are related to the progression of 
NAFLD and BMI (27). The risk is high in patients who are not obese. A 
study used mouse models to demonstrate the ability of pathogenic 
Klebsiella to induce NAFLD directly, which is associated with 
endogenous alcohol overproduction (28). The dysregulation of gut 
microbiota and intestinal barrier damage accelerate the translocation of 
bacteria and their derivatives, promote the activation and proliferation 
of liver B cells, and aggravate the inflammatory response of NASH (28). 
Fortunately, a randomized trial in patients with NAFLD showed that 
taking probiotics and prebiotics for a year significantly alters gut 
microbiota diversity and increases the number of probiotics, such as 
Bifidobacterium (29). Indole-3-propionic acid significantly reduces the 
abundance of Bacteroides, Streptococcus, and other pathogenic bacteria 

in the intestine of patients with NAFLD and promotes the repair of 
intestinal mucosa and barrier (30). Astragalus polysaccharide and 
chlorogenic acid have been shown to have anti-NAFLD effects in 
regulating gut microbiota homeostasis (31, 32). The supplementation of 
ursodeoxycholic acid can increase the relative abundance of Firmicutes, 
reduce the relative abundance of Bacteroides, and partially restore the 
intestinal microbiota imbalance in all stages of NAFLD (33). The GLP-1 
analog Liraglutide and FGF19 analog Aldafermin have ameliorated 
intestinal microbiota dysregulation in NAFL and NASH, respectively 
(34, 35). Combined with plant lactobacillus, the dama polysaccharide, 
which improves insulin resistance, can also significantly alleviate fat 
degeneration and improve the NAFLD progress (36). Physical exercise 
has also been shown to improve gut microbiota dysregulation and 
restore impaired BA metabolism in patients with NAFLD (37). The 
current research direction is to use probiotics and their metabolites, 
plant extracts, BA metabolites, gut hormone analogs, behavioral 
intervention, and other methods alone or in combination to improve the 
dysregulation of gut microbiota and then delay and control the 
progression of NAFLD and NASH.

2.3. Alcoholic fatty liver disease

Alcoholic fatty liver disease (AFLD) is the steatosis of the liver 
caused by long-term excessive alcohol consumption, which can develop 
into alcoholic hepatitis, liver fibrosis, cirrhosis, and even liver cancer. 
The intestinal microbiota analysis of AFLD mice showed that the 
abundance values of Enterococcus, Streptococcus, and Enterobacterium 
increase especially Enterococcus. At the same time, the serum level of 
LPS increases (38). An experiment showed that with the progress of 
AFLD, intestinal microbiota imbalance gradually increases, and species 
richness decreases (39). In mice with alcohol-induced alcoholic hepatitis, 
early changes in gut microbiota are found to decrease the abundance of 
Akkermansia (40). In alcoholic cirrhosis period, the number of 
Streptococcus and Enterobacteria is significantly increased, whereas the 
number of Ruminococcus is significantly decreased. Moreover, the 
abundance of Streptococcus has been shown to be positively correlated 
with the severity of hepatocyte injury (39). In addition, an experiment 
showed that the intestinal flora related to BA metabolism in AFLD mice 
is dysregulated, leading to increased hepatic BA synthesis, breaking the 
balance of BA metabolism, and aggravating disease progression (41). 
Another recent study found that the changes in gut microbiota caused 
by long-term ethanol intake may be  mediated not by metabolizing 
ethanol but by the high acetate levels in serum and gut after ethanol 
metabolism in the liver. The disturbance of gut microbiota may aggravate 
ethanol-induced liver injury (42). Fortunately, excessive alcohol intake 
results in low amounts of Roseburia, an anaerobe that produces butyric 
acid, and the supplementation of this bacterium improves the conditions 
of AFLD in mice (43). Ellagic acid pretreatment significantly decreases 
the abundance of E. coli, increases the abundance of Lactobacillus in 
alcohol-fed mice, and effectively alleviates alcohol-mediated intestinal 
microbiota dysregulation (44). Oral supplementation with Akkermansia 
muciniphila to compensate for alcohol-mediated reductions in the 
number of this bacterium has been shown to reduce liver steatosis and 
damage significantly (45). Astaxanthin also plays a protective role in 
AFLD by mediating the recovery of abundance of Akkermansia (46). The 
phosphatase complex of clinical value for AFLD has been shown to 
be partly attributable to the regulatory function of the gut microbiota 
(47). Lactobacillus rhamnosus (LGG) and its culture supernatant 
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combined with immunosuppressive bone marrow mesenchymal stem 
cells are more effective in the treatment of AFLD mice than the treatment 
alone (48). These results fully demonstrate that the early supplementation 
of alcohol-mediated reduction of beneficial bacteria can effectively 
prevent alcoholic liver disease. Additionally, post-disease 
supplementation can control further development and deterioration. 
Bioextracts and biometabolic enzymes also interact with gut microbiota 
and regulate each other.

2.4. Liver fibrosis

Liver fibrosis is primarily characterized by excessive proliferation 
and deposition of extracellular matrix, a key stage in the development 
of chronic liver disease to cirrhosis. Blocking or reversing liver fibrosis 
at this stage will have a good prognosis. In accordance with 
histopathology, liver fibrosis can be divided into five stages. Intestinal 
microbiota detection in rat models of liver fibrosis showed that intestinal 
microbiota is evidently dysregulated, which is manifested as decreased 
community richness and diversity. Additionally, the intestinal 
microbiota in each stage is changing (49). In 2021, 217 Hispanics with 
liver fibrosis are tested for intestinal microbiota, showing the enrichment 
of various immunogenic commensal bacteria, such as Prevosa, and 
reduced Bacteroides and Enterobacteriaceae (50). Other studies found a 
decrease in intestinal Firmicutes and Lactobacilli and an increase in the 
probiotic A. macuciniphila (51, 52). In recent years, the key steps to 
block or reverse liver fibrosis are through three aspects: transforming 
activating hematopoietic stem cells to quiescent state or apoptosis, 
inhibiting the activation and transformation of hepatic stellate cells, and 
reducing the concentration of hepatic total BAs (34, 52, 53). Among 
them, indole-3-carboxaldehyde (3-IALD-MP), a microbial metabolite 
that blocks liver fibrosis by restoring mucosal integrity with the help of 
intestinal flora, has been shown to reduce the abundance of 
proinflammatory Enterobacter and increase the abundance of 
Lactobacillus reuteri (54). Studies showed that oral chlorophyll can 
increase the abundance of Bacteroidetes, decrease the abundance of 
Firmicutes, and restore the intestinal microecological balance to reverse 
liver fibrosis (55). LGG significantly attenuates liver fibrosis. This 
phenomenon demonstrates that LGG increases the inhibition of BA de 
novo synthesis by activate the FXR-FGF15 signaling pathway and 
increases the intestinal flora with the ability of secreting bile salt 
hydrolase to promote BA excretion (56). The dysregulation of intestinal 
microbiota may lead to the translocation of bacteria or bacterial 
products, change the hepatic immune microenvironment, promote the 
release of inflammatory factors, and accelerate the process of fibrosis 
(51). Liver fibrosis can further promote the dysregulation of intestinal 
flora, forming a vicious circle. In addition to restoring mucosal integrity 
and blocking activating signal transduction, the above research results 
are all involved in cutting off circulation from the dysregulation of 
intestinal flora.

2.5. Cirrhosis

Liver cirrhosis is the terminal stage of various chronic liver diseases, 
ranging from compensated period to decompensated period, with the 
most serious consequence being acute/chronic liver insufficiency 
(ACLF). A study of hospitalized patients with cirrhosis showed that 
those with dysregulated gut microbiota on admission are more likely to 

develop ACLF and have higher mortality (57). Another study showed 
that liver cirrhosis secondary to Schistosoma japonicum infection does 
not have intestinal microbiota dysregulation and has good prognosis 
(58). This finding indicates that the homeostasis of intestinal flora has a 
remarkable influence on the prognosis of liver cirrhosis. The 
metagenomic analysis of patients with cirrhosis has shown a gradual 
decrease in metagenomic richness and enrichment of foreign bodies as 
the disease progresses (57). Further studies showed a substantial 
decrease in beneficial protoresident bacteria, such as butyrate-producing 
bacteria, and a considerable increase in bacteria associated with mucous 
layer degradation of the intestinal wall, potential opportunistic 
pathogens, and pathogenic bacteria in patients with cirrhosis. As the 
disease progresses, opportunistic pathogens, such as Pseudomonas 
dentalis and Haemophilus parainfluenzae, will continue to increase (59). 
Moreover, liver cirrhosis is positively associated with the degree of 
bacterial translocation and load of antibiotic resistance genes (ARGs) in 
the gut microbiota (60, 61). A study used the method of gut microbiota 
characteristics combined with age analysis to detect cirrhosis accurately 
and take early intervention measures (62). Another study assessed ACLF 
and mortality risk by measuring the serum levels of microbial 
metabolites, such as BAs and aromatic amino acids (63). The 
development and prognosis of liver cirrhosis are closely related to 
intestinal microbiota imbalance. The research on correcting intestinal 
microbiota imbalance and delaying the progression of liver cirrhosis is 
effective. Dietary cereal and yogurt intakes have been shown to 
be associated with high gut microbiota diversity and low hospitalization 
rates in patients with cirrhosis, which is possibly due to increased 
metabolism of short-chain fatty acids and probiotics (64). The 
supplementation of lactitol has been shown to reduce the load of 
pathogenic genes ARGs and VFGs in the intestinal flora; reduce the 
abundance of pathogenic bacteria associated with liver cirrhosis, such 
as Klebsiella; increase the abundance of beneficial bacteria, such as 
Bifidobacterium; and improve the prognosis of liver cirrhosis (65). 
Intestinal microbiota dysregulation is improved after transection of the 
hepatic branch vagus nerve in mice, which may be  related to the 
overgrowth of potentially pathogenic bacteria enhanced by the vagus 
during cirrhosis (66). For economic and operational reasons, most 
studies chose stool collection to study intestinal microbiota, which 
shows no remarkable difference in the diversity of intestinal microbiota 
in patients with cirrhosis of different etiologies (67). However, colonic 
mucosal samples collected by rectal swabs and stool samples have 
different bacterial groups. A classification method characterized by a 
decrease in the number of E. coli/Enterobacteriaceae has been found here 
(68) and can accurately predict the prognosis of cirrhosis and facilitate 
appropriate interventions. Therefore, when studying intestinal 
microbiota, the source of samples should be  considered. Sampling 
methods that are close to the intestinal environment, non-invasive, 
highly operable, and economically feasible are needed.

2.6. Liver cancer

Hepatocellular carcinoma (HCC) is a malignant tumor occurring in 
the liver with a high incidence rate and poor prognosis. HCC is easy to 
be ignored because of inapparent early symptoms. An increase in the 
abundance of Bacteroides and Ruminants and a decrease in the 
abundance of Akermannii and Bifidobacteria are observed in the 
intestines of patients with liver cancer (69). Recent studies showed that 
the dysregulation of intestinal flora aggravates the occurrence of liver 
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cancer, as summarized in Figure  1. With the development and 
deterioration of HCC, the degree of intestinal flora dysregulation 
gradually deepens (70). At the same time, studies demonstrated that 
intestinal microbiota dysregulation leads to the proliferation of colonic 
epithelial plexus cells; increases the secretion of IL-25; and promotes the 
migration, invasion, and tumorigenesis of liver cancer cells through 
activation of M2 macrophages and related pathways (71). The 
dysregulation of gut microbiota may also promote the progression of 
HCC by inhibiting CD8 + T cell function and activating regulatory T 
cells to inhibit the body’s immunity (72, 73). NOD2 acts as a pattern 
recognition receptor in hepatocytes and interacts with the PAMP of 
Gram-positive and Gram-negative bacteria. NOD2 has been shown to 
be overexpressed after the dysregulation of the gut microbiota and is 
associated with the prognosis of HCC (74). Dietary cholesterol can 
induce remarkable changes in intestinal flora and metabolites in mice, 
eventually leading to the formation of NAFLD-HCC. This phenomenon 
may be related to the dysregulation of intestinal flora and the reduction 
of probiotics, such as Bifidobacterium and BSH-rich bacteria (75, 76). 
The specific gut microbiota community of patients with HCC and its 
correlation with markers of inflammatory response make the gut 
microbiota show remarkable potential for early detection of HCC (77–
80). Based on these endless research achievements, scientists have never 
stopped exploring how to control the further development and 
metastasis of HCC. Some progress has also been made in the direction 
of gut microbiota. One team found that c-di-AMP, a metabolite of 
intestinal microbiota, is likely to cooperate with dsDNA of tumor cells 
to mediate the CGAS-Sting-IFN-I pathway to control the sensitivity of 
late radiotherapy in unresectable HCC. Intestinal microbiota, as a new 
target, can bring new light to patients with radiotherapy resistance (81). 

In addition, the Chinese patent medicine GanFuLe and the Chinese 
herbal medicine ginseng have been shown to delay the progression of 
liver cancer by participating in intestinal microbial metabolism, 
changing community diversity, and increasing the abundance of 
beneficial bacteria (82, 83). Ginsenoside Rg3 coupled with nanoparticles 
can significantly improve intestinal microbiota dysregulation and 
control the progression of HCC (84). Traditional medicinal resources 
should not be  ignored, we  need break down the barrier between 
traditional and modern medicine to open up a broader space for the 
research of new anti-liver cancer drugs.

3. Gut microbiota and gallbladder 
principal diseases

3.1. Gallstones

Gallstones are characterized by gallbladder and bile duct precipitate 
stones in the biliary tract system. Gallstones are often divided into 
cholesterol, bile pigment, and mixed stones in accordance with their 
chemical properties in clinical practice. For a long time, the biliary tract 
is thought to be sterile. However, a study in 2013 based on 120 samples, 
is the first to report the imbalance of intestinal microbiota in patients 
with gallstones and found that the biliary microbiota is highly similar to 
the intestinal microbiota and has a high diversity (85). The biliary tract 
is not completely isolated from the gut. The two are connected through 
the duodenum and blood, and colonizing the biliary tract is not difficult 
for intestinal bacteria. Another recent prospective cohort study based 
on 470,000 participants demonstrated an association between an 

FIGURE 1

Changes in gut microbiota during liver disease progression.
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increased risk of gallstones and disturbances in the gut microbiota 
caused by the use of stomach acid inhibitors (86). A team found that the 
intestinal microbiota of mice with gallstones is seriously disordered and 
identified 33 gallstone markers at the phylum, class, order, family, and 
genus levels. The paired analysis of liver metabolomics and differential 
microbiota proved that intestinal microbiota imbalance is a contributing 
factor to gallstones (87). In addition, the role of intestinal microbiota 
metabolites as markers of gallstones should not be ignored. For example, 
trimethylamine is metabolized to TMAO under the action of liver 
FMO3. Studies proved that high serum TMAO level can promote 
cholesterol secretion and the formation of gallstones in vitro and in vivo 
(88). At the same time, a large number of studies showed that the 
diversity of intestinal flora in patients with gallstones especially 
Firmicutes is reduced. Considerable changes in multiple functional 
bacteria are observed. Bacteria secreting the 7α-dehydroxy enzyme 
increase, and those lowering cholesterol decrease, leading to increased 
intestinal absorption of BAs and cholesterol (89). In middle-aged and 
elderly patients, decreased number of bacteria producing prebiotics, 
such as butyrate and acetate/propionate; decreased number of mucin-
degrading bacteria; and increased number of bacteria producing 
endotoxin are observed. This phenomenon further promotes the disease 
(90). Another study found abundant Desulfovibrionales in the gut 
microbiota of patients with gallstones and further demonstrated at the 
animal level that Desulfovibrionales increases the hydrophobicity and 
production of BAs and promotes intestinal absorption of cholesterol and 
liver secretion to accelerate gallstone formation (91). As mentioned 
above, the major composition of the biliary microbiota is most likely 
derived from the gut. A team directly studied the correlation between 
dietary structure and biliary microbiota in patients with gallstones and 
found that the abundance of specific microbiota is highly correlated with 
the intake of dairy products, several fibers, and fatty acids (92). The oral 
administration of an aqueous extract of the Chinese herb L. christinae is 
shown to improve intestinal microbiota disorder significantly, reduce 
gallstone formation, and restore histological morphology in mice with 
gallstones (93). Dietary behavior is highly correlated with intestinal flora 
and biliary tract flora, further affecting cholesterol and BA metabolism.

3.2. Cholangitis

Cholangitis is an inflammation of the bile duct primarily caused by 
secondary bacterial infection on the basis of cholestasis. Bacteria come 
from the intestine, blood, and lymph through the duodenal papilla, 
blood ducts, or lymphatics. A 10-year follow-up cohort study of more 
than 50,000 participants demonstrated that the use of PPI disrupts gut 
microbiota balance and is associated with increased risk of cholangitis 
(94). Decreased intestinal bacterial diversity of patients with primary 
biliary cholangitis (PBC), decreased abundance of Clostridium, 
increased abundance of Lactobacillus, and the intestinal microbiota 
disorder subsequently affect the metabolism of BAs in the intestinal tract 
(95). In the same year, another study found that the abnormal BA 
metabolism of PBC becomes increasingly serious with the progression 
of the disease and that the level of secondary BA is positively correlated 
with Bacteroides stercoris, Oscillospira, and other bacteria enriched in 
healthy people especially with B. stercoris. The reduced degree of 
abundance of B. stercoris can predict the long-term prognosis of patients 
with PBC (96). The metagenomic sequencing analysis of the gut 
microbiota in a large number of clinical samples from patients with 
primary sclerosing cholangitis (PSC) in Norway and Germany showed 

a remarkable decrease in the species richness of the gut microbiota in 
patients with PSC. Functionally, the synthesis of essential nutrients 
vitamin B6 and branched-chain amino acids decreases. Unfortunately, 
IBD, a common secondary complication, cannot be  identified by 
differences at microbial and metabolite levels (97). A study first found 
the dysbiosis of fungal flora in the gut of patients with PSC in 2022, 
which is manifested by increased diversity and a change in composition 
ratio and bacterial–fungal interaction relative to bacteria (98). IgG4-
associated sclerosing cholangitis also exhibits decreased gut microbiota 
diversity and changes in structural proportions as PSC, but the microbe–
metabolite relationship is quite different from PSC (99). Although 
evidence showed that the intestinal microbiota disorder exists in patients 
with cholangitis, the specific pathogenic mechanism should still 
be explored to strengthen the evidence and open up the path for more 
treatment methods. In PSC mouse models, intestinal microbiota 
dysregulation is found to stimulate liver injury by activating NLRP3 
inflammasomes through toxin translocation (100). Compared with the 
direct pathway of bacterial translocation, the indirect pathway of 
intestinal microbiota affecting BA metabolism has made substantial 
progress in recent years. In genetic PSC mouse models, intestinal 
microbiota is found to increase BA synthesis in reverse by inhibiting the 
FXR signaling pathway, further damaging the bile duct and liver. Serum 
C4 level was identified as a potential prognostic reference of PSC (101). 
Moreover, a study directly identified six essential enzymes for the 
conversion of primary BAs to secondary BAs by gut microbiota and 
successfully produced DCA and LCA by introducing relevant operon 
genes into C. sporogenes, which are confirmed in germ-free mice (102). 
Bacterial translocation and BA metabolism disorders are the main 
pathways for intestinal flora to participate in the pathogenic process. 
Detailed studies are needed in the future to provide new targets and 
ideas for the treatment of cholangitis.

3.3. Cholangiocarcinoma

Cholangiocarcinoma is a malignant tumor occurring in the biliary 
tract system. In accordance with different anatomical sites, 
cholangiocarcinoma is often divided into intrahepatic (ICC) and 
extrahepatic cholangiocarcinoma and is primarily manifested by the 
difficulty of early diagnosis, rapid progression, and high degree of 
malignancy. The biliary tract is closely related to the intestine. Whether 
the intestinal microbiota can be used as a specific biomarker for early 
screening and progression prediction of cholangiocarcinoma has been 
attracting much attention. As early as 2013, hamsters infected with 
carcinogenic liver flukes Opisthorchis viverrini are found to have 
increased diversity of intestinal microbiota and abundance of 
Trichospiraceae, Ruminococcaceae, and Lactobacillaceae and decreased 
abundance of Porphyromonas, Danthiaceae, and Eubacteraceae (103). 
Subsequently, high abundance values of Bifidobacteriaceae, 
Enterobacteriaceae, and Enterococcaceae especially Bifidobacteriaceae 
are found in the intestinal microbiota of patients with clinical 
cholangiocarcinoma and infected with O. viverrini (104). In 2019, the 
disorder of biliary flora in patients with extrahepatic 
cholangiocarcinoma is reported for the first time, and the dominant 
bacterial phyla of ECC’s bile flora are Proteobacteria, Firmicutes, 
Bacteroidetes, and Actinobacteria (105). The intestinal microbiota 
diversity of ICC increases, and the abundance values of Lactobacillus, 
Actinomyces, Peptostreptococcaceae, and Alloscardovia significantly 
increase at the genus level especially Lactobacillus. Alloscardovia has a 
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strong positive correlation with the serum fecal ratio of 
tauroursodeoxycholic acid, an ICC BA marker. The homogeneity of gut 
microbiota (β-diversity) among ICC populations decreases, and further 
reduction of β-diversity and increased abundance of Ruminococcaceae 
suggest the risk of vascular invasion (VI). The prognosis after VI is 
poor, and the 3-year survival rate is remarkably reduced. The 
abundance of Pseudoramibacter is positively correlated with survival 
time (106). Previous studies showed that patients with 
cholangiocarcinoma have a significantly higher detection rate of 
H. pylori in the gut and biliary tract than patients with benign lesions 
of the bile duct and that the relatively noninvasive detection rate of 
H. pylori in the gut is not specific (107, 108). In 2021, a study found that 
compared with that in healthy people, the composition of intestinal 
microbiota in patients with cholangiocarcinoma is significantly 
different at the genus level. Thus, statistical analysis is used to establish 
a specific microbiota model B-F-R (Burkholderia–Caballeronia–
Paraburkholderia, Faecalibacterium, and Ruminococcus) for the early 
diagnosis of CCA (109). In the same year, another study found that 
intestinal barrier is damaged in patients with cholangiocarcinoma, and 
Gram-negative bacteria enter the liver to induce CXCL1 expression in 
hepatocytes through a TLR4-dependent mechanism, further leading 
to the accumulation of CXCR2+ polymorphonuclear myeloid-derived 
suppressor cells. This sequence of reactions inhibit the immune system 
of anti-tumor immunity and exacerbating the process of 
cholangiocarcinoma (110). The specific mechanism of intestinal 
microbiota in the disease process of cholangiocarcinoma is minimally 
studied and needs to be further explored.

4. Biotherapies

4.1. Antibiotics

Antibiotics play an important role in preventing secondary infection 
and poor prognosis in major diseases of liver, gallbladder, and pancreas. 
However, antibiotic treatment may reduce the diversity of intestinal flora 
and promote the accumulation of antibiotic-resistant bacteria and drug-
resistant genes by acting on the bacteria themselves or the intestinal 
environment (111). To adjust prescriptions and monitor the emergence of 
resistance, the culture and sensitivity results of the samples obtained should 
be reviewed regularly when antibiotics are used. However, new antibiotics 
or adjuvants to enhance the sensitivity of bacteria to antibiotics are needed 
in clinical practice due to the endless emergence of drug-resistant bacteria. 
In 2021, a follow-up study of 1,175 patients with decompensated cirrhosis 
showed that the proportion of patients with acute and chronic liver failure 
secondary to bacterial infection reaches 48% before and after admission. 
This proportion varies with geographic region, sex, age, and history of liver 
disease. The most troublesome is drug-resistant bacterial infections, which 
are difficult to solve due to the lack of corresponding antibiotics in clinical 
practice (112). Similarly, the clinical management of acute cholangitis is 
primarily based on source management and empirical antibiotic treatment 
(third-generation cephalosporins, piperacillin/tazobactam, and flunolones) 
to avoid secondary bacterial translocations and iatrogenic infections. A 
survey study showed that according to current empirical treatment, only 
51% of patients’ bile culture bacteria and 69% of patients’ blood culture 
bacteria can be covered. The bacterial coverage of the current empirical 
antibiotic treatment population needs to be improved, but piperacillin/
tazobactam can still maintain 100% coverage of bacterial infections in 
patients with community-acquired cholangitis who are not treated with 

indwelling bile duct drainage and ICU treatment (113). Empirical antibiotic 
treatment requires large samples and data to be discussed and analyzed.

4.2. Probiotics, prebiotics, postbiotics, and 
synbiotics

Probiotics are selected from the dominant species of normal flora and 
transplanted into the patient’s body to play their inherent physiological role. 
Prebiotics are substances that can be  selectively utilized by host 
microorganisms to benefit host health. Postbiotics are a variety of 
metabolites after fermentation and processing of probiotics, including short-
chain fatty acids (SCFAs), functional proteins, cell lysates, etc. Synbiotics are 
mixture of microorganisms and their substrates that promote the health of 
the host organism. Probiotics, prebiotics, postbiotics, and synbiotics 
intervene in major diseases of liver, gallbladder, and pancreas by regulating 
intestinal flora, regulating BA synthesis, anti-inflammatory functions, 
repairing intestinal mucosal barrier, and other ways. Intervention of 
lithogenic-diet (LD)-fed mice with Lactobacillus reuteri and Lactobacillus 
plantarum regulated the gut microbiota, which increased the relative 
abundance of Muribaculaceae and Akkermansia in the former and latter, 
respectively. These strains may alleviate gallstones and hepatic steatosis by 
activating FXR and inhibiting the activities of hepatic sterol 7α-hydroxylase 
(CYP7A1) and hepatic sterol 7α-hydroxylase (CYP7B1) (114). The probiotic 
Prevotella copri can significantly increase the intestinal microbiota diversity 
and activate the FXR-Cyp7a1 signaling pathway to inhibit BA synthesis to 
improve the progression of cholestasis and liver fibrosis in PSC mouse 
models (115). In the mouse model of PSC, the intestinal microbiota 
metabolite 3-IALD is demonstrated to repair the intestinal mucosal barrier 
by activating the AhR/IL-22 signaling pathway, significantly reduce bacterial 
translocation and total bacterial abundance in liver, and protect liver to 
reduce inflammation and fibrosis (54). In the mouse model of alcoholic liver 
disease, the combination treatment of aged garlic extract and Lactobacillus 
rhamnosus can reduce intestinal oxidative stress and inflammation, regulate 
intestinal flora, promote the repair of intestinal mucosal barrier, and inhibit 
the further deterioration of the disease (116). Polylactose, a new prebiotic, 
was found to reduce obesity and liver lipid and cholesterol levels in high 
fat-diet-fed rats. The possible mechanism of action is to increase the relative 
abundance of Bifidobacterium, reduce intestinal PH and regulate intestinal 
flora (117). LAB strains (Lactiplantibacillus plantarum, Lactobacillus brevis, 
and Weissella cibaria) pretreatment of human hepatocytes significantly 
inhibited the TGF-β/SMAD signaling pathway. It also reduced the collagen 
deposition, cell autophagy and apoptosis (118). The experimental 
phenomena observed fully illustrate the potential of LAB strains to reverse 
liver fibrosis. In conclusion, probiotics, prebiotics or postbiotics can play 
multiple roles, such as signaling molecules and regulatory factors, in 
addition to regulating intestinal flora. Before their huge application 
potential, we also have to face unknown security risks, and more complex 
mechanisms need to be explored in the future.

4.3. Fecal bacteria transplantation

Fecal microbiota transplantation is an effective means to reconstruct 
the intestinal flora. The functional microbiota of healthy people is 
separated and purified by laboratory instruments and transplanted to the 
gastrointestinal tract of patients to achieve the effect of regulating and 
reconstructing the intestinal flora. Fecal microbiota transplantation (FMT) 
initially gained worldwide attention due to its promising efficacy in the 
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treatment of refractory Clostridium difficile infection. At present, there are 
many studies on fecal microbiota transplantation in intestinal diseases 
such as inflammatory bowel disease and irritable bowel syndrome and 
nervous system diseases such as autism, but the research on hepatobiliary 
and pancreatic diseases is not extensive. A 90-day clinical study compared 
prednisolone with fecal microbiota transplantation in the treatment of 
severe alcoholic hepatitis. It was found that the functional scores were 
similar to those of prednisolone, the secondary infection rate was much 
lower than that of prednisolone, and the 28-day survival rate, especially 
the 90-day survival rate was significantly higher than that of prednisolone. 
This may be related to the fact that fecal microbiota transplantation slowly 
increases the diversity of gut microbiota to establish new communities 
(119). The structure of gut microbiota is highly related to the outcome of 
HBV infection, which is expected to reduce the immune tolerance of liver 
and the chronic infection rate of hepatitis B virus by intestinal flora 
transplantation (15). In 2019, a clinical trial of 10 patients with PSC 
undergoing FMT treatment demonstrated the safety of FMT in patients 
with PSC for the first time. In all patients, the diversity of gut microbiota 
increases in the first week of treatment, and the diversity is negatively 
correlated with serum ALP level, proving effectiveness to some extent 
(120). Fecal bacteria transplantation donors are not limited to others. 
Another study on autologous transplantation isolated and purified E. coli 
from the mice’ own feces, which are added with functional genes and 
re-transplanted into mice. Surprisingly, these bacteria can achieve long-
term survival or even lifelong colonization in the intestinal tract of mice 
(121). Given that the lifestyle and eating habits of primitive people have 
not been affected by industrial society, some people even propose to 
transplant the intestinal flora of primitive people (122). However, the 
author believes that the current environment can no longer adapt to the 
original bacteria after tens of thousands of years of evolution. A study 
recently successfully constructed a synthetic microbial community with 
clear composition, high complexity, and effective reflection of the role of 
human gut microbiota. This study provides a new material basis for the 
selection of fecal bacteria transplantation donors (123).

4.4. Drugs that directly regulate short-chain 
fatty acids

Carbohydrates and dietary fiber are metabolized into short-chain fatty 
acids under the action of intestinal flora, it is mainly butyrate, propionate 
and acetate. SCFAs increase intestinal absorption area, regulate intestinal 
flora, and serve as an important energy source for intestinal epithelium. 
Butyrate with the prominent ability of immune function regulation also 
provides material basis for its anti-inflammatory and antitumor properties. 
Sodium butyrate intervention in NAFLD mice induced by high-fat diet can 
inhibit fat synthesis, reduce steatosis and improve liver function by activating 
LKB1-AMPK-Insig (insulin-inducible gene) signaling pathway (124). 
Another similar study found that sodium butyrate may also upregulate 
miR-150 expression which negatively target CXCR4 to delay the progression 
of NAFLD (125). HBV-encoded oncoprotein HBx promotes the progression 
of hepatocellular carcinoma by changing host gene expression and multiple 
pathway activity. Researchers found that feeding HBx transgenic mice with 
SCFAs for 3 months inhibited the development of chronic hepatitis B to 
hepatocellular carcinoma and significantly reduced hepatocellular 
carcinoma nodules. It may down-regulated HBx activation pathway and 
reduced the viability of HBx-transfected cell lines (126). In the comparison 
between FXR knockout mice and control mice, butyrate also reduced 
hepatic β-muricholic acid (β-MCA) and bacteria-generated deoxycholic 

acid (DCA), and eliminated liver lymphocyte infiltration, which was 
beneficial to the prognosis of hepatitis (127). Sodium butyrate intervention 
in lithogenic-diet (LD)-fed mice reduced the incidence of gallstones by 75%. 
Further studies showed that sodium butyrate reshaped the gut microbiota 
of mice, activated the FXR-FGF-15/SHP signaling pathway, and inhibited 
bile acid synthesis. It increased the levels of functional proteins related to 
bile acid metabolism and promoted the reabsorption and excretion of bile 
acids in the intestine (128). It plays a protective role in hepatobiliary diseases, 
whether increasing content of SCFA is added directly or indirectly by 
intestinal flora. On the one hand, SCFAs may act on the intestinal mucosal 
barrier to inhibit bacterial translocation. On the other hand, SCFAs may 
reach the corresponding organs through the gut-liver-biliary axis to activate 
associated signaling pathways, and then play an anti-inflammatory and anti-
tumor role. However, it is noteworthy that soluble dietary fiber inulin——
one of the sources of SCFAs, can induce icteric HCC in experimental mice 
after prolonged feeding. Other soluble dietary fibers, including pectin, 
showed the same adverse results, whereas Non-fermentable or Insoluble 
Fiber Cellulose did not (129). The supplement of SCFAs is not as “No harm 
but good” as we think, and more in-depth thinking and research on the 
source of SCFAs are needed in the future.

4.5. Others

In addition to those summarized above (Table 1), traditional Chinese 
medicine prescription and their source components have made 
outstanding contributions to liver and gallbladder diseases. Si-Wu-Tang, 
a traditional Chinese medicine used in the treatment of gynecological 
diseases, has been shown to improve and stabilize intestinal microbiota 
and significantly reverse the disease course in liver fibrosis mouse model 
(130). The organic compound cholestyramine has also been found to 
alleviate cholestasis possibly by increasing the abundance of 
Lachnospiraceae, reducing the abundance of Klebsiella pneumoniae in the 
gut of patients with primary cholangitis, and blocking BA reabsorption 
(131). Clinical application of antibiotics is in a difficult position due to the 
existence of drug-resistant bacteria and bacterial biofilms. Administration 
of a supernatant derived from nanoscale iron sulfide (nFeS supernatant) 
demonstrated excellent antimicrobial and biofilm destruction capabilities 
in vitro. In mice with cholecystitis accompanied by gallstones, it can not 
only play the role of sterilization, treatment and removal of gallstones. It 
can also regulate bile acid metabolism and prevent the formation of 
gallstones (132). This highly biocompatible chemical is expected to be a 
potential treatment alternative to antibiotics and cholecystectomy. 
Figure 2 summarizes all of biotherapies described in this paper.

5. Summary and conclusion

As the largest microecosystem in symbiosis with the human body, 
the gut microbiota and the host eat and live together, and their fate is 
closely related. In this review, we discussed the changes of intestinal flora 
and its metabolites, the metabolic and signaling pathways in which it 
involved in the occurrence and development of liver and biliary diseases. 
Moreover, we summarized the biologic therapies that mediate intestinal 
flora to improve diseases, including antibiotics, probiotics, prebiotics, 
postbiotics and synbiotics, fecal bacteria transplantation, and drugs that 
directly regulate SCFAs, etc. We found that intestinal flora, in addition to 
playing a role in the treatment and improvement of the prognosis of liver 
and bile diseases (even when the tumor is resistant to chemotherapy), 
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TABLE 1 Registered clinical trials and animal studies about biotherapy to treat liver and gallbladder disease.

Biotherapy Resource
Condition 
or disease

Outcomes Mechanism of action References

Limosilactobacillus reuteri 

strain CGMCC 17942

、Lactiplantibacillus 

plantarum strain CGMCC 

14407

Male C57BL/J 

mice(About 

8-Week-old)

CGS Alleviate gallstones and 

hepatic steatosis

Regulate the gut microbiota,which increased 

the relative abundance of Muribaculaceae and 

Akkermansia in the former and latter, 

respectively. Activate FXR and inhibit the 

activities of CYP7A1 and CYP7B1

Ye et al. (114)

Prevotella copri Male C57BL/J 

mice(7-Week-old)

PSC The progression of cholestasis 

and liver fibrosis was 

improved

Increase the diversity of intestinal flora and 

activate the FXR-Cyp7a1 signaling pathway to 

negatively inhibit the synthesis of bile acids

Jiang et al. (115)

3-IALD C57BL/6 mice(6–8-

week-old)

PSC Protect the liver, reduce 

inflammation and fibrosis

Activate the AhR/IL-22 signaling pathway and 

reduce bacterial translocation

D’Onofrio et al. 

(54)

A combination of aged garlic 

extract (AGE) and 

Lactobacillus rhamnosus 

MTCC1423

Male Wistar rats(8-

week-old)、Caco-2 

cells

ALD Inhibit the further 

deterioration of ALD

Reduce intestinal oxidative stress and 

inflammation， promote the microbiome’s shift 

toward Firmicutes and the repair of intestinal 

mucosal barrier

Patel et al. (116)

Polylactose Male Wistar rats 

(4-5-week-old)

NAFLD Reduce obesity and liver lipid 

and cholesterol levels in high 

fat-diet-fed rats

Increase the relative abundance of 

Bifidobacterium, reduce intestinal PH and 

regulate intestinal flora

Soares et al. 

(117)

LAB strains 

(Lactiplantibacillus 

plantarum, Lactobacillus 

brevis, and Weissella cibaria)

Human hepatic 

stellate cell line 

(LX-2)

Hepatic fibrosis Reduce the collagen 

deposition, cell autophagy 

and apoptosis

Inhibit the TGF-β/SMAD signaling pathway Kanmani and 

Kim (118)

FMT 120 participants SAH Compared with Prednisolone, 

reduce secondary infection 

rate and improve 90-day 

survival rate

Increase the diversity of gut microbiota to 

establish new communities

Pande et al. 

(119)

FMT BALB/c and 

C57BL/6 mice(6-8-

week-old)

Hepatitis B Reduce the immune tolerance 

of liver and the chronic 

infection rate of hepatitis B 

virus

Reconstitution of the gut microbiota Wang et al. (15)

FMT 10 participants PSC The first study to demonstrate 

that FMT in PSC is safe

Increase the diversity of gut microbiota Allegretti et al. 

(120)

Sodium butyrate Male C57BL/6 

mice(6-week-old)

NAFLD Reduce steatosis and improve 

liver function

Activate LKB1-AMPK-Insig (insulin-inducible 

gene) signaling pathway to inhibit fat synthesis

Zhao et al. (124)

Sodium butyrate Male C57BL/6 

mice(8-week-old)

NAFLD Delay the progression of 

NAFLD

Upregulate miR-150 expression to negatively 

target CXCR4

Zhang et al. 

(125)

The sodium salts of butyrate 

(202410), propionate (P1880) 

and acetate (S2889).

C57BL/6 mice Hepatitis B Inhibite the development of 

chronic hepatitis B to 

hepatocellular carcinoma

Down-regulate HBx activation pathway and 

reduce the viability of HBx-transfected cell lines

McBrearty et al. 

(126)

Sodium butyrate C57BL/6 mice Hepatitis Reduce hepatic β-muricholic 

acid (β-MCA) and bacteria-

generated deoxycholic acid 

(DCA), and eliminated liver 

lymphocyte infiltration

Reverse dysregulated BA synthesis and its 

associated hepatitis.

Sheng et al. 

(127)

Sodium butyrate C57BL/6 mice(8-

week-old)

CGS Reduce the incidence of 

gallstones by 75%

Reshape the gut microbiota, activate the FXR-

FGF-15/SHP signaling pathway, and increase 

the levels of functional proteins related to bile 

acid metabolism to promote the reabsorption 

and excretion of bile acids in the intestine

Ye et al. (128)

CGS, cholesterol gallstone; PSC, primary sclerosing cholangitis; ALD, alcoholic fatty liver; NAFLD, non-alcoholic fatty liver disease; FMT, fecal microbiota transplant; SAH, severe alcoholic 
hepatitis.
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can also play a role as a biomarker in the early stage of disease, which can 
improve the prediction accuracy of chronic diseases to achieve the 
preparation for prevention in advance. Therefore, we have enough reason 
to believe that intestinal flora will show a huge potential in the future 
clinical application of tertiary prevention of hepatobiliary diseases.
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