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Background: Observational studies have reported inconsistent associations 
between micronutrient levels and the risk of coronary artery disease (CAD) in 
diabetic patients. We aim to explore the causal association between genetically 
predicted concentrations of micronutrients (phosphorus, magnesium, selenium, 
iron, zinc, and copper) and CAD in patients with diabetes.

Methods: Single nucleotide polymorphisms (SNPs) connected to serum 
micronutrient levels were extracted from the corresponding published genome-
wide association studies (GWASs). Summary-level statistics for CAD in diabetic 
patients were obtained from a GWAS of 15,666 patients with diabetes. The 
primary analysis was carried out with the inverse variance weighted approach, 
and sensitivity analyses using other statistical methods were further employed to 
assess the robustness of the results.

Results: Genetically predicted selenium level was causally associated with a higher 
risk of CAD in diabetic patients (odds ratio [OR]: 1.25; 95% confidence interval 
[CI]: 1.10–1.42; p = 5.01 × 10−4). While, genetically predicted iron concentrations 
in patients with diabetes were inversely associated with the risk of CAD (OR: 
0.82; 95% CI: 0.75–0.90; p = 2.16 × 10−5). The association pattern kept robust in 
most sensitivity analyses. Nominally significant associations were observed 
for magnesium and copper with the risk of CAD in patients with diabetes. No 
consistent evidence was found for the causal associations between phosphorus 
and zinc levels, and the risk of CAD in patients with diabetes.

Conclusion: We provide consistent evidence for the causal effect of increased 
selenium and decreased iron levels on CAD in patients with diabetes, highlighting 
the necessity of micronutrient monitoring and application in these patients.
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Introduction

Coronary artery disease (CAD) remains the leading cause of 
death worldwide, especially in patients with diabetes (1, 2). Since CAD 
is responsible for more than 50% of diabetes-related mortality, it 
dictates the prognosis for diabetic patients (3). Therefore, the 2019 
European Society of Cardiology (ESC) guidelines have clarified the 
importance of preventing CAD in patients with diabetes (4).

Growing evidence from observational studies and randomized 
controlled trials (RCTs) indicated that essential micronutrients may 
play a critical role in the development of CAD in people with diabetes, 
but the results were inconsistent (5–7). For example, a meta-analysis 
including 40 prospective cohort studies with over 1 million individuals 
has shown that increasing dietary magnesium intake was associated 
with a reduced risk of diabetes and all-cause mortality, but not CAD or 
total cardiovascular diseases (CVDs) (8). Observational studies found 
the negative or no association between selenium biomarkers and CAD 
(9, 10), however, the RCTs revealed that decreased heart disease 
mortality among individuals with diabetes was related to increased 
selenium concentration (11). On the one hand, as observational studies 
based on reports of participants were subjected to confounding factors, 
which might be inaccurate leading to biased results (12). On the other 
hand, due to the limits of the sample size, the evidence from RCTs may 
not be powerful enough to evaluate the causal effect of micronutrients 
on the risk of CAD in diabetic patients (13).

Mendelian randomization (MR) approach can be  applied to 
explore the potential causal association between exposure and disease 
by using genetic variants as instrumental variables (IVs) (14). The 
constraints of observational studies are successfully resolved by the 
random assignment of genotype at conception and the non-influence 
of genetic variations by potential confounding variables (15). In the 
current study, a two-sample MR analysis was conducted to investigate 
the causal associations between the risk of CAD in diabetic patients 
and circulating concentrations of six systematically selected 
micronutrients, including phosphorus, magnesium, selenium, iron, 
zinc, and copper.

Methods

Study design

A two-sample MR analysis was designed to estimate the causal 
relationship between genetically determined circulating micronutrient 
concentrations and the risk of CAD in diabetic patients (Figure 1). The 
following three core assumptions should be  met by the single 
nucleotide polymorphisms (SNPs) chosen as IVs for circulating 
concentrations of micronutrients: (1) IVs should be closely related to 
the circulating concentrations of micronutrients, (2) IVs should 
be  independent of any potential confounders, and (3) IVs should 
be associated with the risk of CAD in patients with diabetes only 
through the concentrations of micronutrients.

Genetic instrument selection

First, SNPs were obtained from recently published genome-wide 
association studies (GWASs) that independently affect these nutrient 

concentrations at the genome-wide significance level (p < 5 × 10−8). 
Then, the linkage disequilibrium tests were performed based on the 
European 1000 Genomes Project reference panel (r2 < 0.01). If two 
SNPs were in linkage disequilibrium, the one with smaller value of p 
would be kept. Considering palindromic SNPs, those with minor 
allele frequency larger than 0.42 were regarded as not inferable and 
removed. Specifically, SNPs linked to serum phosphorus levels were 
extracted from a large GWAS meta-analysis including 16,264 
participants of European ancestry (16). Six SNPs that achieved 
genome-wide significance in the joint analysis of the discovery 
(n = 15,366 participants) and replication (n = 8,463 participants) 
cohorts from European descent were utilized as genetic IVs for serum 
magnesium concentration (17). The GWAS meta-analysis of 
log-transformed toenail selenium concentrations and standardized 
residuals of log-transformed blood selenium concentrations, which 
included up to 4,162 individuals in four United  States studies, 
provided the genetic summary data for serum selenium levels (18). 
The genetic association with serum iron levels was derived from the 
Genetics of Iron Status consortium, with up to 48,972 participants 
(19). The GWAS meta-analysis employing two cohorts from Australia 
and the United Kingdom yielded the SNPs chosen as genetic IVs for 
zinc and copper concentrations (20).

Data for outcome

The summary statistics for CAD in patients with diabetes were 
extracted from the recently published GWAS, including 15,666 
patients of European ancestry with diabetes (3,968 CAD cases and 
11,696 controls) from the United Kingdom Biobank (21). The average 
age at diabetes diagnosis was 52.4 ± 12.2 for CAD cases (Male: 2,936; 
74.0%) and it was 51.2 ± 12.6 for controls (Male: 7,037; 60.2%). The 
average age at visit was 62.7 ± 5.6 and 60.2 ± 7.0 for individuals with or 
without CAD, respectively.

All of the studies in our analyses have obtained relevant ethics 
review approvals, and all the participants included in the original 
studies provided written informed permission. All the data used in the 
current study had been publicly available.

Statistical analysis

The multiplicative random-effects inverse-variance weighted 
(IVW) method was employed as the primary analysis to evaluate the 
effect of genetically predicted micronutrient concentrations on the 
risk of CAD in diabetic individuals. Specifically, the causal estimate 
for each SNP was generated using the Wald estimator, and the 
corresponding standard error was calculated using the Delta method. 
Subsequently, the overall estimate was calculated by meta-analyzing 
all the estimates by the IVW method (22).

To further validate the accuracy of the findings, the Maximum 
likelihood (22), Weighted median (23), MR-Egger regression (24), 
and Mendelian Randomization Pleiotropy Residual Sum and Outlier 
(MR-PRESSO) methods were applied in follow-up sensitivity 
analyses (25). For instance, the Maximum likelihood method could 
provide a greater empirical power of estimates as it assumed that the 
genetic association between risk factors and outcomes follows a 
bivariate normal distribution (22). The Weighted median method 
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could still produce reliable estimates even if ≤50% of the weight 
comes from the ineffective SNPs (23). Intercept tests could be used 
in the MR-Egger regression to assess the potential horizontal 
pleiotropy (24). The MR-PRESSO method was conducted to identify 
potential outliers and, after eliminating them, to provide relatively 
unbiased causal estimates (25). In addition, scatter plots and leave-
one-out analyses were performed to depict the associations of 
genetically determined micronutrient levels with CAD in patients 
with diabetes. However, sensitivity analyses and leave-one-out 
analyses could not be performed as the number of SNPs for zinc and 
copper was less than three. Cochran’s Q statistics and corresponding 
value of p were calculated to assess the degree of heterogeneity in the 
IVW analyses (26). Considering the Bonferroni adjustment for 
multiple tests, a value of p of <0.008 (0.05/6 exposures) was deemed 
statistically significant. The value of ps between 0.008 and 0.05 were 
considered to indicate suggested associations. All the statistical 
analyses were conducted by R Software (version 4.1.1.; R Foundation 
for Statistical Computing, Vienna, Austria), the R package 
TwoSampleMR,1 and MR-PRESSO.2

Results

Two to seven SNPs genetically determining the serum phosphorus 
levels were identified as IVs for serum phosphorus, magnesium, 
selenium, iron, zinc, and copper levels, respectively (Table 1). In the 

1 https://github.com/MRCIEU/TwoSampleMR

2 https://github.com/rondolab/MR-PRESSO

MR analysis, all F-statistic values of the genetic tools were above the 
suggested threshold of 10 (Table 1).

The primary findings of MR studies of genetically predicted 
circulation concentrations of micronutrients with the risk of CAD in 
individuals with diabetes were displayed in Figure 2. The random-
effects IVW results indicated that genetically predisposition to one 
standard deviation increase in concentrations of serum copper, 
selenium, and magnesium was linked to 2% (odds ratio [OR], 1.02; 
95% CI, 1.02–1.02 p = 3.75 × 10−49), 25% (OR, 1.25; 95% CI, 1.10–1.42; 
p = 5.01 × 10−4), and 41% (OR, 1.41; 95% CI, 1.14–1.73; p = 1.25 × 10−3) 
higher risk of CAD in diabetic patients, respectively (Figure 2). An 
18% (OR, 0.82; 95% CI, 0.75–0.90, p = 2.16 × 10−5) reduced risk of 
CAD was observed in patients with diabetes when the genetically 
predicted serum iron content increase by one standard deviation 
(Figure 2). There was minimal proof that circulating concentrations 
of phosphorus and zinc were associated with the risk of CAD in 
patients with diabetes (Figure  2). The scatter plots also visually 
depicted the associations between micronutrients and CAD in 
diabetic patients (Supplementary Figures 1–6).

The association patterns of phosphorus, selenium, and iron based 
on sensitivity analyses were consistent with the IVW MR analyses, but 
not magnesium (Figure 2). In addition, stable correlations were found 
in the MR-PRESSO analysis of serum phosphorus (OR, 1.56; 95% CI, 
0.84–2.90; p = 0.23), serum magnesium (OR, 1.34; 95% CI, 1.08–1.66; 
p = 0.05), serum selenium (OR, 1.25; 95% CI, 1.10–1.42; p = 0.01), and 
serum iron (OR, 0.82; 95% CI, 0.75–0.90; p = 0.01) with no outliers 
were revealed (Figure 2). Between the estimates of chosen SNPs, no 
evidence of heterogeneity for the relationships between micronutrients 
and CAD in diabetic patients was observed, and neither the MR-Egger 
intercept test nor the Cochrane’s Q test indicated any possible 
directional pleiotropy (all p > 0.05; Table 2). Leave-one-out analyses 

FIGURE 1

Design of the current two-sample Mendelian randomization study. Three core assumptions were as follows: (α) Relevance assumption; (β) 
Independence assumption; (γ) Exclusion restriction. IVs, instrumental variables; CAD, coronary artery disease.
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suggested that no single SNP significantly influenced the effect of 
serum micronutrient levels on CAD in diabetic patients 
(Supplementary Figures 7–10).

Discussion

In this comprehensive MR analysis, genetic data from the largest 
published GWAS were leveraged to evaluate the relationship between 
genetic susceptibility to six micronutrients and the risk of CAD in 
diabetic patients. We provided consistent evidence that circulating 
selenium concentrations were genetically expected to be related with 
a higher risk of CAD, whereas iron concentrations were associated 
with a lower risk of CAD in patients with diabetes. The association 
pattern remained consistent when repeated in the majority of 
supplementary analyses. However, there was limited evidence to link 

the risk of CAD in diabetic patients with circulating levels of 
magnesium, phosphorus, zinc, and copper.

Selenium and CAD in patients with diabetes

According to the previous observational studies and RCTs, the 
association between selenium and CAD in patients with diabetes 
was inconsistent (11, 27, 28). A prospective study involving 3,897 
diabetes in the Dongfeng-Tongji cohort suggested an inverse 
association between plasma levels of selenium and risk of 
cardiovascular diseases (CVDs) in patients with diabetes (29). 
Selenium supplementation was not sufficient however, to reduce 
CAD mortality, according to the findings from a meta-analysis that 
included 16 RCTs (30). Additionally, previous observational studies 
have reported no difference in circulating selenium concentrations 

TABLE 1 Characteristics of the single-nucleotide polymorphisms associated with serum micronutrients levels and coronary artery disease in patients 
with diabetes.

Exposure SNP Chr Pos EA OA EAF F Micronutrients CAD in patients with 
diabetes

Beta SE p value Beta SE p 
value

Phosphorus rs1697421 1 21,823,292 C T 0.49 100 0.050 0.005 1.14E−27 0.033 0.027 0.217

Phosphorus rs17265703 3 122,048,644 G A 0.85 36 0.036 0.006 4.32E−09 0.042 0.038 0.259

Phosphorus rs9469578 6 33,706,479 T C 0.92 43 0.059 0.009 1.11E−11 −0.021 0.052 0.684

Phosphorus rs947583 6 136,133,659 T C 0.29 49 0.035 0.005 3.45E−12 0.036 0.030 0.224

Phosphorus rs2970818 12 4,606,168 T A 0.09 35 0.047 0.008 4.38E−09 −0.029 0.044 0.510

Magnesium rs11144134 9 77,499,796 C T 0.08 121 0.011 0.001 8.20E−15 0.062 0.048 0.191

Magnesium rs13146355 4 77,412,140 A G 0.44 25 0.005 0.001 6.30E−13 0.033 0.027 0.220

Magnesium rs3925584 11 30,760,335 T C 0.55 36 0.006 0.001 5.20E−16 0.007 0.027 0.791

Magnesium rs4072037 1 155,162,067 T C 0.54 100 0.010 0.001 2.00E−36 0.012 0.027 0.640

Magnesium rs448378 3 169,100,899 A G 0.53 16 0.004 0.001 1.30E−08 0.019 0.027 0.471

Selenium rs921943 5 79,020,653 T C 0.29 119 0.250 0.020 1.90E−39 0.069 0.029 0.019

Selenium rs567754 5 79,120,593 C T 0.67 67 0.170 0.020 8.40E−20 0.056 0.028 0.048

Selenium rs3797535 5 79,004,574 T C 0.10 36 0.210 0.040 2.10E−15 −0.011 0.049 0.816

Selenium rs11951068 5 79,008,491 A G 0.06 31 0.210 0.040 1.90E−11 0.076 0.051 0.137

Selenium rs705415 5 78,996,137 C T 0.88 39 0.230 0.040 4.60E−10 −0.008 0.042 0.841

Selenium rs6586282 21 43,058,387 C T 0.85 21 0.120 0.030 4.00E−09 −0.046 0.035 0.194

Selenium rs1789953 21 43,062,826 T C 0.16 17 0.120 0.030 3.40E−08 0.041 0.040 0.301

Iron rs1800562 6 26,093,141 A G 0.07 696 0.328 0.016 2.70E−97 −0.054 0.049 0.268

Iron rs1799945 6 26,091,179 C G 0.15 450 −0.189 0.010 1.10E−81 0.069 0.038 0.067

Iron rs855791 22 37,462,936 A G 0.55 807 −0.181 0.007 1.30E−139 0.028 0.027 0.299

Iron rs8177240 3 133,477,701 T G 0.67 95 −0.066 0.007 6.70E−20 0.005 0.028 0.860

Iron rs7385804 7 100,235,970 A C 0.62 95 0.064 0.007 1.40E−18 −0.003 0.028 0.918

Zinc rs2120019 15 75,334,184 T C 0.79 75 0.287 0.033 1.60E−18 0.021 0.034 0.537

Zinc rs1532423 8 86,268,313 A G 0.37 47 0.178 0.026 6.40E−12 −0.006 0.027 0.811

Copper rs1175550 1 3,691,528 G A 0.22 38 0.198 0.032 5.00E−10 0.003 0.032 0.922

Copper rs2769264 1 151,344,741 G T 0.16 85 0.313 0.034 2.60E−20 0.006 0.034 0.866

SNP, single-nucleotide polymorphism; Chr, chromosome; Pos, position; EA, effect allele; OA, other allele; EAF, frequency of effect allele; F, F-statistics; SE, standard error; and CAD, coronary 
artery disease.
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between diabetic patients with and without CAD (27). A positive 
association of selenium with diabetes was found in previous 

observational studies (31–33), several RCTs (34–36), and a MR 
study (37). Numerous in vitro and animal investigations have 
revealed the mechanism for how selenium increases the risk of 
diabetes and CAD. As a member of the glutathione peroxidase 
(GPx) family, selenium serves as the center of redox (38). Transgenic 
animal models have found increased GPx1 expression interferes 
with insulin signaling by removing hydrogen peroxide, leading to 
the development of insulin resistance, hyperglycemia, and obesity 
(39, 40). Selenoprotein P (SelP), a selenium-supply protein, is 
hypothesized to raise the risk of diabetes by promoting insulin 
resistance and dysregulating glucose metabolism (41). In addition, 
Selk, a selenoprotein of the endoplasmic reticulum membrane, 
contribute to foam cell formation and atherogenesis by stabilizing 
expression of CD36 in macrophages during inflammation (42, 43). 
According to the results of our MR investigation, selenium may 
be  associated in a directionally consistent manner with CAD in 

FIGURE 2

Mendelian randomization association of genetically predicted serum micronutrients levels with coronary artery disease in patients with diabetes using 
different statistical models. OR, odds ratio; CI, confidence interval; IVW, inverse-variance weighted method; MR, Mendelian randomization; and MR-
PRESSO, MR-pleiotropy residual sum and outlier.

TABLE 2 Heterogeneity and pleiotropy tests for the associations of 
micronutrients with coronary artery disease in patients with diabetes.

Micronutrients Q 
value

pQ MR-Egger 
intercept

pintercept

Phosphorus 3.26 0.516 0.100 0.324

Magnesium 1.48 0.830 0.016 0.691

Selenium 4.78 0.572 0.044 0.454

Iron 1.03 0.905 0.009 0.761

Zinc 0.32 0.570 NA NA

Copper 1.76E-04 0.989 NA NA

MR, Mendelian randomization; NA, not available.
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patients with diabetes. Given that diabetes is a known risk factor for 
CAD, this conclusion might seem intuitive. However, considering 
the majority of the individuals covered with this research were of 
European origin, the generalizability of our findings to other groups 
needs to be further investigated. The inverse association between 
levels of selenium and CVDs risk in Asian diabetic may due to the 
difference of dietary structure, lifestyle and genetic predisposition.

Iron and CAD in patients with diabetes

An inverse association between iron concentration and CAD in 
diabetic patients was observed in our MR analysis. A two-sample 
MR approach examining serum iron status for CAD risk in the 
general population revealed that serum iron concentration was 
linked to a lower chance of developing CAD (OR, 0.94; 95%CI, 
0.88–1.00; p = 0.039), which is consistent with our findings in the 
diabetic population (44). In addition, a recent two-sample MR study 
based on the data from United Kingdom Biobank discovered that 
high levels of iron status were protective against coronary 
atherosclerosis in the male population (45). Furthermore, a meta-
analysis of prospective studies involving 156,427 participants 
showed a negative association between serum iron and risk of 
coronary heart disease after excluding the study by Morrisson et al. 
(risk ratio [RR], 0.80; 95%CI, 0.73–0.87) (46). Numerous 
observational studies have also demonstrated the protective effect of 
iron on CAD in diabetic individuals (47, 48). An inverse correlation 
between iron reserves and cardiovascular disease in patients with 
diabetes was reported by a cross-sectional and prospective 
observational study encompassing 38,671 people and 821 diabetes 
patients (OR, 0.81; 95%CI, 0.68–0.96; p = 0.018) (48). Similarly, the 
results of an observational study including 424 consecutive men 
with type 2 diabetes mellitus showed high ferritin levels may reduce 
cardiovascular risk in men with diabetes (49). Several plausible 
mechanisms have been hypothesized to elucidate the protective 
effect of high iron load on CAD. For instance, an animal study found 
that a high-iron diet attenuates atherosclerosis in mice lacking 
apolipoprotein E (50). Similar, another recent animal study 
suggested that iron overload could diminish atherosclerosis in 
apolipoprotein E knockout mice by interfering with hepatic CD36 
and fatty acid binding proteins-mediated fatty acid uptake and 
transport (51). Furthermore, it has been proven that ferritin, a 
natural antioxidant, may reduce the risk of CAD in patients with 
diabetes by compensating for chronic systemic inflammation in 
diabetes (52, 53).

Other micronutrients and CAD in patients 
with diabetes

In the current MR study, we observed a nominally significant 
association between genetically predicted concentrations of 
magnesium and the risk of CAD in patients with diabetes, but the 
other four statistical models were not statistically significant. As a 
result, we preclude the presence of a stable causal association between 
serum magnesium concentration and outcome. We also observed a 
significant correlation between genetically predicted concentrations 
of copper and the risk of CAD in patients with diabetes in the main 

analysis; however, because there are only two genetic instruments for 
copper, we are unable to perform sensitivity analysis to assess the 
stability of the results. Meanwhile, the results of IVW (fixed effects) 
suggested no causal connection between copper and CAD in patients 
with diabetes. Thus, we are unable to tell whether there is a possible 
causal relationship between copper and the outcome. The results of 
the current MR study showed that little evidence approved the causal 
effects of genetically predicted concentrations of phosphorus and zinc 
on CAD risk in diabetic patients. There is a scarcity of observational 
epidemiology research on these micronutrient concentrations and the 
incidence of CAD in diabetic patients, and the results from the few 
available observational studies of the general population are 
inconclusive (12, 54–57). Thus, our results from the current MR study 
may imply that serum phosphorus and zinc levels should not 
be  regarded as independent risk factors for CAD in patients 
with diabetes.

Strengths and limitations

The design of MR study, which avoids biases frequently seen in 
standard observational studies and provides the non-biased causal 
connection between exposure and outcome, is the main merit (58). 
Besides, our MR study uses summary-level data from the large genetic 
consortium to date, which allows us to more accurately formulate our 
study hypothesis. Meanwhile, the statistical power in the current 
investigation is ensured by the estimated effects (F-statistics) of each 
instrumental variable exceeding the threshold. Moreover, sensitivity 
analyses based on multiple statistical models combined with leave-
one-out analyses were employed to detect the stability of the main 
results, which offered additional reliable evidence.

It is crucial to acknowledge several potential limitations when 
interpreting our results. First, although MR-PRESSO analysis and 
MR-Egger intercept tests did not reveal any evidence of pleiotropy that 
might have influenced our results, potential horizontal pleiotropy 
cannot be completely excluded. Second, the current study was based 
on summary-level data and lacked subgroup-specific analyses, as there 
are no corresponding sex- or age-specific data sets in the consortium. 
Third, the majority of the individuals in our MR research were of 
European origin, which may restrict the generalizability of the 
primary findings to other groups. Therefore, the corresponding results 
should be cautious to make the conclusion.

Conclusion

The current study provides genetic evidence for the possible 
causal effects of increased selenium and decreased iron levels on the 
increased risk of CAD in patients with diabetes. Diet, supplements, or 
other methods to modify circulating selenium and iron concentrations 
may be effective strategies to prevent CAD in patients with diabetes.
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