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Background: Norwegian data on vitamin D status among pregnant women indicate 
a moderate to high prevalence of insufficient vitamin D status (25-hydroxyvitamin 
D (25OHD) concentrations ≤50  nmol/L). There is a lack of population-based 
research on vitamin D intake and determinants of 25OHD in pregnant women 
from northern latitudes. The aims of this study were (1) to evaluate total vitamin D 
intake from both diet and supplements, (2) to investigate determinants of vitamin 
D status, and (3) to investigate the predicted response in vitamin D status by total 
vitamin D intake, in pregnant Norwegian women.

Methods: In total, 2,960 pregnant women from The Norwegian Environmental 
Biobank, a sub-study within The Norwegian Mother, Father and Child Cohort 
Study (MoBa), were included. Total vitamin D intake was estimated from a food 
frequency questionnaire in gestational week 22. Concentrations of plasma 25OHD 
was analyzed by automated chemiluminescent microparticle immunoassay 
method in gestational week 18. Candidate determinant variables of 25OHD were 
chosen using stepwise backward selection and investigated using multivariable 
linear regression. Predicted 25OHD by total vitamin D intake, overall and stratified 
by season and pre-pregnancy BMI, was explored using restricted cubic splines in 
an adjusted linear regression.

Results: Overall, about 61% of the women had a total vitamin D intake below the 
recommended intake. The main contributors to total vitamin D intake were vitamin 
D supplements, fish, and fortified margarine. Higher 25OHD concentrations were 
associated with (in descending order of the beta estimates) summer season, use 
of solarium, higher vitamin D intake from supplements, origin from high income 
country, lower pre-pregnancy BMI, higher age, higher vitamin D intake from 
foods, no smoking during pregnancy, higher education and energy intake. During 
October–May, a vitamin D intake according to the recommended intake was 
predicted to reach sufficient 25OHD concentrations >50  nmoL/L.

Conclusion: The findings from this study highlight the importance of the vitamin 
D intake, as one of few modifiable determinants, to reach sufficient 25OHD 
concentrations during months when dermal synthesis of vitamin D is absent.
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1. Introduction

The importance of vitamin D throughout life is widely 
acknowledged, although it is likely that some of its biological 
functions have not yet been discovered. Vitamin D is obtained from 
dermal synthesis induced by solar exposure and intake from foods 
and supplements (1, 2). After endogenous synthesis or absorption, 
vitamin D is hydroxylated in a two-step process, formation of: (1) 
the biomarker 25-hydroxyvitamin D (25OHD) and (2) the 
biologically active metabolite 1,25-dihydroxyvitamin D 
(1,25OH2D) (3). The main role of 1,25OH2D is to ensure adequate 
concentrations of calcium and phosphate in plasma (3, 4). However, 
in early pregnancy, the vitamin D metabolism change and maternal 
concentrations of 1,25OH2D rise, provided that maternal 
concentration of 25OHD is sufficient (5, 6). The reason for the 
alterations in vitamin D metabolism is not entirely clear (6, 7). 
Besides skeletal health (8), vitamin D has also been studied for its 
potential associations with a range of detrimental maternal and 
neonatal outcomes, including preeclampsia, gestational diabetes, 
and low birth weight (9, 10). For these associations, the evidence of 
causality is insufficient.

Despite the many potential health effects, recommended 
concentrations of the biomarker 25OHD are based on the role of 
1,25OH2D for skeletal health (11–13). In the Nordic Nutrition 
Recommendations 2012 (NNR 2012), a 25OHD concentration 
>50 nmol/L define sufficiency, 30–50 nmol/L define insufficiency, 
and < 30 nmol/L define deficiency, in both pregnant and non-pregnant 
individuals (13). To achieve concentrations of 25OHD >50 nmol/L, 
the NNR 2012 set the average requirement (AR) and the recommended 
intake (RI) of vitamin D for adults, including pregnant women, to 
7.5 μg/day and 10 μg/day, respectively. An intake of 20 μg/day is 
recommended for those with little or no sun exposure, or who are 
older than 75 years of age. In Norway, the adult population is 
recommended to supplement with 10 μg/day of vitamin D if sun 
exposure and the intake of vitamin D rich foods are low (14, 15). 
Pregnant women in Norway are given the advice to supplement with 
vitamin D if fatty fish consumption is less than 2–3 times/week (16). 
Fish and eggs are some of the foods that naturally contain vitamin D, 
while margarine, butter, and some fat-reduced milk are fortified with 
vitamin D in Norway (15).

No study has previously investigated a broad spectrum of 
determinants of vitamin D status, also including the vitamin D intake 
from foods and supplements in a pregnant Norwegian population. 
As dermal synthesis of vitamin D can only occur from late spring 
(April–May) to early autumn (August–September) in the Nordic 
countries (17), sufficient vitamin D intake is important to maintain 
adequate vitamin D status during the rest of the year. Due to 
increased calcium requirements during pregnancy, and possible 
negative effects of insufficient vitamin D status on maternal and 
neonatal outcomes, the importance of vitamin D sufficiency during 
pregnancy is highlighted. Thus, there is a need to increase the 

understanding of how vitamin D intake and other determinants 
contribute to 25OHD in pregnant women living in Nordic countries. 
The aims of this study were (1) to evaluate total vitamin D intake 
from both diet and supplements, (2) to investigate determinants of 
vitamin D status, and (3) to investigate the predicted response in 
vitamin D status by total vitamin D intake, in pregnant 
Norwegian women.

2. Materials and methods

2.1. Study population

The Norwegian Mother, Father and Child Cohort Study 
(MoBa) is a prospective population-based pregnancy cohort study 
conducted by the Norwegian Institute of Public Health (18). 
Participants were recruited from all over Norway from 1999 to 
2008, and 41% of the invited women consented to participate. The 
cohort now includes approximately 114,500 children, 95,200 
mothers and 75,200 fathers. MoBa data are linked to information 
from the Medical Birth Registry of Norway, a national health 
registry containing information about all births in Norway (19). 
The Norwegian Environmental Biobank is a sub-study within 
MoBa (20), established with the aim of biomonitoring nutrients 
and environmental contaminants in MoBa participants. Eligibility 
of participants in the Norwegian Environmental Biobank required 
available genetic data, available data from the three questionnaires 
during pregnancy and the first three postnatal questionnaires, the 
fathers’ questionnaire (21), and available maternal plasma, urine, 
and whole blood samples. In total, 2,999 women from MoBa were 
included in the Norwegian Environmental Biobank. Of these 
2,988 had the biomarker 25OHD analyzed in pregnancy and were 
thus eligible for inclusion in the current study. Further, 28 
participants (0.9%) with implausible reported daily energy intake 
below 1,076 kcal (4.5 MJ) or above 4,780 kcal (20 MJ) were 
excluded from the analyses. These cut-points are used in MoBa to 
exclude food frequency questionnaires (FFQs) of poor quality and 
are based on results from the validation study (22). Thus, the final 
analytic sample consisted of 2,960 pregnant women.

MoBa is conducted according to the guidelines laid down in the 
declaration of Helsinki and written informed consent was obtained 
from all participants. The establishment of MoBa and initial data 
collection was based on a license from the Norwegian Data Protection 
Agency and approval from The Regional Committees for Medical and 
Health Research Ethics. MoBa is currently regulated by the 
Norwegian Health Registry Act. The current study was approved by 
The Regional Committees for Medical and Health Research Ethics 
(REC 2019/770–12172). The current study is based on version 12 of 
the quality-assured data files released for research in January 
2019 (23).
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2.2. Assessment of dietary intake and 
vitamin D supplement use

The women’s habitual food consumption and supplement use 
since becoming pregnant was assessed by a semi-quantitative FFQ 
including 255 food items answered in gestational week 22 (22, 24, 
25). Intake frequency of each item in the FFQ ranged from never to 
more than eight times a day. Portion size was only specified for 
liquids, bread, and fruit, while standard Norwegian portion sizes for 
women were used for all other food items (26). Food intake (g/day) 
and energy intake (kcal/day) was estimated based on the given intake 
frequency and portion size. At the time of data collection, the 
following foods were fortified with vitamin D: margarine and butter 
(8.0 μg/100 g), fat-reduced milk (0.4 μg/100 g), and lactose free milk 
(0.4 μg/100 g). In the current study, all foods containing vitamin D 
were aggregated into eight food groups: fish, margarine, butter, milk, 
yoghurt, eggs, cheese, and mixed dishes/products containing milk, 
margarine, butter, and/or egg. The women’s intake of these foods (g/
day), as well as their contribution to the daily vitamin D intake (μg/
day) were calculated. The women’s intake of vitamin D from 
supplements was also calculated, based on the frequency and amount 
of supplement intake reported in the FFQ. The FFQ listed 13 
commonly used cod liver oil/fish oil, vitamin, and mineral 
supplements followed by six open-ended spaces where respondents 
were instructed to record the name and manufacturer of 
supplement(s) used but not listed. For each supplement there were 
nine options for frequency, ranging from never to daily, and for dose 
there were three options for liquid supplements and four options for 
tablets/capsules. For nutrient calculation of the dietary supplements, 
a database containing the nutrient value of more than 1,000 different 
food supplements was constructed and continuously updated 
(24, 27).

The estimated vitamin D intake from foods and supplements has 
previously been validated in a sub-group of 119 women using a 
weighed food diary and biomarkers. The results showed fair 
agreement between reported vitamin D intake and 25OHD with 
Spearman’s rank correlation coefficient (0.32–0.45, p < 0.01) and <5% 
classified into opposing quintiles of vitamin D intake and 25OHD 
(24, 25).

2.3. Assessment of vitamin D status in 
plasma

The blood samples were collected in gestational week 18 (mean 
18.5, SD 1.3) in connection with the routine ultrasound 
examination, offered to all pregnant women in Norway (20). 
Samples were analyzed at the National Institute for Health and 
Welfare in Helsinki, Finland. Plasma concentrations of 25OHD 
were analyzed in 2015 using the high through-put automated 
chemiluminescent microparticle immunoassay method (Architect 
ci8200 system, Abbott Laboratories, Abbott Park, IL, United States). 
Both 25OHD2 and 25OHD3 are measured and the sum is reported. 
The laboratory regularly partake in the Vitamin D External Quality 
Assessment Scheme and met the performance target set by the 
advisory panel (28). Coefficient of variation of control samples 
(Biorad Liquid Assayed Multiqual lot 45,680 high and low level) 
were 3.7–5.5%.

2.4. Other variables

Maternal age at time of delivery, parity, and country of origin was 
obtained from the Medical Birth Registry of Norway. Information 
about education, pre-pregnant weight, height, smoking habits, and 
use of solarium was obtained from questionnaires, answered around 
gestational weeks 15 and 30. In gestational weeks 15, participants 
were also asked about use of vitamin D containing supplements (yes 
or no) by weekly intervals prior to conception, and in the 
first trimester.

2.5. Statistical analysis

Dietary intake and supplement use during the first half of 
pregnancy were described by categories of 25OHD, based on the 
reference values (<30 nmol/L, 30–49.9 nmol/L, 50–75 nmol/L, 
>75 nmol/L) in NNR 2012 (13) and National Academy of Medicine 
(Institute of Medicine) (12). Statistical difference in study population 
characteristics between the categories of 25OHD were assessed by 
Kruskal Wallis test.

The candidate determinant variables of vitamin D status were 
selected based on biological plausibility and included: season at blood 
sampling (two seasons; June–September, October–May), vitamin D 
intake from foods (<2.5, 2.5–4.9, 5.0–7.49, ≥7.5 μg/day), supplemental 
vitamin D intake (none, 0.1–4.9, 5.0–9.9, 10.0–14.9, ≥15.0 μg/day), 
energy intake (kcal/day), use of solarium during pregnancy (no, 1–5, 
≥6 times), country of origin (Norway, other high income country, 
low/middle income country), education (<13, 13–16, >16 years), 
pre-pregnancy BMI (<18.5, 18.5–24.9, 25.0–29.9, ≥30.0 kg/m2), age 
(<25, 25–34, >34 years), smoking during pregnancy (yes, no), and 
parity (nulliparous, multiparous). The variables were checked for 
multicollinearity using Spearman correlation matrix, and all 
correlation coefficients were below 0.4. Variables were selected using 
stepwise backward selection (29) and p < 0.2 as cut-off for inclusion. 
Bootstrap subsampling was used to investigate and quantify the 
stability of selected variables (30). One hundred resamples were drawn 
and variable selection was repeated in each of the resamples. Variables 
included in >50% of the resamples were selected in the final model 
(30). No variable was excluded after the stability check. Results are 
presented as a full sample and stratified by season, as season is the 
main source of vitamin D and that there is a large seasonal variation 
in 25OHD concentrations in the Nordic countries (17), and 
pre-pregnancy BMI. The estimates of the determinants of 25OHD 
concentration in pregnancy were investigated using multivariable 
linear regression analysis.

The association between the total vitamin D intake and continuous 
25OHD, in all women and stratified by season and pre-pregnancy 
BMI, was explored using restricted cubic splines. Three splines were 
modeled for the total vitamin D intake, positioned at percentiles 10, 
50, and 90 (31). Models were adjusted for country of origin, age, and 
smoking during pregnancy. The models in all women and stratified by 
season were additionally adjusted for pre-pregnancy BMI. The overall 
associations between total vitamin D intake and 25OHD were 
performed by testing the coefficients of all spline transformations 
equal to zero. Non-linearity was examined by testing the coefficients 
of the second spline transformation equal to zero. The associations 
between use of vitamin D containing supplements before and during 
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pregnancy and maternal concentrations of 25OHD were analyzed by 
Kruskal Wallis test.

Stata version 16 was used for all statistical analyses (Stata 
Corporation, College Station, Texas). Significance was accepted at 
p < 0.05.

3. Results

3.1. Study population

Of the 2,960 participants, 72% had a high education (≥13 years) 
and 5.9% reported smoking during pregnancy (Table 1). Only 4.8% 
were born in a high-income country other than Norway, and 1.4% 
were born in a low or middle-income country. There were differences 
between vitamin D categories with regard to the characteristics of the 
study population in terms of, e.g., age, education, country of origin, 
and pre-pregnancy BMI. About 80% of the participants reported use 
of vitamin D supplement in pregnancy. Around 44% of all women had 
a total vitamin D intake below AR at 7.5 μg/day and 61% had an intake 
below RI at 10 μg/day (13). Median (25th–75th percentiles) 25OHD 
concentration was 51 (38–64) nmol/L.

3.2. Vitamin D from foods and supplements

Overall, the median vitamin D intake from foods was 3.1 μg/day, 
and the total vitamin D intake (from foods and supplements 
combined) was 8.3 μg/day (Table 2). Thus, the main contributor to 
vitamin D intake in pregnancy was vitamin D supplements (66%, 
Figure  1). The main food sources of vitamin D were fish and 
fortified margarine.

3.3. Determinants of vitamin D status

There was a difference in vitamin D intake from both foods 
and supplements between categories of 25OHD concentration, but 
no differences were observed for intake of energy or other 
nutrients (Table 2). Among the major food sources of vitamin D, 
there was a difference. In the consumption of margarine, but not 
fish or butter, between categories of 25OHD.

In a multivariable linear regression, determinants of 25OHD 
concentrations in pregnancy were (in descending order of the beta 
estimates) summer season, use of solarium, higher vitamin D 
intake from supplements, origin from high income country, lower 
pre-pregnancy BMI, higher age, higher vitamin D intake from 
foods, no smoking during pregnancy, higher education and energy 
intake (Table 3). Together, these variables explained 21% of the 
variation in 25OHD. During June to September, total vitamin D 
intake explained 1% of the variation in 25OHD, whereas during 
October to May, it was 7% (Table 3). Stratified by pre-pregnancy 
BMI, the total vitamin D intake explained 5% of the variation in 
25OHD in women with pre-pregnancy BMI <25 kg/m2, whereas 
in women with pre-pregnancy BMI ≥25 kg/m2, it was 3% 
(Supplementary Table S1).

3.4. Total vitamin D intake and 25OHD

In the full sample of women, total vitamin D intake >5 μg/day was 
sufficient to reach predicted 25OHD >50 nmol/L (p-overall: <0.001,  
p non-linearity: <0.001, Figure 2). The effect of vitamin D intake on 
25OHD seemed to level off at reported intakes >15 μg/day.

When total vitamin D intake was stratified by season of blood 
sampling, women who were sampled during June to September had a 
predicted 25OHD >50 nmol/L even at very low intakes (p-overall: 
0.001, p non-linearity: 0.003, Figure 3A). However, during October to 
May, a total vitamin D intake ≥10 μg/day was required to reach 
predicted 25OHD >50 nmol/L (p-overall: <0.001, p non-linearity: 
0.023, Figure 3B).

When total vitamin D intake was stratified by pre-pregnancy BMI, 
women with BMI <25 kg/m2 had predicted 25OHD >50 nmol/L at 
vitamin D intakes ≥5 μg/day (p-overall: <0.001, p non-linearity: 0.004, 
Supplementary Figure S1A). Women with BMI ≥25 kg/m2 required a 
vitamin D intake ≥15 μg/day to reach a predicted sufficient 25OHD 
(p-overall: <0.001, p non-linearity: 0.043, Supplementary Figure S1B).

There was a difference in 25OHD concentrations depending on 
duration and timing of vitamin D supplement use during pregnancy 
(Supplementary Table S2). Women who reported any use of vitamin 
D supplement, either before and/or in early pregnancy, or in mid 
pregnancy, or both, had a higher 25OHD compared to women who 
reported no use of vitamin D supplement either before or during 
pregnancy. Women who reported use of vitamin D supplement both 
before and/or in early pregnancy and in mid pregnancy had a higher 
25OHD compared to those who started to take a supplement in 
mid pregnancy.

4. Discussion

There is a lack of studies investigating the contribution of vitamin 
D intake and other determinants of 25OHD in pregnant Nordic 
women. In this study of 2,960 participants, about 61% had a total 
vitamin D intake below the RI and about 44% had an intake below the 
AR. The main contributors to the vitamin D intake were vitamin D 
supplements, fish, and fortified margarine. The most important 
determinants of vitamin D status were (in descending order of the 
beta estimates) season, solarium use, vitamin D intake from 
supplements, country of origin, pre-pregnancy BMI, age, vitamin D 
intake from foods, and smoking during pregnancy. During October 
to May, a vitamin D intake according to the RI was predicted to ensure 
sufficient 25OHD concentration.

The results from this study emphasize the important contribution 
of vitamin D supplements to reach RI of vitamin D and as a 
determinant of 25OHD. More than half of the women in our study 
had a total vitamin D intake below the RI, and supplements were the 
main contributor to the total vitamin D intake. Vitamin D intake 
from foods and supplements in our study was somewhat lower 
compared to other studies of pregnant women in Norway, Sweden, 
and Finland (33–36). In Sweden and Finland, more foods are fortified 
with vitamin D and with higher amounts than in Norway, which 
might partly explain the differences. A study on pregnant women in 
Norway found the vitamin D intake from foods and supplements was 
4.9 and 5.6  μg/day, respectively (34). The intake from foods was 
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higher compared to our study. However, the supplemental intake was 
similar to our study, along with a similar prevalence (59%) of a 
vitamin D intake below RI. Different dietary assessment methods 
might explain the differences in vitamin D intakes. Our results also 
show that women who reported any use of vitamin D supplement had 

a higher 25OHD compared to women who reported no use of 
vitamin D supplement, further highlighting the importance of 
vitamin D supplements during pregnancy.

The nationwide diet survey Norkost 3 from 2010–2011 found, in 
both women and men, that the major food sources contributing with 

TABLE 1 Study population characteristics by category of vitamin D status (25OHD) during pregnancy.

Vitamin D status (25OHD) nmol/L

All <30 30–50 >50–75 >75 p-valueb

% (N) % (N) % (N) % (N) % (N)

Women 100 (2960) 10.9 (323) 37.4 (1106) 40.9 (1211) 10.8 (320)

Age (years) 0.026

<25 8.0 (238) 17.6 (42) 37.0 (88) 39.1 (93) 6.3 (15)

25–34 75.6 (2237) 10.3 (230) 37.7 (844) 41.1 (920) 10.9 (243)

>34 16.4 (485) 10.5 (51) 35.9 (174) 40.8 (198) 12.8 (62)

Education (years) 0.003

<13 25.8 (764) 13.9 (106) 37.7 (288) 40.4 (309) 8.0 (61)

13–16 46.9 (1388) 9.9 (137) 35.7 (496) 42.9 (595) 11.5 (160)

>16 25.2 (745) 9.3 (69) 39.6 (295) 39.1 (291) 12.1 (90)

Missing 2.1 (63) 17.5 (11) 42.9 (27) 25.4 (16) 14.3 (9)

Country of origina <0.001

Norway 92.0 (2723) 10.4 (283) 37.0 (1007) 41.5 (1129) 11.2 (304)

Other high-income country 4.8 (141) 14.9 (21) 41.8 (59) 34.8 (49) 8.5 (12)

Low/middle-income country 1.4 (42) 33.3 (14) 38.1 (16) 26.1 (11) 2.4 (1)

Missing 1.8 (54) 9.3 (5) 44.4 (24) 40.7 (22) 5.6 (3)

Pre-pregnancy BMI (kg/m2) <0.001

<18.5 2.7 (79) 12.7 (10) 21.5 (17) 51.9 (41) 13.9 (11)

18.5–24.9 63.7 (1886) 8.7 (164) 36.1 (680) 42.4 (800) 12.8 (242)

25–29.9 24.1 (712) 13.3 (95) 39.2 (279) 40.2 (286) 7.3 (52)

≥30 7.7 (229) 19.7 (45) 48.5 (111) 27.9 (64) 3.9 (9)

Missing 1.8 (54) 16.7 (9) 35.2 (19) 37.0 (20) 11.1 (6)

Parity 0.020

Nulliparous 51.3 (1519) 9.6 (146) 36.4 (553) 43.3 (657) 10.7 (163)

Multiparous 48.7 (1441) 12.3 (177) 38.4 (553) 38.4 (554) 10.9 (157)

Season of blood sampling <0.001

June–September 30.2 (893) 3.2 (29) 22.4 (200) 53.8 (480) 20.6 (184)

October–May 69.8 (2086) 14.1 (294) 43.4 (906) 35.0 (731) 6.5 (136)

Solarium in pregnancy (times) <0.001

No 86.5 (2569) 11.8 (304) 38.7 (994) 38.9 (1000) 9.6 (247)

1–5 11.5 (343) 4.7 (16) 29.2 (100) 49.3 (169) 16.3 (56)

≥6 2.0 (59) 3.4 (2) 16.9 (10) 54.2 (32) 23.7 (14)

Vitamin D supplement use 

(≥0.1 μg/day)

<0.001

Yes 80.4 (2379) 9.0 (214) 35.9 (854) 43.2 (1028) 11.9 (283)

No 9.0 (266) 18.0 (48) 41.0 (109) 35.0 (93) 6.0 (16)

Missing 10.6 (315) 19.4 (61) 45.4 (143) 28.6 (90) 6.6 (21)

25OHD, 25-hydroxyvitamin D; BMI, Body Mass Index.
aBased on the Global Burden of Disease super regions classification system (32).
bStatistical difference between the categories of 25OHD were assessed by Kruskal Wallis test.
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vitamin D were fish (40%), followed by fortified margarine and butter 
(30%), eggs (17%), cakes (6%), and milk (4%), estimated by repeated 
24-h recalls (37). The contribution from fish and margarine was 
similar to the results from our study, while the contribution of vitamin 
D from eggs was higher. However, Norkost 3 included both women 
and men and a wider age range, and the results are therefore not 
fully comparable.

We were able to explain 21% of the variation in 25OHD during 
pregnancy by both lifestyle factors and non-modifiable factors. The 
determinants with largest effect on the beta estimates were (in 
descending order) season at blood sampling, solarium use, vitamin 
D intake from supplements, country of origin, pre-pregnancy BMI, 
age, vitamin D intake from foods, smoking during pregnancy, 
education, and energy intake. A multi-ethnic study in Oslo, Norway, 

TABLE 2 Dietary intake and supplement use by categories of vitamin D status during pregnancy.

Vitamin D status (25OHD) nmol/L

All <30 30–50 >50–75 >75 p-valuea

Women, N 2960 323 1106 1211 320

Reported energy intake, kcal/

day

2204 (1876, 2610) 2186 (1914, 2598) 2201 (1866, 2592) 2214 (1877, 2639) 2182 (1898, 2606) 0.854

Total vitamin D intake, μg/dayb 8.3 (5.2, 13.1) 6.2 (3.7, 8.9) 7.8 (4.8, 11.6) 9.1 (5.5, 14.3) 10.5 (6.4, 17.1) <0.001

Supplemental vitamin D intake, 

μg/day

5.0 (2.2, 9.8) 2.6 (0.9, 5.6) 4.3 (1.5, 7.9) 5.4 (2.6, 10.0) 7.2 (2.6, 13.6) <0.001

Supplemental vitamin D intake, 

μg/day (users only)c

5.2 (2.6, 10.0) 4.0 (2.1, 6.3) 5.0 (2.6, 8.6) 6.3 (2.6, 11.4) 7.5 (3.2, 14.1) <0.001

Vitamin D intake from food, μg/day 3.1 (2.1, 4.4) 2.9 (1.9, 4.0) 3.1 (2.1, 4.3) 3.2 (2.2, 4.5) 3.4 (2.2, 4.4) <0.001

Vitamin D from fish, µg/day 1.1 (0.6, 1.8) 1.1 (0.6, 1.7) 1.1 (0.6, 1.7) 1.2 (0.6, 1.8) 1.1 (0.7, 1.8) 0.094

Vitamin D from margarine, µg/day 0.6 (0.1, 1,7) 0.2 (0.0, 1.4) 0.5 (0.1, 1.7) 0.8 (0.1, 1.7) 0.6 (0.0, 1.7) 0.038

Vitamin D from butter, µg/day 0.03 (0.00, 0.11) 0.02 (0.00, 0.12) 0.03 (0.00, 0.11) 0.02 (0.00, 0.11) 0.03 (0.00, 0.12) 0.888

Vitamin D from milk, µg/day 0.002 (0.00, 0.06) 0.002 (0.000, 

0.026)

0.002 (0.000, 

0.058)

0.002 (0.000, 

0.055)

0.002 (0.002, 

0.116)

0.133

Vitamin D from yoghurt, µg/day 0.025 (0.007, 

0.075)

0.025 (0.012, 

0.075)

0.025 (0.007, 

0.053)

0.025 (0.007, 

0.075)

0.025 (0.007, 

0.075)

0.491

Vitamin D from eggs, µg/day 0.11 (0.05, 0.11) 0.11 (0.05, 0.11) 0.11 (0.05, 0.11) 0.11 (0.05, 0.01) 0.11 (0.05, 0.15) 0.370

Vitamin D from cheese, µg/day 0.008 (0.002, 

0.016)

0.007 (0.002, 

0.015)

0.007 (0.002, 

0.015)

0.010 (0.002, 

0.017)

0.011 (0.003, 

0.018)

0.006

Vitamin D from mixed dishes 

and products, µg/dayd

0.2 (0.2, 0.3) 0.2 (0.2, 0.4) 0.2 (0.2, 0.3) 0.2 (0.2, 0.3) 0.2 (0.16, 0.3) 0.390

Nutrient intake, g/day

Protein 83 (72. 97) 82 (70. 97) 83 (71. 96) 84 (73. 98) 85 (73. 97) 0.178

Added sugar 51 (35, 74) 52 (37, 80) 51 (35, 73) 52 (36, 75) 48 (33, 69) 0.174

Fiber 29 (24, 36) 30 (24, 36) 29 (24, 36) 29 (24, 36) 29 (24, 36) 0.905

Food intake, g/day

Fish 36 (23, 50) 36 (22, 50) 37 (23, 52) 36 (22, 50) 34 (23, 49) 0.328

Milk 288 (87, 428) 228 (82, 415) 313 (85, 428) 267 (87, 430) 400 (142, 477) 0.045

Yoghurt 32 (12, 89) 25 (12, 88) 32 (12, 85) 35 (12, 102) 37 (12, 103) 0.069

Margarine 13 (1, 24) 10 (1, 21) 13 (1, 24) 15 (2, 25) 14 (1, 25) 0.011

Butter 0.05 (0.0, 0.6) 0.05 (0.0, 0.6) 0.05 (0.0, 0.6) 0.05 (0.0, 0.5) 0.05 (0.0, 0.6) 0.805

Eggs 8 (4, 8) 8 (4, 8) 8 (4, 8) 8 (4, 8) 8 (4, 11) 0.370

Cheese 18 (9, 33) 18 (9, 36) 18 (9, 32) 18 (9, 32) 19 (9, 34) 0.509

Fruit and vegetables 389 (265, 546) 395 (264, 559) 384 (256, 538) 388 (269, 542) 402 (284, 561) 0.330

Values are provided as median (25th, 75th percentiles). 25OHD, 25-hydroxyvitamin D.
aStatistical difference between the categories of 25OHD were assessed by Kruskal Wallis test.
bDietary and supplemental vitamin D intake.
cAll; N = 2,379, <30 nmol/L; N = 214, 30–50 nmol/L; N = 854, >50–75 nmol/L; N = 1,028, >75 nmol/L; N = 283.
dIncluding milk, fortified margarine and butter, and/or egg.
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TABLE 3 Determinants of vitamin D status (25OHD, nmol/L) in pregnancy.

Vitamin D status (25OHD) nmol/L

All
N = 2,476

June–September
N = 738

October–May
N = 1,738

Beta p-value Beta p-value Beta p-value

Season of blood sampling

June–September Ref

October–May −14.13 <0.001

Vitamin D intake from foods (μg/day)

<2.5 Ref Ref Ref

2.5–4.9 2.00 0.010 0.34 0.831 2.56 0.003

5.0–7.49 3.43 0.003 2.80 0.221 3.58 0.008

≥7.5 5.25 0.009 3.87 0.366 5.62 0.013

Supplemental vitamin D intake (μg/day)

None Ref Ref Ref

0.1–4.9 3.86 0.010 3.36 0.148 4.12 0.003

5.0–9.9 6.02 <0.001 4.23 0.080 6.64 <0.001

10.0–14.9 10.23 <0.001 6.70 0.018 11.71 <0.001

≥15.0 13.34 <0.001 7.10 0.010 15.82 <0.001

Energy intake (kcal/day) −0.002 0.004 −0.002 0.146 −0.002 0.023

Use of solarium in pregnancy (times)

No Ref Ref Ref

1–5 6.03 <0.001 4.43 0.039 6.70 <0.001

≥ 6 13.37 <0.001 6.23 0.243 15.48 <0.001

Country of origin

Norway Ref Ref Ref

Other high-income country −2.18 0.179 −2.37 0.500 −2.05 0.255

Low/middle-income country −10.53 0.001 −18.91 <0.001 −4.83 0.204

Education (years)

<13 Ref Ref Ref

13–16 1.89 0.029 3.02 0.085 1.51 0.129

>16 0.53 0.598 2.09 0.304 −0.17 0.883

Pre-pregnancy BMI (kg/m2)

<24.9 Ref Ref Ref

25–29.9 −4.83 <0.001 −5.34 0.001 −4.77 <0.001

≥30 −9.62 <0.001 −11.08 <0.001 −8.61 <0.001

Age (years)

<25 Ref Ref Ref

25–34 3.84 0.003 4.35 0.079 3.28 0.030

>34 5.75 <0.001 6.14 0.044 5.59 0.002

Smoking in pregnancy

No Ref Ref Ref

Yes −3.20 0.044 −4.63 0.095 −2.51 0.204

Parity

Nulliparous Ref Ref Ref

Multiparous 0.26 0.720 2.74 0.057 −0.65 0.432

Results are shown for all women and stratified by season at blood sampling.
25OHD, 25-hydroxyvitamin D; BMI, Body Mass Index; Ref, reference category.
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found 46% of the variation in 25OHD concentrations in gestational 
week 15 being explained by country of origin, season of blood 
sampling, and supplemental vitamin D intake ≥10 μg (38). In 
gestational week 28, the degree of explanation was lower (38) and 
similar to the results in our study. Other studies from Nordic 
countries have also found vitamin D intake from foods (33, 39) and 
supplements (33, 39) or total vitamin D intake (40), season (33, 39), 
ethnicity (40), age (39), BMI (39), smoking during pregnancy, 
solarium use, and outdoor physical activity (39) as determinants of 
25OHD in pregnancy. Latitude and sunlight exposure are some 
factors known to affect the 25OHD concentration (41). These 
variables were not available though. However, solarium use might 

possibly also reflect other behaviors related to sun exposure, such as 
clothing habits and preference of sun or shade. This might have 
affected the effect estimates related to solarium use.

Pre-pregnancy BMI has previously been identified as a 
determinant of 25OHD in pregnancy, in some (39, 42), but not all 
(38) univariate models. Pre-pregnancy BMI modified the 
predicted response in 25OHD by total vitamin D intake. In 
addition, vitamin D intake from foods was not a significant 
determinant of 25OHD in women with pre-pregnancy BMI 
≥25 kg/m2. These findings may indicate a lower response in 
25OHD in women with BMI ≥25 kg/m2 by vitamin D intake or it 
might be due to reporting bias. Even though the causality is not 
fully understood, there is a negative association between 25OHD 
concentrations and body fat (43), possibly by sequestering of 
vitamin D in adipose tissue (44).

We also investigated the effect of the total vitamin D intake on 
25OHD and found a plateau effect in intakes >15 μg/day. Possible 
explanations for this could be falsely overreporting of high vitamin D 
intakes, lack of data in this high intake category, or that the dose–
response effect may be weaker at high 25OHD concentrations.

Using an immunoassay method and unstandardized values, 
almost half of the women in our study was classified as having either 
insufficient or deficient concentrations of 25OHD. Another study on 
pregnant women in Norway found that the prevalence of 25OHD 
<50 nmol/L was 47% and 25OHD <30 nmol/L was observed in 11% 
(45). A study on pregnant women in Denmark found that 10% had 
25OHD <25 nmol/L and 42% had 25OHD <50 nmol/L (39). In 
pregnant women living in Sweden, 10% had 25OHD concentrations 
<30 nmol/L and 25% had 25OHD <50 nmol/L (40). Differences in 
vitamin D status have been found between ethnic groups (38, 46), at 
different latitudes (34), and by season (40, 47), which can explain 
differences in 25OHD concentrations between studies in Nordic 
populations, along with differences between laboratories and 25OHD 
assay methods (48).

FIGURE 2

Predictions of 25-hydroxyvitamin D (solid black line) and 95% CI 
(grey area) by total vitamin D intake after estimating a linear 
regression model (N = 2,645) using restricted cubic splines, adjusted 
for country of origin, pre-pregnancy BMI, age, and smoking during 
pregnancy. Knots were placed at 3.5, 8.3, and 19.5 μg/day. Dotted 
black line corresponds to 25OHD sufficiency (50  nmol/L).

FIGURE 1

Sources contributing to the vitamin D intake in pregnancy in the Norwegian Environmental Biobank (N = 2,960), with (A) and without (B) contribution 
from vitamin D supplements. *Including milk, fortified margarine and butter, and/or egg.
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We excluded 28 women (0.9%) due to implausibly low or high 
energy intake. Median (25th–75th percentile) 25OHD concentration of 
the excluded women were 47 (32–54) nmol/L and median 
pre-pregnancy BMI were 23.3 (21.0–25.9) kg/m2. As so few were 
excluded, it has likely not impacted our results.

4.1. Strengths and limitations of the study

The main strength of our study is the availability of numerous 
potential determinants of vitamin D in a relatively large study 
population. In addition, questionnaires provided information both 
prospectively and retrospectively during pregnancy. The FFQ can 
be considered a suitable dietary assessment method in this study since 
only few foods contain significant amounts of vitamin D making food 
diaries less suitable and since the FFQ provides a fair estimation of the 
habitual diet over a specific period (49).

Some limitations should be considered in the interpretation of 
the results. Some studies have observed underestimation of 25OHD 
using Abbott Architect chemiluminescence immunoassays 
compared with liquid chromatography tandem mass spectrometry 
(50, 51), also in a pregnant population (52). Standardization of 
25OHD was not possible as there was no plasma left for such 
analysis. If the assay method underestimated the 25OHD 
concentrations in our study, it would potentially lead to biased 
estimates of insufficiencies and deficiencies. Thus, the prevalence of 
vitamin D insufficiency and deficiency should be interpreted with 
caution. Further, some important variables were not available to us 
in the investigation of determinants of 25OHD, such as recent 
travels to southern latitudes and portion sizes. The participants 
included in the Norwegian Environmental Biobank were women 
with good compliance in MoBa. Thus, selection bias may be present 
and might negatively affect the representativeness and the external 

validity of the results. In addition, the lack of variation in country 
of origin in the study population limits the interpretation of the 
vitamin D intake and status in ethnic minorities. Other limitations 
related to the FFQ used in MoBa have previously been described 
(22, 25).

4.2. Implications

This study provides a thorough investigation of the vitamin D 
intake and other determinants of vitamin D status in pregnant women 
living in Norway. The contribution of the determinants is likely 
relevant to pregnant women also in other northern regions on 
corresponding latitudes. In addition, the response in 25OHD by total 
vitamin D intake might differ by season and pre-pregnancy 
BMI. Future studies should aim to investigate how vitamin D intake 
and status can be safely increased on a population level.

5. Conclusion

The results emphasize the importance of vitamin D from 
supplements, fish, and fortified margarine contributing to the total 
vitamin D intake. The most important determinants of vitamin D 
status were season, solarium use, vitamin D intake from supplements, 
country of origin, pre-pregnancy BMI, age, vitamin D intake from 
foods, and smoking during pregnancy. Our study indicates a seasonal 
variation in vitamin D status during pregnancy, and a dose–response 
in 25OHD by total vitamin D intake during October to May. These 
findings highlight the importance of the vitamin D intake, as one of 
few modifiable determinants, to reach sufficient 25OHD 
concentrations, during months when dermal synthesis of vitamin D 
is absent.

FIGURE 3

Predictions of 25-hydroxyvitamin D (solid black line) and 95% CI (grey area) by total vitamin D intake after estimating a linear regression model using 
restricted cubic splines in women blood sampling during (A) June to September (N = 796) and (B) October to May (N = 1,849). Models were adjusted for 
country of origin, pre-pregnancy BMI, age, and smoking during pregnancy. Knots were placed at 3.5, 8.3, and 19.5  μg/day. Dotted black line 
corresponds to 25OHD sufficiency (50  nmol/L).
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