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Amino acids in hematologic 
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In recent years, growing emphasis has been placed on amino acids and their role in 
hematologic malignancies. Cancer cell metabolism is altered during tumorigenesis 
and development to meet expanding energetic and biosynthetic demands. Amino 
acids not only act as energy-supplying substances, but also play a vital role via 
regulating key signaling pathways, modulating epigenetic factors and remodeling 
tumor microenvironment. Targeting amino acids may be an effective therapeutic 
approach to address the current therapeutic challenges. Here, we provide an updated 
overview of mechanisms by which amino acids facilitate tumor development and 
therapy resistance. We  also summarize novel therapies targeting amino acids, 
focusing on recent advances in basic research and their potential clinical implications.
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1. Introduction

Uncontrollable cellular proliferation, invasion and metastasis are the characteristics of cancer 
cells (1, 2). To accommodate more rapid proliferation, tumor cells alter their metabolism to 
provide sufficient cellular structural substances (proteins, DNA, RNA, and lipids) and energy. 
Aberrant metabolism is also an important feature of cancer (2–4). The Warburg effect is the most 
well-known cancer-specific metabolic feature (2, 5). Cancer cells rewire their metabolic pathways, 
preferentially metabolizing glucose through aerobic glycolysis pathway to generate ATP 
efficiently, even under aerobic conditions (2). Besides glucose, cancer cells also develop increased 
reliance on amino acids (AAs) to meet enhanced demands for energy and cellular building blocks 
(6). Recently, increasing evidences show that AAs play vital roles in tumor development (6). AAs 
are not only involved in energy-generating and biosynthetic (4), but also exert cancer-promoting 
effects by regulating signaling pathways (7), epigenetic processes (8), cellular redox state (9) and 
immunosuppressive tumor microenvironment (TME) (10) (Figure 1).

Requirements for AAs is different between normal and tumor cells, which can be exploited 
to develop anti-cancer therapies. Multiple strategies targeting AA metabolism have been 
developed, including dietary AA starvation, AA depletion, inhibition of AA transporters and 
synthases (4). In clinical practice, the utilization of therapies targeting AA is more common in 
hematologic malignancies and some have achieved remarkable therapeutic outcomes (11). 
L-asparaginase is the most successful example of AA deprivation therapy, which has changed 
the landscape of acute lymphoblastic leukemia (ALL) treatment (12). Promising new drugs are 
continually emerging. These novel agents not only demonstrate potential efficacy in 
monotherapy, but also show good results in reversing drug resistance and relieving 
immunosuppression (6). In this review, we discuss mechanisms of action of AAs in hematologic 
malignancies, focusing on novel roles beyond rewired metabolism. We  also summarize 
deprivation strategies using heterologous agents and recent data from clinical trials.
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2. Amino acids in hematologic 
malignancies

2.1. Glutamine

Glutamine (Gln) is a nonessential AA. Intracellular glutamine 
mainly originates from the bloodstream (13). Gln is involved in 
a broad range of cellular activities, including energy supply, 

biosynthesis of other biomolecules and maintaining cellular 
redox homeostasis (14). Besides glucose, Gln is the most 
important energy supplyinig substance. As glucose is metabolized 
through anaerobic metabolism to produce lactate, Gln enters the 
tricarboxylic acid (TCA) cycle and provides TCA metabolites, 
supporting generation of lipids, proteins, and nucleic acids (13). 
Enhanced glutaminolysis is a prominent feature of various 
cancers (15).

FIGURE 1

Amino acids in hematologic malignancies. Amino acids play vital roles in in tumorigenesis and development in hematologic malignancies, including 
energy supply, biosynthetic support, redox balance maintenance, epigenetic regulation and tumor microenvironment modulation. NK natural killer, 
MSC mesenchymal stromal cell, HSC hematopoietic stem cell, Gln glutamine, Glu glutamate, Gly glycine, Cys cysteine, Asp aspartate, Pro proline, Asp 
aspartate, Asn asparagine, Arg arginine, Met methionine, BCAA branched-chain amino acid, BCKA branched-chain ketoacid, aspartate transaminase 
(AST), GLS glutaminase, GS glutamine synthetase, ASNS asparagine synthetase, PRODH pyrroline-5-carboxylate dehydrogenase, PYCR pyrroline-5-
carboxylate reductase, P5C pyrroline-5-carboxylate, ARG arginase, GSH glutathione, acetyl-coA acetyl-coenzyme A, α-KG alpha-ketoglutaric acid, 
OAA oxaloacetic acid, LAT large-neutral amino acid transporter, ASCT (alanine, serine, cysteine transporter), xCT cystine/glutamate antiporter, 
SLC25A44 solute carrier family 25 member 44, TCA tricarboxylic acid, Cit Citric Acid, SAM S-adenosylmethionine, SAH Sadenosyl homocysteine.
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Gln is the most abundant AA in serum and is avidly taken up by 
tumor cells (13). Gln is transported into cells and mitochondria through 
solute carrier (SLC) family members, mainly SLC1A5 (also known as 
alanine, serine, cysteine [Cys] transporter 2, ASCT2) (16, 17). In 
addition to transport, another important way for Gln entering cells is 
macropinocytosis. Macropinocytosis is a type of endocytosis in which 
extracellular fluid and nutrients are engulfed and taken up via large 
endocytic vesicles known as macropinosomes (18). L-type AA 
transporter 1 (LAT1), a heterodimer of SLC7A5 and SLC3A2, serves as 
an antiporter responsible for exporting Gln in exchange for leucine (19).

Gln dissociates into ammonium ions and glutamate under the 
catalysis of mitochondrial glutaminases (GLS) or cytoplasmic 
asparaginase (ASNase). Glutamate is then metabolized via two major 
pathways. Glutamate is converted into c-glutamylcysteine, which is 
utilized to generate glutathione (GSH) by GSH synthetase (13). By 
quenching reactive oxygen species and participating in the ascorbate-
glutathione cycle, which eliminates peroxides, GSH protects both 
normal and malignant cells from oxidative injury. Leukemic cells have 
redox dysregulation, including aberrant GSH metabolism, thus 
making them sensitive to pro-oxidant therapies that further disrupt 
GSH pathways (20, 21).

When catalyzed by glutamate dehydrogenase (GDH), glutamate 
breaks into α-ketoglutarate (α-KG) and ammonia. When catalyzed by 
transaminases, glutamate transfers amino groups to generate other AAs 
(proline, aspartate, serine and alanine) and α-KG. α-KG produced by 
these two processes enters the TCA cycle, where it participates in 
mitochondrial oxidative phosphorylation (OXPHOS) and eventually 
generates ATP (15). Some hematologic tumor cells are addicted to 
Gln-fueled OXPHOS (9, 22). For example, in mantle cell lymphoma 
(MCL), lymphoma cells reprogram metabolically toward OXPHOS and 
glutaminolysis to gain advantage in generating energy and develop drug 
resistance to Bruton’s tyrosine kinase (BTK) inhibitors (9). Acute 
myeloid leukemia (AML) cells are sensitive to OXPHOS controlled by 
Gln (22). Interestingly, leukemia stem cells (LSCs) are characterized by 
a low rate of energy metabolism and a low cellular oxidative status. They 
are unable to utilize glycolysis and dependent on OXPHOS for energy 
generation (23). Furthermore, the isocitrate dehydrogenase (IDH) 
transforms isocitrate into α-KG. Mutated IDH, caused by IDH1/2 
mutations, transforms α-KG into 2-hydroxyglutarate (2-HG), which 
represses demethylases of both DNA and histones, leading to aberrantly 
increased methylation levels of both DNA and histones and epigenetic 
dysregulation (24). IDH1 mutations and IDH2 mutations have been 
reported in 6%–9% and 8%–12% AML patients, respectively (25, 26). 
In low-risk or medium-risk AML patients with normal karyotype, 
IDH1/2 mutations were significantly related to worse prognosis (27, 28).

Similar to glucose, cancer cells also increase uptake and utilization 
of Gln to meet energy requirement and biosynthetic demands of rapid 
cell growth. Gln transporters and enzymes involved in glutaminolysis 
are highly expressed in many hematological malignancies (15). SLC 
overexpression was observed in most leukemia, lymphoma and 
myeloma and associated with poor prognosis (29). For example, 
Bolzoni et al. discovered that SLC1A5 was highly expressed in multiple 
myeloma (MM) cells and was needed for MM growth (30). Myc or 
Ras-driven tumors were particularly dependent on exogenous Gln 
(31). In Burkitt lymphoma, MYC increased the expression of both 
SLC1A5 and SLC7A5, promoted glutaminolysis and led to augmented 
tumor proliferation (32). In natural-killer T-cell lymphomas 
(NKTCLs), SLC1A1 acted as a central regulator of aberrant Gln 

metabolism (33). SLC1A1 overexpression in lymphoma not only 
enhanced tumor growth, but also promoted competition for Gln 
between lymphoma cells and CD8+ T cells. Impaired CD8+ T cell 
activity, together with PD-L1 downregulation, led to 
immunosuppression and tumor progression (33).

Considering the close connection between malignancies and Gln 
metabolism, disrupting Gln utilization in tumor can be an important 
means to impede tumor growth. Current therapeutical strategies are 
mainly focused on hindering cancer cells from obtaining and utilizing 
Gln, comprising the following aspects: (1) Blocking Gln transporters, 
including SLC1A5, SLC7A11 and cystine/glutamate antiporter (xCT) 
system. (2) Inhibition of enzymes involved in Gln metabolism. (3) Gln 
depletion: ASNase degrades Gln as well as Arg, which will be discussed 
in detail in the section of Arg-based therapeutic approaches (15, 34, 
35). These therapeutic agents have shown excellent results in 
preclinical studies and some have already entered clinical trials. In the 
following discussion, we focus mainly on agents that have exhibited 
promising efficacy in hematological malignancies.

γ-Glutamyl-p-nitroanilide (GPNA) and V9302 are ASCT2 
inhibitors. Results from preclinical studies have shown that blocking 
ASCT2 with GPNA inhibits proliferation and induces apoptosis in 
AML cells, thus prolong survival in AML mice (36). Blockade of 
ASCT2 with V-9302 also leads to effective tumor control (37, 38). It is 
noteworthy that, besides abrogating glutaminolysis, observed efficacy 
of V-9302 may be due to combinatorial blockade of multiple ASCT2 
substrates. Elevated autophagy, increased oxidative stress and 
decreased mTOR activity were observed in V-9302-treated cancer, 
which implies a theoretical basis for rational combination therapy (37).

Multiple drugs act on enzymes involved in Gln metabolism. GLS 
inhibitors include CB-839 (Telaglenastat),bis-2-(5-phenylacetamido-
1,3,4-thiadiazol-2-yl)ethyl sulfide (BPTES) and compound 968. 
[6-diazo-5-oxo-L-nor-leucine (DON)] and JHU083 have structural 
similarities with Gln, thereby inhibiting all related enzymes (35, 39).

CB-839 is the most well-studied GLS inhibitor. CB-839 exhibited 
potent anticancer activity against a variety of tumors in preclinical 
studies. Anticancer effects were more remarkable when combined with 
agents of other mechanisms of action (35). Increased mitochondrial 
respiration was found in proteasome inhibitors (PIs)-resistant MM 
cells (40). Gln was the primary fuel for mitochondrial respiration, cell 
proliferation and survival in both PI-sensitive and PI-resistant MM 
cells. CB-839 significantly blocked mitochondrial respiration and 
demonstrated dramatic synergy with PIs (40). AML cells were highly 
dependent on the Gln for their survival. Inhibiting Gln metabolism via 
CB-839 significantly impaired antioxidant GSH production in multiple 
types of AML, leading to accumulation of mitochondrial reactive 
oxygen species (ROS) and apoptosis. Together with the pro-oxidant 
drug, such as arsenic trioxide (ATO) and homoharringtonine (HHT), 
CB-839 induced more mitochondrial oxidative stress and led to more 
thorough leukemic cell elimination (41). In FLT3-internal tandem 
duplication (FLT3-ITD)-positive AML, a subtype of leukemia with 
notoriously dismal outcome, CB-839 also impaired GSH production, 
induced severe mitochondrial oxidative stress and cell apoptosis. More 
remarkably, CB-839 and FLT3 inhibitors, including AC220 and 
gilteritinib, exerted synergistic pro-apoptotic effects and displayed 
more potent anti-leukemia effect (42, 43). These redox-targeted 
combinations represented a novel therapeutic strategy with high 
efficiency, low toxicity and enormous potential for clinical translation 
(44). At present, CB-839 has entered clinical trials for treatment of 
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leukemia, myelodysplastic syndromes (MDS), renal cell carcinoma, 
and non-small cell lung cancer. A phase II study (NCT0347993) was 
conducted to evaluate safety and efficacy of CB-839 (600 mg BID 
orally) in combination with standard Azacitidine (Aza) in advanced 
MDS patients (14). Primary efficacy outcome showed that 62.5% 
(10/16) patients achieved marrow complete response (CR) and 31.3% 
(5/16) had stable disease (SD). Adverse events analysis showed that the 
most common non-hematological adverse events (AEs) were 
gastrointestinal abnormalities (62.5%), including nausea, constipation, 
elevated ALT and anorexia. The most frequent hematological AEs were 
grade III-IV anemia (12.5%), neutropenia (37.5%) and 
thrombocytopenia (37.5%). 43.7% patients experienced grade III-IV 
infections. This interim analysis demonstrated that the combination of 
CB-839 and Aza was a promising treatment with acceptable safety 
profile and encouraging response rates.

DON is a glutamine antagonist with robust anticancer efficacy. 
But its clinical use was hampered due to its severe toxicity, especially 
gastrointestinal toxicity and mucositis (45). In recent years, various 
prodrugs for DON have been synthesized to enhance delivery of 
active compound to tumor lesions (39, 46). This delivery strategy 
enhanced the anti-tumor effects of DON while circumventing its 
toxicity, bringing it back on track. JHU083 is a dual promoeity 
prodrug modified from DON. JHU083 possessed several advantages 
over DON: enhanced oral bioavailability, tumor-targetability and 
central nervous system (CNS) penetration (47).

2.2. Arginine

Arginine (Arg) is considered as a non-essential or semi-essential 
AA. The sources of Arg include dietary uptake, protein turnover and 
endogenous synthesis (48). Healthy individuals are capable of 
synthesizing Arg from Gln, glutamate, and proline. However, when 
the demand for Arg is increased, such as growth during infancy, 
pregnancy, and burn injuries, endogenous biosynthesis of Arg may 
be  insufficient to support body needs, and dietary sources of Arg 
become essential (49). Arg is one of the most versatile AAs. Arg is 
involved in a variety of biochemical metabolic processes, such as the 
urea cycle and the TCA cycle (50). It also participates in regulating 
several important physiological activities, including cell proliferation, 
immunity and hormone secretion. Besides, Arg is the major precursor 
for synthesis of cancer-associated compounds such as polyamines and 
nitric oxide (NO) (50).

Normal cells synthesize Arg intracellularly from ornithine and 
citrulline under the catalysis of argininosuccinate synthase (ASS) 1, 
ornithine transcarbamylase (OTC), and argininosuccinate lyase 
(ASL). However, over 70% of cancers are deficient of these key 
enzymes, rendering them highly dependent on external Arg (51). The 
addiction of cancer cells for Arg is called Arg auxotrophism, Arg 
auxotrophism is a prominent feature of,hematologic malignancies 
which may be attributed to methylation of the ASS1 promoter (52, 53). 
For example, Mussai et  al. identified that there was low or no 
expression of ASS and/or OTC in AML blasts. Bone marrow stroma 
may play a vital role in producing Arg to support AML expansion (51).

There are two major pathways of Arg catabolism involving four 
main enzymes: nitric oxide synthase (NOS), arginases (ARGs), 
arginine decarboxylase and arginine:glycine amidino transferase 
(OAT). One catabolic pathway is mediated by NOS, which catabolizes 

Arg into citrulline and NO (50). NO has two-way effects on tumor 
growth, depending on its concentration, time of exposure, cellular 
redox status and TME. In general，low concentration of NO 
promotes tumorigenesis and development, whereas high-level NO can 
cause DNA damage, induce apoptosis and activate immune defense 
(54). For example, in B-cell chronic lymphocytic leukemia (B-CLL), 
leukemic cells expressed inducible NOS and increased NO release. 
The anti-apoptotic effect of NO could be  counteracted by NOS 
inhibitors and engagement of the APO-1/Fas pathway (54). However, 
exogenous supplementation of NO promoted cell death and 
potentiated the cytotoxic effect of fludarabine to B-CLL lymphocytes 
(55). ARGs compete with NOS to catabolize Arg decomposition. 
ARGs decompose Arg into urea and ornithine. Ornithine is an 
important intermediate. The vast majority of ornithine participates in 
the urea cycle: it is converted to citrulline by ornithine 
carbamoyltransferase (ODC) and subsequently involved in synthesis 
of Arg under the catalysis of ASS. Ornithine can also be converted into 
polyamines, which also promote cell proliferation and tumor 
growth (50).

Since most hematologic malignancies are auxotrophic for Arg, 
starving tumors by exhausting Arg is a potential therapeutic strategy 
(51). Two classes of Arg depleting agents, ARG and arginine deiminase 
(ADI), have achieved a certain level of success and moved into clinical 
trials (56, 57). PEG-ARG1 and BCT-100 are pegylated arginases. 
Rodriguez et al. found that in T-cell acute lymphoblastic leukemia 
(T-ALL), PEG-ARG1 triggered cell apoptosis and inhibited 
proliferation through phosphorylation of the eukaryotic-translation-
initiation factor 2 alpha (eIF2a) (58). Combination of PEG-ARG1 with 
cytarabine (Ara-C) or phospho-eIF2a signaling significantly 
prolonged the survival of mice bearing T-ALL, representing a potential 
treatment therapy for this high-risk subtype of leukemia (59).

ADI, an enzyme derived from mycoplasma, rapidly degrades Arg 
intro citrulline (56, 57). To avoid adverse effects of foreign proteins, 
such as anaphylaxis and rapid clearance, ADI-PEG20, a pegylated 
form of ADI, has been developed. Results from preclinical studies 
showed that ADI-PEG 20 induced caspase-dependent cell apoptosis 
and autophagy in leukemia and lymphoma (50). ADI-PEG 20 
depleted Arg and showed a significant killing effect on AML, which 
could be further enhanced when combined with cytarabine (60). In a 
phase II study (NCT01910012), single-agent ADI-PEG20 resulted in 
a moderate disease control rate (DCR) of 42.9% in relapsed/refractory/
poor-risk AML patients (61). Its hematologic and non-hematologic 
toxicity was minimal when compared with chemotherapy.

2.3. Asparagine

Asparagine (Asn) is a multifunctional AA. It plays important roles 
in supporting cell proliferation and growth, especially in protein 
synthesis. Asn residues provide amide nitrogen that allows N-linked 
glycosylation, contributing to glycoprotein synthesis (62, 63). 
Intracellular Asn also acts as AA exchange factor. Asn is exported in 
exchange for extracellular AAs, especially serine, arginine and 
histidine, the process of which activates mTOR complex 1 (mTORC1) 
and promotes protein and nucleotide synthesis (64). Asn is also found 
to suppress apoptosis induced by Gln deprivation (65).

Asn is considered as a non-essential AA for normal human cells. 
Asn can be synthesized by Gln and aspartate under the catalysis of 
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Asparagine synthetase (ASNS) in an ATP-dependent manner (65). 
ASNase hydrolyzes ASN into aspartate and ammonia. In some cancer 
cells, the expression of ASNS is low or even absent, rendering them 
unable to synthesize Asn by themselves. Once Asn from bloodstream 
is depleted, these cancer cells will suffer from Asn starvation and 
subsequently undergo apoptosis. Asn deprivation is an effective 
treatment strategy for cancers lack or deficient of ASNS expression, 
including hematological malignancies (12).

L-asparaginase (L-ASNase) is isolated from Escherichia coli and 
has been widely used in clinical practice for over 40 years. L-ASNase 
monotherapy is an effective therapeutic approach to treat ALL, 
especially pediatric ALL (12, 66, 67). With the illustration of 
mechanisms of action, L-ASNase has become the cornerstone of 
multi-agent chemotherapy regimen for various malignancies (12). For 
example, combination chemotherapies containing L-ASNase have 
became the standard treatment for NK/T-cell lymphoma (68–70). 
And L-ASNase was part of chemotherapy regimens for pediatric AML 
in come clinical trails (71, 72).

Despite favorable efficacy, there are still several issues that require 
further attention. First, the toxicity profiles require improvement, 
which includes severe immunological side effects as well as 
non-immune-related toxicities such as pancreatitis, liver toxicities, 
venous thromboembolism (VTE), and neurotoxicity (12, 67). 
Moreover, with the increase of drug exposure in clinical practice, 
secondary drug resistances are gradually emerging. The resistance 
mechanism is generally believed to include the following aspects (12). 
ASNS expression is upregulated up to 7-fold by tumor cells to develop 
resistance to ASNase in Asn-depleted environment (73). Bone 
marrow-derived mesenchymal stromal cells (MSCs) may secrete 
L-asparagine and rescue leukemic blasts from L-ASNase deprivation. 
As a foreign protein, production of autoantibodies accelerates 
clearance of L-ASNase (74). Besides, some previously unknown 
mechanisms of L-ASNase resistance have been gradually perceived 
and recognized. Huntingtin associated protein 1 (HAP1) has been 
identified as a biomarker for L-ASNase resistance in ALL (75). HAP1 
loss suppresses formation of the ternary complex that mediates 
endoplasmic reticulum (ER) Ca2+ release, thus preventing cell 
apoptosis induced by L-ASNase (75). In extranodal NK/T-cell 
lymphoma, brain cytoplasmic RNA 1 (BCYRN1), a long non-coding 
RNA (lncRNA), induced the degradation of p53, promoted autophagy 
and counteracted the effects of Asn deprivation, resulting in L-ASNase 
resistance (76).

To address the above issues, multiple novel L-ASNase formulations 
have been developed. PEGylated L-ASNase was produced by 
covalently conjugating monomethoxypolyethyleneglycol (PEG) to 
E. coli L-ASNase. The PEGylated formulation reduced the 
immunogenicity and prolonged the half-life period (77). But the 
antibodies induced by native E. coli L-ASNase might cross-react with 
PEGylated L-ASNase. Erwinia chrysanthemi L-ASNase was a solution 
to E. coli L-ASNase. It might induce less complications and toxicities 
(like coagulation abnormalities, neurotoxicity, and pancreatitis) (12).

2.4. Cysteine

As a semiessential AA, Cys is indispensable to various reactions, 
including GSH generation, LSC maintenance, and redox homeostasis. 
Although Cys could be compensatively generated from methionine 

(Met), the overall demand could not be met. Furthermore, leukemic 
cells and lymphoma cells displayed translationally silenced Cys 
synthetic enzymes, making them more vulnerable to Cys starvation 
than normal cells (78).

The impact of Cys on hematologic malignancies could be divided 
into two aspects, Cys metabolism and Cys transport. Regarding Cys 
metabolism, the LSCs of AML were highly dependent on Cys 
metabolism in order to fuel OXPHOS. Although cancer cells have 
been regarded as highly dependent on glycolysis instead of OXPHOS 
to produce energy, as proposed by Warburg effect, various cancer stem 
cells have been reported to rely more on OXPHOS than glycolysis, 
including AML and melanoma (79). The de novo AML LSCs have 
been proved heavily dependent on Cys metabolism and other AA 
metabolism in order to conduct OXPHOS and to survive (80). Cys 
was transformed to GSH, which was significantly reduced upon Cys 
depletion. The lack of GSH inhibited electron transport chain complex 
(ETC) II, which in turn damaged OXPHOS and caused death of LSCs. 
The killing effect was demonstrated specific to LSCs, without affecting 
normal hematopoietic stem and progenitor cells (HSPCs) (81). 
Venetoclax combined with azacitidine could also impair AA uptake 
and reduce LSCs (80).

Besides the shortage of GSH, Cys depletion has been demonstrated 
to activate 5′ adenosine monophosphate-activated protein kinase 
(AMPK) pathway, which in turn triggered autophagy. Moreover, 
mTORC1, which negatively regulated autophagy, was downregulated 
upon Cys depletion (82).

Regarding Cys transport, the SLC7A11 gene encoded the 
transporter xCT, which imported Cys into cytoplasm while exported 
glutamate outside the cells. Since tumor cells exhibited higher ROS 
levels due to genetic or epigenetic change and aberrantly high 
metabolic activity, they required higher levels of reducing equivalents 
to repress the increased ROS, where the GSH made a great 
contribution to the reduction reaction. Since Cys was the component 
of GSH, tumor cells had a greater demand for Cys to generate 
sufficient GSH (11). Several studies have demonstrated increased xCT 
expression upon the surface of chemo-resistant tumor cells (83). 
Studies have found that SLC7A11 mutation was an independent risk 
factor of survival of AML patients (84). Thus, xCT could be  a 
promising target for cancer therapy, especially when combined with 
other chemotherapy which increased ROS of tumor cells.

Based on the impact of Cys on hematologic malignancies, 
innovative treatment of hematologic malignancies targeting Cys has 
been investigated. In terms of Cys depletion, a PEG-engineered cyst(e)
inase enzyme, which stably depleted extracellular L-Cys and L-cystine, 
significantly decreased GSH and increased ROS, leading to cell cycle 
arrest and apoptosis of various tumor cells (85). It doubled the survival 
of the aggressive CLL TCL1-Tg:p53−/− mice, and selectively 
eliminated AML LSCs without influence on survival or colony 
forming ability of normal HSPCs (80). This enzyme was reported as 
safe and irreversible, since concentrations of L-Cys and L-cystine 
returned to untreated level subsequent to two to 4 days, and no 
obvious side effects were found in mice models (85).

Regarding Cys transport inhibition, several agents have been 
demonstrated to repress xCT function. Sulfasalazine, though 
previously developed to treat inflammation, has been reported to 
selectively inhibit xCT, decrease GSH, increase ROS, decrease 
proliferation and stimulate apoptosis of primary effusion lymphoma 
(PEL) cells (86). Sulfasalazine also reduced progression in PEL mice 
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models (87). Pardieu et al. demonstrated that sulfasalazine inhibited 
xCT and caused oxidative stress-dependent leukemic cell death in 
primary samples of AML patients. In AML patients with NPM1 
mutations, Cys metabolism was upregulated with stronger cysteine 
dependency. Moreover, they found that sulfasalazine showed 
significant synergistic anti-leukemic effect with daunorubicin-
cytarabine treatment in NPM1-mutated AML samples and patient-
derived xenograft models (84). Erastin, though previously proved to 
trigger ferroptosis, has been recently found to inhibit xCT (88, 89). 
Erastin increased ROS and repressed viability of various solid tumor 
cells and AML cells (90–92). Sorafenib, a multi-receptor tyrosine 
kinase inhibitor, was also found to repress xCT function and stimulate 
ferroptosis (90). However, more investigation into the exact interaction 
between xCT function and ferroptosis in Cys starvation is needed to 
clarify the phenomenon.

Besides the Cys starvation to aggregate ROS and eliminate the 
existing tumor, Cys supplement has been reported to reduce ROS and 
delay tumor initiation. The N-acetyl-L-Cys (NAC) has been 
demonstrated to decrease ROS, repair DNA damage, and activate 
antioxidant enzymes in leukemic cells. Moreover, NAC could reduce 
leukemia initiation and organ damage, and prolonged survival in 
WEHI-3 leukemia mice models (93). Moreover, lymphoma incidence 
was relatively high in ataxia telangiectasia (AT) patients. Reliene et al. 
constructed an AT mice model and discovered that consistent dietary 
NAC supplement significantly decreased lymphoma incidence (94). 
However, the influence of NAC on tumor cells was controversial. 
Yedjou et al. aimed to investigate whether NAC supplement could 
reduce arsenic trioxide (ATO)-related toxicity in acute promyelocytic 
leukemia (APL) treatment. They discovered that the addition of NAC 
impeded ATO cytotoxicity, indicating the combination treatment of 
NAC with ATO was inappropriate to treat APL (95).

NAC has been widely used as antioxidants, and various studies 
have demonstrated that NAC could assist bone marrow reconstruction 
by promoting the function of bone marrow endothelial progenitor 
cells, especially for patients after allo-hematopoietic stem cell 
transplantation (HSCT) (96–98). A phase III, randomized, open-label 
trial was conducted in patients who received haploidentical 
HSCT. Patients underwent evaluation of endothelial cell proportion 
2 weeks before conditioning treatment. Patients with endothelial cells 
less than 0.1% were recognized as high-risk, and were randomized 
into NAC prophylaxis group and non-prophylaxis group. Patients 
with endothelial cells more than 0.1% were considered as low-risk, 
and did not receive NAC prophylaxis. At 60 days after transplantation, 
the high-risk NAC prophylaxis group displayed significantly reduced 
poor graft function (PGF) and prolonged isolated thrombocytopenia 
(PIT) rate compared to high-risk non-prophylaxis group. 
Furthermore, the PGF and PIT rate was even lower in high-risk NAC 
prophylaxis group than low-risk group, indicating that NAC 
prophylaxis could overcome the disadvantage of poor endothelia cell 
function before transplantation (99).

2.5. Methionine

Met is an essential AA, and serves as the building block of Cys as 
well as polyamine. The demand for Met relies heavily on dietary 
supply, and the only way to compensatively generate Met is the Met 
salvage pathway. In the salvage pathway of normal cells, 

5,10-methylene-THF was transformed into 5-methyl-THF via 
methylenetetrahydrofolate reductase (MTHFR). And the 
5-methyl-THF was later generated into Met via methionine synthetase 
(MS) (100). However, in the salvage pathway of tumor cells, function 
of these crucial enzymes is frequently inhibited, rendering tumor cells 
significantly dependent on exogeneous Met, making Met as a 
promising anti-cancer target and labeled Met as a potential tracer 
for PET/CT.

The innovative application of 11C-MET PET/CT to diagnosis and 
staging has been developed recently. Myeloma cells had a high 
demand for Met in order to generate immunoglobulin, and 11C-MET 
PET/CT showed higher sensitivity than 18F-FDG PET/CT. Various 
studies have demonstrated that 11C-MET PET/CT was more sensitive 
to detect focal lesions and extramedullary disease. The SUVmean of 
L2-L4 of 11C-MET PET/CT was significantly related to bone marrow 
plasma cell proportions, while that of 18F-FDG PET/CT showed no 
significant relationship between plasma cell proportion (101–103). 
Furthermore, studies have proved that higher total metabolic tumor 
volume and total lesion MET uptake were significant risk factors of 
PFS (104).

In lymphoma, the efficacy of 11C-MET PET/CT varies, depending 
on the site of lesions and the subtype of lymphoma. In CNS detection, 
11C-MET PET/CT seemed superior to 18F-FDG PET/CT in 
differentiation diagnosis of CNS lymphoma from glioblastoma 
multiformes (GBMs). A study enrolled seven DLBCL and 15 GBM 
patients. 11C-MET PET/CT performed better than 18F-FDG PET/CT 
by completely differentiating DLBCL from GBM based on 
ΔSUVmax < 1.17, with no false negativity or false positivity (105). 
Furthermore, in primary CNS lymphoma patients, higher tumor-to-
normal ratio of 11C-MET PET/CT was significantly related to worse 
PFS, while that of 18F-FDG PET/CT showed no significant relationship 
to prognosis (106). However, other studies claimed that 11C-MET 
PET/CT failed to differentiate primary CNS lymphoma or GBMs 
(107). In abdomen detection, 11C-MET PET/CT could not effectively 
differentiate the physiologic high Met uptake or malignant high 
uptake in pancreas and liver, limiting its application to abdomen 
detection (106).

Met is also indispensable to epigenetic regulation, because the 
S-adenosylmethionine (SAM) in the Met cycle serves as the only 
source to provide methyl residues to DNA and histone methylation. 
However, tumor cells displayed higher demand for Met and aberrantly 
stimulated Met adenosyltransferase (MAT), upstream of the SAM 
(108). The methyltransferase action was in turn overstimulated, which 
converted SAM mostly into S-adenosylhomoCys (SAH), leading to 
insufficient methyl residues from SAM and inability to methylate 
DNA or histone, interfering with the epigenetic regulation. For 
example, MLL-rearranged leukemia has been demonstrated to rely on 
the H3K79 methyltransferase DOTL1, and this disease entity was 
characterized as high demand for methyl residues to ensure DOTL1 
function. Barve et  al. explored whether inference with Met/SAM 
metabolism could inhibit MLL-rearranged leukemia. Not only Met 
depletion but also SAM inhibitor 3-deazaadenosine could decrease 
methylation level, inhibit proliferation and stimulate apoptosis of the 
MLL leukemic cells. Moreover, 3-deazaadenosine showed synergistic 
effect with 5 + 3 induction chemotherapy and extended survival of 
MLL-rearranged leukemia mice models (109). Dietary Met starvation 
has been demonstrated to impair H3K36me3, decrease total RNA 
concentration, stimulate apoptosis and cell cycle arrest of AML cells, 
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delay AML progression in mice models without obvious adverse 
effects (110, 111). Thus, MAT inhibition might serve as a promising 
approach to treat hematologic malignancies with epigenetic alteration 
or IDH/TET mutations. SAM decarboxylase inhibitors have been 
explored in cancer treatment. SAM486A is an innovative second-
generation SAM decarboxylase inhibitor, which has been tested in a 
phase II, multicenter clinical trial. The study enrolled 41 relapsed or 
refractory NHL patients, who received SAM486A monotherapy for 
eight cycles or until disease progression. The ORR was 18.9% with a 
tolerable safety profile (112). AG-270, a first-in-class MAT2A inhibitor 
which effectively decreased SAM and impeded tumor cell 
proliferation, is being investigated in lymphoma and solid tumor 
patients in an ongoing phase I trial (113).

Single nucleotide polymorphisms in various Met metabolic 
enzymes, including MS A2765G, MTRR A66G, MTHFR 677 or 1,298 
gene polymorphism displayed different susceptibility to lymphoma, 
ALL, AML, and  Chronic myeloid leukemia (CML), probably due to 
subtypes of malignancies, ethic factors, and gender (114–119).

2.6. Serine

Serine is a non-essential AA and serves as building blocks of 
glycine, phospholipids, and nucleotides. Tumor cells upregulate 
serine-related enzymes, including PHGDH, PSPH, and PSAT1, in 
order to meet the increased serine demand, indicating these enzymes 
as druggable target to treat hematologic malignancies. In FLT3-ITD-
driven AML, FLT3-ITD upregulated serine synthesis via ATF4 (120). 
In T-ALL, PSPH transcription and translation were significantly 
increased in T-ALL cell lines and primary bone marrow cells of T-ALL 
patients. PSPH upregulation led to increase of serine synthesis, which 
not only directly promoted leukemic cell proliferation through 
increased purine and folate, but also indirectly promoted stromal cell 
proliferation through increased glycine (121). In MM, serine 
upregulation was associated with bortezomib resistance (122). These 
findings above indicated that serine metabolic enzymes could serve as 
promising target to treat hematologic malignancies.

WQ-2101 is a PHGDH inhibitor, and has been evaluated in FLT3-
ITD-driven AML. Both WQ-2101 and PHGDH knockout could 
repress proliferation of leukemic cells in vitro and in vivo. Furthermore, 
WQ-2101 could increase the extent of DNA damage caused by 
cytarabine, increasing the sensitivity of leukemic cells to cytarabine 
(120). In T-ALL, inhibition of PSPH by shPSPH could repress 
proliferation and trigger apoptosis of leukemic cells in vitro. It could 
also alleviate splenomegaly and decrease leukemic cells in the bone 
marrow and spleen of T-ALL mice models (121).

2.7. Branched chain amino acids

Branched chain AAs (BCAAs) include valine, leucine, and 
isoleucine, and have been found related to aggressiveness of leukemia. 
BCAA transaminase 1 (BCAT1) and BCAA transaminase 2 (BCAT2) 
produce BCAAs via aminating branched chain keto acids. It has been 
reported that BCAT1 was overexpressed in CML patients and mouse 
models, and was related to worse prognosis. The oncogenic protein 
Musashi2 bound to BCAT1 and upregulate its expression, leading to 
progression of blast crisis CML. Inhibition of BCAT1 expression 

stimulated differentiation of blast cells and repressed blast crisis CML 
(123). Furthermore, BCAT1 and BCAT2 were upregulated by the 
overexpressed oncogenic m6A methyltransferase, METTL16, leading 
to BCAA reprogram in LSCs and leukemia-initiating cells. METTL16 
knockout significantly repressed AML leukemogenesis and impeded 
LSC self-renewal (124). Studies have explored the BCAA-related 
metabolism in CD34+ cells of healthy controls, AML patients and 
ALL patients. The BCAA transporters, BCAT, BCAA concentration 
and α-KG were significantly higher in AML and ALL than those in 
healthy controls. Dietary BCAA starvation significantly repressed 
proliferation, development and self-renewal of LSCs in xenogeneic 
transplantation models (125). In a word, BCAA reprogram is relatively 
common in leukemia, which might maintain LSC stemness and 
promote leukemia transformation. BCAA starvation might be  a 
promising strategy to postpone leukemogenesis.

3. Challenges and opportunities

3.1. Potential immunotoxicity

Although AA starvation could impair viability of tumor cells, they 
could also possibly impair the function of immune cells, leading to 
immune escape. For example, since Met serves as the major source of 
methyl residue for DNA and histone methylation, starvation of Met 
inevitably caused epigenetic malfunction and impaired T cell function. 
To avoid the influence of Met starvation on normal cells, supplement 
of homocysteine, vitamin B12 and folate might assist Met salvage 
pathway in normal cells. Furthermore, cystine played an important 
role in T cell expansion as well as activation. Although Cys starvation 
has been reported effective to treat hematologic malignancies, 
cysteinase was also reported to promote anti-tumor immune response. 
The impact of AA starvation on immune cells has been controversial 
and requires further investigation to reveal their interaction.

3.2. Insufficient efficacy/drug 
resistance-combination therapy

Studies have found that chemoresistance is frequently related to 
the protection of tumor cells by the AA-providing bone marrow 
stromal cells. For example, Ede et  al. explored the mechanism of 
chemoresistance to parthenolide in pediatric T-ALL patients. They 
discovered that the bone marrow mesenchymal stromal cells 
generated and provided Cys to leukemic cells, rendering them survival 
benefits (126). Moreover, in CLL, resistance to ASNase was attributable 
to the cystine provided to tumor cells by stromal cells (127). Thus, 
combination treatment of AA starvation with conventional 
chemotherapy might overcome chemoresistance and achieve a higher 
response rate.

3.3. Limited half-life period

Although AA starvation has shown some effect on treating 
hematologic malignancies, the half-life period of starvation was 
sometimes short in its current form, limiting its efficacy and feasibility 
in the future clinical practice. For example, the Cys returned to 

https://doi.org/10.3389/fnut.2023.1113228
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Wang et al. 10.3389/fnut.2023.1113228

Frontiers in Nutrition 08 frontiersin.org

previous level only 2 days after injection of a cyst(e)inase into mice 
models, requiring improvement of its form to ensure more stable and 
sustainable effect in vivo[64].

4. Conclusion

AAs are indispensable to development and progression of 
hematologic malignancies, with tumor cells demanding significantly 
larger amount of various AAs for enhanced proliferation, abnormal 
signaling transduction, and epigenetic dysregulation. The innovative 
therapy targeting AAs mainly aims at AA metabolism (either 
starvation or supplement) and transportation. Numbers of AA 
starvation therapy has been approved for hematologic treatment, such 
as L-ASNase. Treatment aiming at AA supplement, such as NAC, or 
transportation, such as xCT inhibitors, is being investigated in clinical 
trials and showing encouraging results. The innovative AA therapy 
will provide a promising approach to further improve treatment of 
hematologic malignancies, especially when combined to traditional 
chemotherapy in a more stable form with longer half-life period.
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