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Insects are a significant source of food for millions of people worldwide. Since 
ancient times, insects in medicine have been contributing to the treatment of 
diseases in humans and animals. Compared to conventional animal farming, the 
production of insects for food and feed generates significantly less greenhouse 
gas emissions and uses considerably less land. Edible insects provide many 
ecosystem services, including pollination, environmental health monitoring, and 
the decomposition of organic waste materials. Some wild edible insects are pests 
of cash crops. Thus, harvesting and consuming edible insect pests as food and 
utilizing them for therapeutic purposes could be  a significant progress in the 
biological control of insect pests. Our review discusses the contribution of edible 
insects to food and nutritional security. It highlights therapeutic uses of insects 
and recommends ways to ensure a sustainable insect diet. We  stress that the 
design and implementation of guidelines for producing, harvesting, processing, 
and consuming edible insects must be prioritized to ensure safe and sustainable 
use.
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1. Introduction

The global population is rising exponentially, and so is the societal difficulty of meeting 
nutritional needs, which drives up the worldwide demand for meat (1). As a result, dietary 
diversity, biofortification, supplementation, and commercial food fortification, are all 
approaches that are beneficial in combating malnutrition (2–5). Thousands of insect species 
are consumed annually, mostly in developing nations (6). About 2.5 billion people worldwide 
rely on insects as a supplementary food source (7). Over the past decade, edible insects have 
gained popularity as healthy and environmentally friendly substitutes for traditional meat 
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and dairy products. The global edible insect industry will be worth 
over $3 billion by 2030 (8). However, the consumption of insects is 
still unusual in most western populations if not considered a taboo 
(9–11). Many nations in Asia, Africa, Europe, and Latin America 
consume whole, easily recognizable edible insects as a typical snack 
or even as their primary source of protein (12). These insects are 
often prepared by being boiled, dried, toasted, or fried before being 
used in cooking (13).

Edible insects can solve many environmental and health issues, 
including climate change, hunger, and environmental degradation 
caused by agro-industrial production (14). The growing population of 
the world, along with the resulting shifts in demographics regarding 
lifestyle, dietary preference, and income, and the resulting expectation 
of increased access to a wide variety of lifestyle options has led to a 
heightened awareness of the global sustainability challenges humanity 
faces today (15). Sustainable development and commercialization 
require multi-disciplinary research into edible species and 
documentation of the species’ preparation process and therapeutic 
characteristics (16).

Though consuming edible insects for food and using them for 
treating animal and human diseases have received greater attention, 
there needs to be more information on other benefits associated with 
production, marketing and harvesting. For instance, the African 
coconut beetle Oryctes monoceros (Olivier), Asiatic rhinoceros beetles 
Oryctes rhinoceros (Linnaeus), and African palm weevil Rhychophorus 
phoenicis (L.) attack and kill economically important crops, such as 
palms, banana, and pineapple (17–20). However, many people in 
Sub-Saharan Africa consume the same insects because of their 
nutritional properties (21, 22).

This review discusses wild edible insects as agricultural pests of 
cash crops and how harvesting these insect pests could contribute to 
their management. Moreover, our review examines edible insects as a 
long-term solution to global food security by considering their 
nutritional properties, ecosystem services, and environmental 
impacts. We highlight the potential of wild edible insects as reservoirs 
for pathogens harmful to plants, animals, and humans. Furthermore, 
we discuss some edible insects with therapeutic properties for treating 
diseases. We  highlight options for designing and implementing 
guidelines for using insects as food and the need to prioritize 
harvesting and consumption to ensure safe and sustainable use.

2. Methodology

In this review, we sourced articles from these databases: Semantic 
Scholar1, Google Scholar2, Scopus3, Science Direct4, and SciELO5. The 
review started from January 2022 to December 2022. Articles 
published in indexed scientific journals and books were considered 
without limitations on the year of publication. We  selected only 
articles published in English. To be more specific in our search, the 
keywords used, included “edible insects,” “the bioactivity of edible 

1 https://www.semanticscholar.org/

2 https://scholar.google.com

3 www.scopus.com

4 https://www.sciencedirect.com/science

5 https://scielo.org/es/

insects,” “edible insects and climate change,” “pathogens of edible 
insects,” “insects in medicine,” “nutritional benefits of insects,” “insects 
as food and feed,” “ecological benefits of edible insects,” “edible insect 
pests,” and “edible insects as vectors of diseases in plants, animals and 
crops.” A detailed representation of the search of articles for the review 
is illustrated in Figure 1.

3. Food and nutritional benefits of 
edible insects

Food security measures the availability and accessibility to safe, 
nutritious, and sufficient food. One billion people rely on livestock for 
their livelihood, and 70% of the 880 million rural poor who earn less 
than USD $1.00 a day rely on livestock at least in part for their income 
and food security (23). Nevertheless, the prevalence of 
undernourishment has increased by 1.5% points in recent years, 
representing a midpoint of about 720 to 811 million people suffering 
from hunger in the first year of the COVID-19 pandemic (24). The 
rise was estimated to be 446 million in Africa, 57 million in Asia, and 
14 million in Latin America and the Caribbean (23–25). Substantial 
dietary changes are required to achieve global food security goals. 
Edible insects could serve as an alternative source of nutrients and are 
currently considered as significant food sources.

About 5.5 million insect species are available worldwide, of which 
approximately 1 million have been described (26). Of this number, 
approximately 2,100 species are edible (27). Among these edible 
insects are beetles, caterpillars, ants, bees, wasps, grasshoppers, true 
bugs, dragonflies, termites, and cockroaches (27). In Africa, for 
instance, the most critical edible insect orders include Lepidoptera 
(30.93%), Orthoptera (22.80%), Coleoptera (19.70%), Heteroptera 
(9.32%), Blattodea (7.40%), Hymenoptera (6.78%), Diptera (1.06%), 
Dictyoptera (0.85%), Odonata (0.64%), and Ephemenoptera (0.42%), 
with Odonata and Ephemeroptera forming relatively lower 
percentages (28).

Generally, it is difficult to determine the nutritional profile of 
edible insects due to the considerable differences encountered across 
species, country, insect feed composition, insect rearing mode, and 
developmental stage of insects, all of which may affect the nutritional 
profile. However, proteins, lipids, chitin, minerals, and vitamins 
form significant components of nutrients in edible insects. Protein 
represents the major component of nutrient composition in edible 
insects, followed by lipids (29). In terms of dry matter, the protein 
content of edible insects ranges between 35.3 and 61.3% for 
Blattodea (termites) and Orthoptera (crickets, grasshoppers, 
locusts), respectively (30). The latter exhibits the lowest lipid content 
of about 13.41% dry matter, whereas beetles, termites, and fly larvae 
depict high contents of approximately 33.40% dry matter. The 
former includes palmitic, stearic, palmitoleic, oleic, linoleic, 
α-linolenic and γ-linolenic acids. Chitin, the main polysaccharide 
component of the insect exoskeleton, protects insects from harsh 
environmental conditions. Furthermore, even though edible insects 
are generally rich in copper, iron, magnesium, manganese, 
phosphorous, selenium, and zinc, little is known about the 
nutritional profile of vitamins and minerals (31). The potential 
contribution of insects to food and nutritional security is crucial 
worldwide. However, much more knowledge is essential for the 
quantitative nutritional assessment of insects, especially vitamins 
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and minerals. The nutritional profile of insects used as animal feed 
also needs more research.

4. Medicinal benefits of edible insects

In many cultures worldwide, traditional medicine has used insects 
for a long time to treat stomach aches, respiratory issues, and wound 
healing. However, most of the research on the functional significance of 
edible insects has been on their ability to act as antioxidants in cell 
models or in vitro (32). Additionally, there is scant research on how 
edible insects affect platelet aggregation, anti-inflammation, lipid 
modulation, and glucose metabolism (33–35). However, there has been 
a recent uptick in research on the potential health benefits of edible 
insects from a theoretical and practical standpoint (32). Recent advances 
have investigated the biological activities of common insect orders, such 
as Blattodea, Coleoptera, Diptera, and Hemiptera (Table 1).

Numerous therapeutic qualities, such as antioxidant and anti-platelet 
aggregation action, have been examined in vitro in various edible insects 
(32). The expression of anti-tryptic and chymotryptic activity, as well as 
the inhibition of pancreatic lipase, and dipeptidyl peptidase-4 activity, 
have all been studied in vitro (32). Moreover, a recent study showed that 
flour from Tenebrio molitor (Linnaeus) affected the growth of 
Lactobacillus and Bifidobacterium by improving short-chain fatty acid 
production and viability in nutritive stress conditions (54).

There have been parallel efforts in cellular and ex vivo models. 
Human umbellar vein endothelial cells (HUVECs) exhibited lower 
levels of thrombin, plasminogen activator inhibitor, and factor Xa after 
exposure to indole alkaloids derived from Protaetia brevitaris seulensis 
(Kolbe) (55). The ethanolic extract from Gryllus bimaculatus (De 
Geer), Oxya chinensis sinuosa (Mishchenko), and Protaetia brevitaris 
seulensis reduced intracellular lipid accumulation and triacylglycerol 
in liver hepatocellular carcinoma (HepG2) (55). Lipid accumulation 
was also reduced in L-02 cells, a human fetal hepatocyte line, by 
polyunsaturated fatty acids and α-linolenic acid from Bombyx mori 

(L.) (35). Again, tetrahydroquinolines isolated from Allomyrna 
dichotoma caused a reduction in vascular cell adhesion molecule-1 
and intercellular adhesion molecule-1 levels, as well as adherence of 
monocytes to HUVECs monolayers and migration of human 
neutrophils (56).

Moreover, there have been investigations into the effects of edible 
insects through animal models. For instance, Zebrafish Danio rerio 
(F. Hamilton) fed with Hermetia illucens (L.) showed a significant 
increase in growth rate (57). Tetrahydroquinolines from Allomyrina 
dichotoma (L.) administered to septic C57BL/6 mice increased their 
survival rate (56). Also, wheat noodles enriched with B. mori powder 
significantly reduced post-prandial blood glucose, glucose peak, and 
area under the curve of glucose and glucose index (58).

5. Contribution of edible insects to 
climate change mitigation

Rapid global climate change continues to threaten the existence of 
humanity on earth (59). Nevertheless, the production of livestock is 
solely responsible for more than 14.5% of all greenhouse gas (GHG) 
emissions (CO2, CH4, and NO2), 64% of the world’s NH4 emissions, 
water pollution, and biodiversity loss (7). Livestock, a significant 
driver of environmental degradation, calls for an alternative protein 
source, such as consuming edible insects known for their low 
contribution to GHG (60). For example, the emissions of greenhouse 
gases per kilogram of mass and NH3 of three edible insects T. molitor, 
A. domesticus, and Locusta migratoria (L.) were lower than pigs and 
far lower than cattle (61). Also, the global warming potential per kg of 
Protaetia brevitarsis seulensis production (15.93 kgCO2eq) was lower 
than the conventional meat sources, such as chicken (18–36 kgCO2eq), 
pork (21–53 kgCO2eq), and beef (75–170 kgCO2eq) (62). Furthermore, 
the methane output of cockroaches and beetle larvae was more than 
20 times lower than that of cattle and was similar to or slightly lower 
than that of pigs (62). Using the lifecycle assessment (LCA) method, 

FIGURE 1

A schematic diagram showing the methodology followed during the review.
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TABLE 1 Common edible insects, isolated compounds and biological activity.

Insect Common 
name

Compound 
isolated from

Isolated compound Biological activity References

Blattodea

Periplaneta americana 

(Linnaeus)

American 

cockroach

Adult Isocoumarins periplatins A–D Cytotoxic activities against 

human liver (HepG2) and 

breast cancer (MCF-7) cells

(36)

Polyphaga plancyi (Bolivar) Chinese cockroach Not determined Plancyamide A

Plancypyrazine A

Plancypyrazine B

Plancyol A

Antiproliferative (37)

Macrotermes spp. Termites Body surface Roseoflavin,

8-methylamino-8-demethyl-

D-riboflavin

Natalamycin

Termisoflavones A-C

Antibacterial

Antifungal

(38, 39)

Coleoptera

Blaps japanensis Adult Blapsols A–D Anti-inflammatory (40)

Holotrichia diomphalia (Hope) Larvae Tricin, palmitinic acid 

eicosane

Antifungal (41)

Hycleus oculatus (Thunberg)

H. tinctus (Walsingham)

H. lunata (Smith)

African blister 

beetles

Adult (R)- (+)-palasonin

Palasonimide

Cantharimide

Palasonin

Anticancer (42, 43)

Diptera

Hermetia Illucens (L.) Black Soldier Fly Larvae α-pyrone

diketopiperazine

Antibacterial (44)

Hemiptera

Aspongopus

Chinensis (Dallas)

Chinese stinkbug Not determined (±)-Aspongamide A Therapeutic agents for chronic 

kidney disease

(45, 46)

Dactylopius

coccus (Costa)

Not determined Carminic acid Antioxidant (40)

Hymenoptera

Perga affinis (Kirby) Australian sawfly Larvae Macrocarpal and grandinol Antimicrobial against Bacillus 

subtilis

(47)

Polyrhachis dives (Smith) Chinese black ants Adult (±)-Polyrhadopamine A, 

(±)-Polyrhadopamine B, 

(±)-Polyrhadopamine C, 

trolline,

(±)-Polyrhadopamine C

β-carboline-3-carboxamide

5-(3-indolylmethyl)-

nicotinsaureamide

Used to treat rheumatoid and 

osteo arthritis, inflammatory 

diseases, and central nervous 

system.

Antiproliferative against 

T-lymphocytes

(48, 49)

Tetraponera rufonigra (Jerdon) Iron ant Adult Tetraponerines Neurotoxic

Antiproliferative

(50)

Apis mellifera (Linnaeus) Brazilian red 

propolis

Not determined Lupeol, lupenone, lupeol 

acetate

Antitumor (51)

Lepidoptera

Byasa polyeuctes (Doubleday) Taiwan butterfly Adult Papilistatin Antibacterial

Anticancer

(52)

(Continued)
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GHG emission from producing 1 kg of mealworm was far lower than 
that of chicken, pork, or beef (63). Also, the LCA for black soldier fly 
production was more sustainable than that of fresh chicken meat (64).

6. Contribution of edible insects to 
ecosystem services

Edible insects provide direct and indirect ecosystem services like 
cultural, provision, maintenance, and regulation as per the definition 
by the Millennium Ecosystem Services (65). One of the ecological 
services that insects may give is the decomposition of organic waste. 
Insects are frequently employed to break down agricultural and 
culinary waste when raising insects in large numbers for food. The 
black soldier fly, Mealworms, houseflies, and crickets are the most 
effective bio converters (7, 66, 67). These insects can simultaneously 
make valuable commodities, like biomass from insects, cosmetics, 
lubricants, medicines, biofuels, surfactants and fertilizers (68). These 
insects also render regulatory services through the control of crop 
pests and pollination (Table 2).

6.1. Pollination

Globally, insects are relied on extensively for pollination in 
agriculture. This ecosystem service is of great economic value. The 
Apidae family of bees is considered the most significant edible insect 
pollinators. Honey bees are also noted to increase the yield of about 
96% of crops, with recent literature indicating that wild bees might 
be even better pollinators than honey bees (82). The study further 
indicated that, in the United States, bee pollination services are valued 
at 3.07 billion US dollars. Therefore, the limitation on pollination by 
bees poses a significant risk to yield stability and food security (82). 
Butterflies and moths are also important pollinators of crops. Agrius 
convolvuli (L.), a Hawk moth, is a critical papaya pollinator in Kenya 
and Southeast Asia (64).

7. Decomposition

Edible insects like ants and termites are vital in soil formation 
and the cycling of nutrients through the decomposition of organic 
matter. The direct consumption of organic matter and the indirect 
effects of insect activities, such as creating larval tunnels in woody 

materials, result in their decomposition in the tropical forest, thereby 
increasing soil fertility. An example is the palm weevil which deposits 
its eggs on the trunk or directly on the inner tissues of falling trees. 
The emergent larvae then accelerate the decomposition of the logs by 
burrowing through and feeding on the inner tissues. Twenty-nine 
percent of deadwood’s carbon flux emanates from insects’ net effects, 
making it impossible to rule out the functional importance of edible 
insects in decomposition (83).

7.1. Reduction of food waste

The loss and wastage of food threaten the sustainability of our 
food system. Millions of tonnes of food waste are generated annually, 
with research confirming up to 50% waste along the food supply chain 
(84). Insect-based bioconversions through a novel approach could 
be an immediate approach to reducing food waste (85). Edible insects 
can convert low-value food waste such as brewery grains, potato peels, 
and expired food into biomass and frass for other purposes (84). Using 
food waste to rear insects is an alternative means to close the gap in 
the food value chain. Edible insects reared on food waste enter the 
food chain, with their residues serving as a nutrient source for crop 
production (86).

7.2. Food chain/web

Insects are considered rich in essential nutrients and have recently 
attracted attention as food and feed for terrestrial livestock or fish (87). 
Edible insects like H. illucens can transform lost nutrients into the 
food chain as protein-rich human food, animal feed, and even 
fertilizer (88). Although these edible insects render such tremendous 
ecosystem services, the fact that they are part of the food chain cannot 
be ignored. Therefore, they can be harvested and consumed cautiously 
without overexploiting them beyond their regeneration capacity.

8. Economic benefits

Even though edible insects are for human consumption, it is 
critical to note that the food industry has historically been a significant 
driver of economic growth and employment creation, making insect 
farming a promising strategy for alleviating poverty. Insects can be a 
source of income for even the lowest sections of society because they 

Insect Common 
name

Compound 
isolated from

Isolated compound Biological activity References

Orthoptera

Brachystola magna (Girard) Texas grasshopper Adult Pancratistatin

Narciclasine

Ungeremine

Anticancer (40)

Schistocerca gregaria (Forsskål) Desert locust Adult gut Desmosterol, (3β, 5α) 

cholesta-8, 14, 24-trien-3-ol, 4, 

4-dimethyl, (3β, 20R) 

cholesta-5, 24-dien-3, 20-diol

Antimicrobial properties 

under investigation

(53)

TABLE 1 (Continued)
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TABLE 2 Examples of insects’ species and the ecosystem services they render.

Order Family Species Pollination Decomposition Reduction 
of food 
waste

Food 
chain or 

food web

Reference

Blatodea Termitidae Macrotermes spp. √ √ (69)

Blattidae Periplaneta americana (L.) √ √

Coleoptera Curculionidae Rhynchophorus ferrugineus 

(Olivier)

√ √ √ (70–72)

Dytiscidae Schoolhouse acupunctatus 

(Gyllenhal)

√ √ √

Dytiscus latissimus (L.) √ √ √

Hydrophilidae Cybister spp. √ √ √

Curculionidae Metamasius spp. √ √ √

Scarabaeidae Anoplognathus viridiaeneus 

(Donovan)

√ √ √

Phyllophaga spp. √ √ √

Oryctes spp. √ √

Tenebrionidae Tenebrio spp. √ √ √

Zophobas morio (Fabr.) √ √ √

Lucanidae Lucanus cervus (L.) √ √ √

Lepidoptera Cossidae Comadia spp. √ √ √ √ (73, 74)

Redtenbacheri spp. √ √ √ √

Hesperiidae Aegiale hesperiaris (Walker) √ √ √ √

Saturniidae Cirina butyrospermi (Vuillet) √ √ √ √

Gonimbrasia belina (Westwood) √ √ √ √

Psychidae Psychidae gen. √ √ √ √

Crambidae Omphisa fuscidentalis (Hampson) √ √ √ √

Sphingidae Macroglossum stellatarum (L.) √ √ √ √

Bombycidae Bombyx mori (L.) √ √ √ √

Hymenoptera Vespidae Vespula vulgaris (L.) √ (75)

Formicidae Oecophylla smaragdina (Fabr.) √ √ √ (76, 77)

Camponotus inflatus (Lubbock) √ √ √

Oecophylla longinoda √ √ √

(Latreille) √ √ √

Myrmelachista schumanni 

(Emery)

√ √ √

Atta spp. √ √

Apidae Apis spp. √ √

Bombus spp. √ √

Xylocopa spp. √ √

Trigona spp. √ √

Orthoptera Pyrgomorphidae Sphenarium purpurascens 

(Charpentier)

√ (78–81)

Acrididae Locusta migratoria (L.) √

Gryllidae Oxya hyla (Serville) √

Acheta domestica (L.) √ √

Gryllidae Gryllus veletis (Alexander & 

Bigelow)

√ √

Tettigonioidea Tettigonia viridissima (L.) √ √

(Continued)
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are easy to harvest, cultivate, rear, and process (89–92). The market for 
edible insects is expected to expand from $400 million to 1.2 billion 
in 5 years (2018–2023) (93). More specifically, in the Asia Pacific, the 
market is likely to exceed $270 million by 2024 (94).

In Africa, lepidoptera is the most consumed order of insects (95). 
They provide proteins, fats, and essential micronutrients. In 
South Africa, Uganda, and Nigeria, rearing and selling caterpillars 
generate income in rural areas (95). In East Africa, insect rearing is 
rapidly growing and becoming a sustainable option as opposed to the 
current farming options, which demand arable water and land (96). 
The authors further indicated the ongoing trends in insect farming, 
the important insect species, the nutrients derived from insects, and 
the marketing and regulatory frameworks associated (96). They 
highlighted how insect farming had created microenterprises in East 
African countries, including Kenya, Uganda, and Tanzania (96). 
Insect rearing can reduce poverty as it demands labor. In Africa, after 
palms have been cut down in a labor-intensive process to extract sap, 
the cut trunks are revisited to extract the larvae of the palm weevil, 
R. phoenicis (7).

As a result of insect farming practices, new employment 
opportunities have emerged. Producing powders from insects can 
generate jobs and financial gain (97). The European Union has 
recently permitted the use of processed insects as feed for fish (97). 
Several species of insects can be  farmed: Musca domestica (L.), 
Alphitobius diaperinus (Panzer), H. illucens, Gryllodes sigillatus 
(Walker), Gryllus assimilisit (Fabr.), T. molitor (L.), A. domesticus (L.) 
(97). Due to rising food prices, the European Union plans to encourage 
insect rearing and expand the number of insects that can legally 
be added to fish food. Some African countries, including Uganda and 
Kenya, feed their poultry with insects (97). If other African countries 
followed suit, the outcome for the continent would be sustainable 
development within the animal farming sector.

A recent study showed how insects create socioeconomic changes, 
mitigate societal challenges, create healthier food, and reduce animal 
waste production and consumption (98). In Thailand, insect rearing 
has been revolutionized by disseminating knowledge and improving 
rearing methods as opposed to the previous practice of collecting 
insects in the wild (98). Globally, insect rearing has the potential to 
help humanity achieve the seventeen Sustainable Development Goals 
(SDGs) proposed by the United Nations. Some of the goals, include 
zero hunger, good health and well-being. The increasing popularity of 
eating insects suggests that they could be  further promoted as a 
healthy and sustainable food option.

9. Edible insects as pests of crops

Some insect pests are simultaneously considered a vital source of 
micro-nutrient and protein and thus are consumed by humans. The 

most common insect pests considered edible include species 
belonging to the order Coleoptera, Lepidoptera, Hemiptera, and 
Orthoptera (Table 3) (99, 102). The most well-known edible insect 
pests are Schistocerca gregaria (Forsskål), L. migratoria, Locusta 
napardalina (Walker), Zonocerus variegatus (L.) and Nomadacris 
septemfasciata (Audinet-Serville) (102). These insect pests can cause 
significant yield losses to host crops exposing bare ground to soil 
erosion and impacting ~10% of humans (102). In addition, yam, 
banana, cassava, cocoa, citrus, cowpea, maize, and soybeans are all 
targets of these polyphagous feeders. Because of their high nutritional 
value, locusts are collected and used as food and feed in 65 countries, 
primarily in Africa and Asia, during outbreaks (53). Oryctes 
rhinoceros, O. monoceros, O. boas, and R. phoenicis are considered an 
economically important pest of Elaei guineensis, Phoenix dactylifera, 
Raphia spp. and Cocos nucifera. The larvae of Orycte boas destroy the 
crops and cause low yields. Moreover, R. phoenicis are voracious 
feeders, and with their hard mouth parts, they penetrate and damage 
the plant tissues, causing the leaves to die (106). The larvae of these 
pests are considered edible insects mainly in Africa (107). The fall 
army worm Spodoptera frugiperda (Smith) and S. exempta can 
destroy entire crops by feeding on the early stages of the maize plant. 
The larvae of the pest are consumed in Zambia (102). Although insect 
pests are considered a significant constraint of crop production, 
edible insect pests have an exceptionally high potential to contribute 
to a more sustainable and socially equitable global food security. Also, 
consuming these insects could be  an environmentally friendly 
strategy for biological control.

10. Edible insects as a reservoir of 
diseases

Insects as food and feed have recently attracted tremendous 
attention due to their high-quality nutrient contents, ability to upcycle 
low-grade organic substrates into high-quality insect biomass, and 
reduction in environmental footprint (94). Despite the rapidly 
expanding insect farming industry, there has been a significant focus 
on the potential for disease outbreaks in insect colonies and their 
spread to humans, animals, and plants.

Insect-borne pathogens threaten the health of humans, animals, 
and insects as they can cause disease or even death and eventually 
collapse an entire insect colony (108). A recent study characterized 
bacterial communities associated with A. domesticus and G. assimilis 
and compared populations associated with the surface and whole 
body of crickets to uncover potentially beneficial and pathogenic 
microorganisms. Findings from the study support the use of probiotics 
composed of microorganisms already present in the human digestive 
system (109). In contrast, some potentially dangerous microorganisms 
were in the samples.

TABLE 2 (Continued)

Order Family Species Pollination Decomposition Reduction 
of food 
waste

Food 
chain or 

food web

Reference

Hemiptera Aphididae Aphididae spp. √ (71)

Cicadidae Magicicada spp. √

*√ indicates the service rendered.
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TABLE 3 Common insect pests used as food.

Insect species Common name Consumption stage Host plant Reference

Coleoptera

Heteroligus mele (Billberg) Yam beetles Adult Dioscorea spp. (99)

Rhynchophorus phoenicis Fabr.)

Oryctes monoceros (Oliv.)

African palm weevil

Coconut beetle

Larvae Elaeis guineensis

Phoenix dactylifera

Raphia spp., and

Cocos nucifera

(100)

Lepidoptera

Leuconodes laisalis Walker Egg fruit borer Larvae Solanum anguivi, Solanum 

incanum, Solanum linnaeanum, 

Solanum macrocarpon, Solanum 

melongenum, Lycopersicon 

esculentum and Capsicum annuum

(101)

Spodoptera frugiperda (Smith)

Spodoptera littoralis 

(Boisduval)

The fall armyworm

African cotton leafworm

Larvae

Larvae

Zea mays and

Ricinus communis

(102, 103)

Cirina forda Larvae Vitellaria paradoxa (102)

Hemiptera

Agonoscelis versicolor (Fabr.) Sudan millet bug Adult Sorghum spp. (104)

Orthoptera

Ruspolia spp.

R. differens (Serville)

R. nitidulis vicinus (Walker)

Long-horned grasshopper Adult Ageratum conyzoides (L.), Citrus 

depressa Hayata, Cynodon dactylon 

(L.), D. gayana, Eragrostis 

mexicana Hornem, Eucalyptus 

saligna SM., Indigofera arrecta 

Hochst. ex A. Rich., Persicaria 

nepalensis (L.), and Sorghum 

halepense (L.)

(13)

Kraussaria angulifera (Krauss) Senegalese grasshopper Nymph and adult Cenchrus americanus (105)

Nomadacris septemfasciata 

(Audinet-Serville)

Red locust Adult Echinochloa pyramidalis, Cynodon 

dactylon and Cyperus spp.

(13)

Schistocerca gregaria (Forsskål) Desert locust Adult Sorghum spp., Vigna unguiculata,

Manihot esculenta,

Abelmoschus esculentus and Zea 

mays

(28)

Acrida turrita (L.) Long-headed

grasshopper

Adult Vigna unguiculata,

Manihot esculenta and

Abelmoschus esculentus

(28)

Zonocerus variegatus (L.) Variegated grasshopper Adult Chromolaena odorata,

Vigna unguiculata,

Manihot esculenta and

Abelmoschus esculentus

(102)

A recent study by Gałęcki and Sokół (110) identified parasites 
colonizing mealworms, house crickets, cockroaches, and migrating 
locusts in Central Europe household farms and pet stores (Table 4). 
The study revealed parasites in 244 out of 300 examined insect farms. 
Interestingly, 206 of the cases had parasites that were pathogenic for 
insects only; 106 had parasites pathogenic for animals; and in 91 cases, 
parasites were pathogenic for humans (6). However, in humans, before 
being consumed, edible insects must first undergo one of four 
common processes: boiling, drying, toasting, or frying (103), which 
can kill pathogens associated with the edible insect.

Often, organic side streams are used in rearing Black Soldier Fly 
(BSF) larvae which are a potential source of food-safety-related 
microbes (112, 115, 116). In plants, Dzepe et  al. (113) identified 
phytopathogenic fungi (see Table 4) in the leaves of lettuce Lactuca 
sativa when grown in frass-exposed soil. The presence of pathogens 
in a rearing substrate could be problematic when the resulting residues 
are used as fertilizers since phytopathogenic fungi can negatively 
impact crop yield (117). Thus, pathogen contamination of rearing 
substrates could pose multiple risks when the insects are reared for 
food and feed and the residue for soil enrichment. Interestingly, BSF 
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larvae can reduce pathogen abundance in substrates during rearing. 
This pathogen inhibitory effect has been observed for different food-
safety-related bacteria, including Escherichia coli and Salmonella 
species (115, 118). Kuznetsova et  al. (116) found a complete 
elimination of mycelial fungi from feed substrates when BSF larvae 
were reared on food substrates.

So far, adult BSF has not been reported as a disease vector. 
However, van Huis (7) warns against a possible susceptibility to 
infections following the sector’s rapid growth. Adult House fly (HF) is 
a nuisance to humans, animals, and vectors of about a hundred 
pathogens, including bacteria, protozoans, helminths, and viruses (7). 
Although insect-borne pathogenic viruses are largely host-specific 
(119), their effects can be felt in humans and other animals that are 

exposed to disease-ridden material. For instance, adult HF can 
potentially act as a vector of the orf virus Ecthyma contagiosum 
(Poxviridae), which causes ecthyma in sheep and goats and humans 
exposed to disease-infected animals (120). Like BSF, HF larvae can 
reduce the microbial load in manure (14). Furthermore, bacterial 
endospores have been identified in yellow mealworms and house 
crickets. A high endospore count of 5.0 log (c.f.u. g − 1) was recorded 
in cricket samples (121). The study hinted at a possible food safety risk 
since this endospore count surpassed the lower threshold for Bacillus 
cereus in edible insects. However, no legal microbiological criteria 
existed specifically for edible insects (121). Therefore, edible insects 
can sufficiently contribute to diversifying and securing global food 
and feed. However, the potential of this mini-livestock to harbor and 

TABLE 4 List of diseases/pathogens transmitted by edible insects.

Vector Pathogen group Type of pathogen Pathology notes Reference

Crickets Bacteria Acinetobacter, Enterococcus Water- or food-borne disease in humans (109)

Crickets Bacteria Bacillus cereus listed as biologically hazardous in edible insects (111)

Crickets and locust Gordiidae Intestinal parasites (114)

Crickets and locusts Fungi Nosema spp. Decrease dry matter consumption, increase 

mortality in mass-reared insect colonies and reduce 

profitability

Cockroaches Protozoans Gregarine spp.; Nyctotherus spp. Deprive insects of nutrients and compromise the 

immune system, reproduction and lifespan

Cockroaches Nematode Thelastoma spp.; 

Hammerschmidtiella diesigni 

(Hammerschmidt)

Lower fat content of insect body

Crickets and locusts – Steinernema spp. Have a special structure for storing the bacteria. 

Once inside the insect’s body, the bacteria are 

released that produce toxins, which kill the insect.

Mealworms, house crickets, 

cockroaches and locusts

Protozoans Cryptosporidium spp. Cause chronic diarrhoea in reptiles

Mealworms, house crickets, 

cockroaches and locusts

Protozoans Isospora spp. Cause isosporiasis in both immunosuppressed 

humans and in animals who ingest oocytes

Mealworms, cockroaches and 

locusts

Protozoans (Ciliates) Balantidium spp. Can cause balantidiasis in humans and animals (17)

Mealworms, cockroaches and 

locusts

Amoeboids Entamoeba spp. (E. histolytica 

and E. invadens)

Can cause dysentery in humans, animals, reptiles, 

and amphibians

(17)

Mealworms, house crickets, 

cockroaches and locusts

– Cestoda Colonize insects and aids in transmitting tapeworms 

to birds, insectivorous animals, and humans

(110)

Mealworms and cockroaches Nematodes Pharyngodon spp. Colonize wild and captive animals, e.g., lizards

Mealworms, house crickets, 

cockroaches and locusts

Nematodes Physaloptera spp. Influence insect behavior

Mealworms and cockroaches – Spiruroidea Colonize mainly animals, but can also infec thumans 

who consume infected intermediate hosts

Mealworms and cockroaches Thorny-headed worms Acanthocephala Decreases immune reactivity in cockroaches. Can 

compromise glycogen and lipid levels in crustaceans

Cockroaches Arthropods Pentastomida Causes pentastomiasis in wild and captive reptiles

Black soldier fly larvae/rearing 

substrates

Bacteria Staphylococcus aureus, 

Clostridium, Escherichia coli, 

Salmonella and Enterococcus

Could be pathogenic to livestock fed contaminated 

feed supplements (larval meal)

(112)

Frass of black soldier fly larvae Phytopathogenic fungi Cercospora Cause irregular and unhealthy leaf appearance in 

lettuce plants

(113)
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TABLE 5 Advantages of insect farming over livestock farming.

Criteria Insect farming Livestock farming

Land use Low requirements for land High requirements for land

Water use Low requirements for water High requirements for water

Pollutants
Low production of 

greenhouse gases

Greenhouse gases such as carbon 

dioxide and methane are emitted

Recycling

Transforms low-value 

matter into nutritious 

insects by feeding

Some livestock such as cattle do 

not feed on low-value matter

Use as feed
Insects can be used as 

fishmeal

Most livestock cannot be used as 

fishmeal

Madau et al. (97).

transmit diseases cannot be neglected as they can pose both direct and 
indirect health risks to humans, animals, and plants.

11. Environmental impacts of edible 
insect production

Safe food and water supply, unpolluted air, safe use of chemicals, 
sound agricultural practices, and preservation of natural resources 
are all attributes of a healthy environment and align very well with 
the United Nations Sustainable Development Goals (SDGs), 
especially SDGs 6, 12–15 (122). Providing food for everyone now 
and more so in the future is one of the most significant challenges 
directly involving SDGs 1 and 2 (98). Our existing food systems are 
heavily involved in many environmental issues, such as greenhouse 
gas emissions, eutrophication of freshwater resources, and 
biodiversity loss (123).

Farming insects for food and feed has recently received 
considerable attention as a sustainable alternative to conventional food 
production models, providing food for humans and animals with 
minimal environmental footprint (Table 5) (97). To understand the 
comparative advantage of insect farming over conventional livestock 
farming, Skrivervik (124) re-echoed the criticism meted out on meat 
production due to its negative impact on the ecosystem. For instance, 
farming livestock takes up considerable agricultural land, and the 
emission of nitrous oxide is concerning, thus making livestock 
production highly eco-degrading (124). Insects have a smaller feed 
conversion ratio than cattle and require less space to farm. House 
crickets are known to be  about four times more efficient feed 
converters than pigs and over 12 times better than cattle (124). Almost 
(in most cases 100%) all of the insect body is consumed, compared to 
lower than 50% for cattle, which may translate to less food wastage in 
favor of insects (124). Furthermore, producing insects in areas with 
near-optimal environmental conditions, such as the tropics, could 
benefit energy use reduction. Insects are poikilothermic and adjust 
their body temperature to that of their surroundings, hence less 
demand for external energy inputs.

Among several factors considered in assessing environmental 
impact is methane release, which results from the fermentation of 
Methano-bacteriaceae in the gut, food conversion, and reproduction 
rate, all typical in beef cattle, poultry, and pigs. This far, cockroaches, 
termites, and beetles are known to release methane, and less so for 
other edible insects. For instance, the yellow mealworm is not known 
to produce methane and thus retains a low global warming potential 
relative to other livestock products (125). Greenhouse gas emissions 
from mealworms, house crickets, black soldier flies, and houseflies; 
feed conversion efficiency, organic waste reduction, and; fishmeal 
replacement by insect meal in animal feed are all topics that have been 
examined in the context of conventional livestock production (61).

Despite the several benefits of insect farming, the fast-growing 
and innovative sector is not without negative effects. Quang Tran et al. 
(126) suggests a trade-off in using insect meal from BSF, HF, 
mealworm, and (Z. variegatus) as an aquafeed. In their analysis, 
Quang Tran et al. (126) showed that the inclusion of insect meals in 
aquafeeds led to higher values of global warming potential, and water 
and energy use than those obtained in diets without insects. They, 
however, attribute this impact to the insufficiency of production 
technology and scalability. Nikkhah et al. (62) also found positive 

impacts of farming Protaetia, brevitarsis seulensis larvae, noting 
beneficial environmental effects on land use, mineral extraction, and 
aquatic and terrestrial ecotoxicity when insects were reared on 
bio-waste. However, several reports found negative environmental 
effects of insect farming associated with global warming (62, 125).

Edible insect farming can contribute to a sustainable food and 
feed system, given that some insect species can thrive on low-grade 
organic streams. However, the safety of derived food and feed cannot 
be guaranteed without careful monitoring and implementation of 
preventive measures while closely checking the effects of technological 
advancements (61).

Edible insect farming has the potential to benefit humanity and 
the environment; however, farming should be critically reviewed so 
as not to damage the environment. Farmed insects are numerous, and 
the order with the highest number of edible insects belongs to 
Coleoptera (127). There are currently twelve living orders of aquatic 
insects, six of which are considered edible. Unfortunately, these 
insects are not being harvested sustainably and are exposed to 
overexploitation and extinction (127). Dragonflies, for example, are 
edible aquatic insects, and their over-exploitation and extinction can 
affect the environment due to an ecosystem balance. It is important 
to emphasize how farming insects help improve conservation directly 
and indirectly. Dragonflies feed on mosquitoes, and the former is 
considered the natural enemy of the latter. The balance between these 
natural enemies and the pests enhances the environmental health and 
sustainability of ecosystems and guarantees that there is food at the 
different trophic levels of the food chain.

The United Nations has reported the urgency of reducing 
greenhouse gases to combat climate change and improve 
environmental health (98). Livestock production accounts for about 
14.5% of all greenhouse gas emissions (128). Insects raised from 
human waste can help clean waterways, one of many ways to improve 
environmental health (98). Several greenhouse gases are currently 
contributing to the damage of ozone layer. Even though some insects, 
such as cockroaches, termites, and beetles, release methane into the 
atmosphere, insect rearing can reduce climate change as it is more 
environmentally friendly source of protein (98). Even though pig, 
poultry, and beef products are currently the preferred source of animal 
proteins, insect rearing has a better impact on the environment 
regarding reproductive rate, food conversion efficiency, and methane 
production. The yellow mealworm, T. molitor, is considered 
environmentally benign due to its high reproductive rate and lack of 
methane production (125).
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Many studies have shown that raising insects positively affects the 
planet (97). Their requirements for arable land and water are relatively 
low compared to fish or poultry farming (97). In addition, insect 
rearing has a low environmental cost for producing greenhouse gases 
such as carbon dioxide (97). Furthermore, insects’ nutritional quality 
is relatively high compared to the trade-off regarding the effect on the 
environment. Proteins and minerals like calcium, iron, and zinc are a 
few nutrients that can be obtained from eating insects. Finally, just as 
beekeeping has been promoted over several centuries to increase 
honey production and environmental conservation (129), there is a 
need for sustainable rearing of edible insects.

12. Implication of harvesting wild 
edible insects on their conservation

Over-exploitation of insects significantly contributes to the 
decline of many edible insect species, threatening wild insects (73). 
Usually, insects are sourced through wild harvesting, farming, and 
semi-domestication of the wild species. However, literature shows 
that about 92% of these insect species are harvested from the wild 
(28). Wild harvest of edible insects by humans brings about direct 
competition with other predators, eventually undermining their 
population viability. Quite many edible insect species are hosts or 
prey to other organisms. Hence, overexploitation of edible insects 
from the different trophic levels beyond regeneration capacity may 
adversely affect the population of other organisms and, consequently, 
the provision of some essential ecosystem services (130). Over a 
decade of research has revealed that the population of widely 
consumed Mopane worm (Imbrasia belina) keeps declining in 
South Africa and Zimbabwe due to increased commercialization and 
overexploitation (131). The global trade in insect species continues 
to grow due to the need to feed a world population approaching 8 
billion people (132). During periods of meat protein shortage, 
insects constitute nearly a third of their protein intake, which 
threatens the edible insect species population since it often exceeds 
their regeneration capacity. Also, the collection practices have 
become less selective and sustainable (133). A decline in the 
population of some edible insect predators or parasitoids has been 
reported in western and northern Europe and New Zealand (134).

13. Conclusion and future 
perspectives

Using insects as food and feed has a long history since ancient times 
and continues to provide food for millions of people worldwide. Edible 
insects contain essential nutrients, such as carbohydrates, proteins, 
vitamins, and minerals, which have antimicrobial properties. Apart 
from these benefits, edible insects require a smaller space for production 
than livestock, which need more extensive land to produce the same 
amount of energy. Edible insects provide many ecosystem services, such 
as decomposition, pollination, reduction of food waste and support of 
food chain or web, and monitoring of environmental health. Utilizing 
insects as food and feed, we can alter beef, fish, and poultry consumption 
and the life cycle assessment, thereby reducing greenhouse gas 
emissions, ammonia emissions, and carbon footprints. Several activities 
associated with edible insect production and marking generate jobs, and 

income, thereby ensuring poverty reduction and zero hunger, especially 
in developing countries. Edible insects can potentially improve our 
global food security significantly, but they also have several challenges 
that need addressing. Some wild edible insects harbour pathogens of 
plants, animals, and humans. For instance, migratory locusts are 
consumed by amphibians, reptiles, and humans, mainly in parts of 
Africa and Asia. Nosema spp. and Gregarine spp., which cause severe 
losses to bee colonies worldwide, are the common parasites of Locusts. 
Acheta domesticus harbors Nosema spp., Gregarine spp., and Steinernema 
spp. (135). Though A. domesticus are often consumed in powdery form 
or protein extracts, the insect can also be consumed directly (136, 137). 
Recent scientific research demonstrates that the bacteria levels and anti-
nutrient components in edible insects are reduced using preservation 
procedures, primarily thermal treatments, employed in cooking or 
processing (135). Specifically, these methods suggest proper preparation 
by boiling, drying, toasting, or frying edible insects to ensure a safe diet. 
Rearing edible insect pests of horticultural and forest crops like termites, 
locusts, and grasshoppers requires an appropriate procedure to avoid 
possible introduction outside the farming facility. Moreover, with 
proper rules and policies, these alternative protein sources may offer a 
solution to problems of availability and accessibility of conventional 
proteins sources. Furthermore, the problem of overexploitation of edible 
insect resources can be  curbed by laying rules to control their 
consumption and, more importantly, by educating people on the need 
to move from wild harvesting to farming and semi-domesticating wild 
species. In farming/rearing edible insects, there would be a need to 
encourage the use of food leftovers to save production costs and solve 
the problem of loss and wastage of food.
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