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Introduction: As low FODMAP (Fermentable oligosaccharides, disaccharides, 
monosaccharides and polyols) diet therapy is recommended for most of Irritable 
Bowel Syndrome (IBS) patients, the consequent insufficient of dietary fibers (DFs) 
intake exert an adverse impact on intestinal health. It is necessary to find suitable 
DFs for IBS patients.

Methods: This study extracted a water-insoluble polysaccharide from Wolfiporia 
cocos (WIP) by alkali-extraction and acid-precipitation method. Its molecular 
weight was detected by high performance gel permeation chromatography 
(HPGPC) analysis. The structure of WIP was analyzed by Fourier transform 
infrared (FT-IR) spectrum, Nuclear Magnetic Resonance (NMR) spectra and X-ray 
diffraction (XRD). The properties related to stability, digestion, viscosity, osmotic 
activity, adsorption and fermentation were investigated, aimed to explore the 
feasibility of WIP as a new DF supplement for patients with IBS. In addition, 16S 
rRNA sequencing analysis was conducted to explore its effects on IBS-related gut 
microbiota.

Results and Discussion: The results showed that WIP had a single homogeneous 
composition and the molecular weight was 8.1 × 103 Da. WIP was indicated as 
a kind of pyranose form with β anomeric configuration and the main chain of 
WIP was 1,3-β-glucan with amorphous structure. In addition to good thermal 
stability, WIP also has low bioavailability and can reach the colon mostly without 
being digested. Moreover, the low viscosity and osmotic activity, the high water- 
swelling and water/oil-holding capacity, fructose adsorption capacity and poor 
fermentation performance of WIP demonstrated that it is suitable for IBS patients. 
It is worth noting that WIP regulates IBS associated gut microbiota effectively, 
such as the abundance of Lachnospiraceae and Prevotella. These findings provide 
a theoretical basis for the development of WIP as a dietary supplement for IBS 
patients with low FODMAP diet therapy.
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1. Introduction

Wolfiporia cocos (previously named as Poria cocos) has been used 
in Asia for more than 2000 years as a kind of edible-medicinal 
mushroom (1–3). It is reported that polysaccharide and triterpenoids 
are the main ingredients in the dried sclerotia of W. cocos (1, 4–6). Our 
previous study found that one of the triterpenoids from W. cocos, 
16α-Hydroxytrametenolic Acid, enhances the function of intestinal 
barrier through glucocorticoid receptor-mediated PI3K/Akt/NF-κB 
signaling pathway (7). Polysaccharides from edible fungus have 
various biological activities, such as improving functional constipation 
and immune regulation (8). However, the direct utilization of natural 
polysaccharide in the W. cocos, which up to 80% in the dried sclerotia, 
is limited due to its water-insoluble property. Liu et al. demonstrated 
that oral administration of water-insoluble polysaccharide from 
W. cocos (WIP) can effectively improve glucose and lipid metabolism, 
reduce liver inflammation and steatosis in mice by regulating the gut 
microbiota (9, 10). Therefore, we speculate that WIP may be used as 
a functional dietary fiber (DF) to prevent intestinal disease and 
improve gut health.

Irritable bowel syndrome (IBS) is one of the most common 
functional gastrointestinal (GI) disorders, and its global prevalence is 
estimated to be 11.2% (11, 12). It is characterized by pain or abdominal 
discomfort accompanied with changes of bowel habits, which exerts 
significant impact on patients’ daily life (13, 14). Due to the accelerated 
pace of life and persistent mental stress, the number of IBS patients 
continues to increase in recent years. Treatment options for IBS include 
psychotherapy, medication, and dietary modification (15). However, a 
large number of psychological counseling will bring huge economic 
pressure to patients, and the effect of drug treatment is not obvious and 

there are many adverse reactions. In this case, diet therapy is becoming 
more and more popular. FODMAPs (fermentable oligosaccharides, 
disaccharides, monosaccharides, and polyols) describes carbohydrates 
that are neither digested nor absorbed in the human gut, including 
lactose, fructose in excess of glucose, sugar polyols (mannose and 
sorbitol), fructans and galactooligosaccharides (GOS, stachyose and 
raffinose) (16). Due to its high fermentable property and osmotic 
activity, FODMAPs can exacerbate symptoms of IBS patients (17). 
Therefore, low FODMAP diet is widely recommended by physicians as 
a first-line therapy for IBS patients (18). However, the concomitant 
problem with a low FODMAPs diet is a greatly reduction of DFs intake 
(19, 20), which aggravates intestinal problems such as constipation and 
gut microbiota disturbance, increases intestinal sensitivity, and is not 
conducive to the recovery of patients (21–24).

The application and therapeutic value of DFs depend on their 
functional properties. These properties determine that different DFs 
have specific effects on the gastrointestinal tract, including the 
formation of viscous gels, the expansion of fecal volume, and the 
impact on intestinal microbiota (25). In addition to the swelling 
property and water holding capacity, Atzler et al. pointed out that DF 
supplements suitable for IBS patients with low FODMAP diet therapy 
should meet four characteristics: insolubility, viscosity and gel 
formation, low osmotic activity and low fermentation (19). However, 
most of the commercial DFs, such as inulin and fructooligosaccharides 
(FOS), are soluble and have high fermentation properties similar to 
FODMAP (19), which can easily lead to the aggravation of symptoms 
in IBS patients. Therefore, it is important to develop new DFs suitable 
for a low FODMAP diet therapy in IBS.

In this paper, WIP was extracted by alkali-extraction and acid-
precipitation method. Its structure, molecular weight were identified 
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and its properties related to stability, digestion, viscosity, osmotic 
activity, adsorption and fermentation were investigated, aimed to 
explore the feasibility of WIP as a new DF supplement for IBS patients 
with low FODMAP diet therapy.

2. Materials and methods

2.1. Materials

The dried sclerotia of W. cocos and carboxymethyl poria cocos 
polysaccharide (CMP) were provided by Hunan Butian 
pharmaceutical Co., LTD (Hunan, China); Inulin was purchased from 
Beneo Orafti (Belgium); Sorbitol Assay Kit was provided by Solarbio 
LIFE SCIENCES (Beijing, China); Pepsin (USP, 1: 3000), Bile powder 
of pig (BR) and Pancreatin (BR, 1: 4000) were obtained from Yuanye 
Bio-Technology (Shanghai, China).

2.2. WIP extraction

WIP was extracted according to the reported method with some 
modification (10). In brief, dried sclerotia of W. cocos was grounded 
and extracted with NaOH solution (0.75 mol/L) and neutralized with 
HCl (1 mol/L) to obtain polysaccharide precipitation after removing 
fat-soluble and water-soluble molecules with petroleum ether and hot 
water, respectively. The crude polysaccharide was further washed by 
distilled water, dialyzed (molar mass truncation, 8.0 kDa) to remove 
inorganic salts and other impurities, then lyophilized and stored at 
4°C for further analysis.

2.3. Structure and molecular weight 
identification

Total sugar content was detected by the method of phenol-
sulfuric acid; Molecular weight was determined by high performance 
gel permeation chromatography (HPGPC) (BRT105-104-102 tandem 
gel column, differential detector RI-10A) as below: The WIP sample 
was resolved in 0.2 M NaOH solution (5 mg/mL), incubated at 120°C 
for 1 h, centrifuged at 12,000 rpm for 10 min, and the supernatant was 
filtered through a 0.22 μm microporous membrane for determination; 
Infrared spectrum data was determined by KBr tablet method and 
the absorption spectra was recorded at 4000–400 cm−1 wavelengths 
(Bruker TENSOR27 INFRARED spectrometer); UV spectral data 
was determined by PERSEE TU1810 UV spectrophotometer; WIP 
samples were dissolved in DMSO-D6 and NMR spectra was obtained 
with Bruker Avance-600 M spectrometer. XRD data was obtained 
with Bruker D8 Avance X-ray diffractometer (2θ = 5–50°, scanning 
speed 40°/min, step width 0.01°).

2.4. Thermal stability measurement

DSC data was measured by Perkin Elmer DSC8000 differential 
thermal analyzer (temperature range 25–500°C, heating rate 10°C/
min); TGA data was measured by Perkin Elmer TGA4000 
thermogravimetric analyzer (temperature range 25–600°C) (26).

2.5. In vitro digestion analysis

The method of in vitro digestion was simply modified on the basis 
of previous studies as below (27–30).

Oral digestion: Fresh saliva was donated by three healthy 
volunteers with no record of antibiotic use in 3 months. Saliva was 
collected, mixed and centrifuged then the supernatant was collected 
and stored at −20°C. WIP solution was made at a concentration of 
1.0 mg/mL and test tubes were divided into two groups: Group A 
(containing 1 mL saliva and 1 mL WIP solution) and Group B 
(containing 1 mL saliva and 1 mL water). All groups were placed in 
37°C for 15 min, then boiled for 5 min to inactivate saliva amylase and 
centrifuged at 4,500 rpm for 15 min to collect the supernatant.

Gastric digestion: The gastric electrolyte solution contained 3.10 g 
NaCl, 1.10 g KCl, 0.15 g CaCl2·2H2O, 0.6 g NaHCO3 per litter (pH 2.5). 
To prepare in vitro simulated gastric fluid, 1.5 mL CH3COONa 
(1 mol/L, pH 5.0) and 35.4 mg pepsin was mixed with 150 mL gastric 
electrolyte solution (pH 2.5). 100 mL simulated gastric fluid was 
mixed with WIP to make the concentration of 1.0 mg/mL, placed in a 
shaker at 37°C, 50 r/min. After 0, 0.5, 1, 1.5, and 2 h, respectively, 
10 mL reaction solution was boiled for 5 min and the supernatant was 
retained after centrifugation.

Intestinal digestion: The intestinal electrolyte solution consisted of 
5.4 g NaCl, 0.65 g KCl, 0.33 g CaCl2·2H2O per litter (pH 7.0). In vitro 
simulated intestinal fluid was prepared by mixing 20.0 g trypsin solution 
(7%, w/w), 40.0 g bile salt solution (4%, w/w) and 20 mL intestinal 
electrolyte solution (pH 7.0). The simulated intestinal fluid was mixed 
with digested gastric solution at the ratio of 10: 3 and placed in a shaker 
at 37°C. After 0, 0.5, 1, 1.5, and 2 h, respectively, 10 mL reaction solution 
was boiled for 5 min and the supernatant was retained after centrifugation.

The concentration of reducing sugar in the supernatant was 
determined by the DNS method.

2.6. Viscosity and particle size 
measurement

WIP, CMP and inulin were prepared into 0.1 wt% aqueous 
solutions, and the hydrated particle size was determined by Litesizer 
500 nanometer particle size and Zeta potential analyzer. The particle 
size of WIP was determined by Winner 2308 laser particle size 
analyzer as its size was exceeded the detection range.

WIP, CMP and inulin were accurately weighed, dispersed in water 
to produce a suspension (1.0 mg/mL) and then tested for viscosity 
using TA Instruments from Waters (Discovery HR10, 40 mm parallel 
plat, Gap = 1,200 μm, shear rate range: 1.0 s-1 ~ 100.0 s-1) (31).

2.7. Water/oil-holding capacity analysis

2.7.1. Water swelling capacity (WSC) analysis
WIP (0.5 g) was mixed with simulated intestinal fluid (5 mL), 

placed in graduated test tubes, and treated for different times. The 
volume changes at 0, 2, 4, 6, and 8 h were calculated respectively, and 
the WSC was calculated as follows:

 
WSC V V W= −( )1 2 1/
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In the formula, V1 is the volume before expansion, V2 is the 
volume after expansion, and W1 is the weight of the sample (32).

2.7.2. Water-holding capacity (WHC) analysis
WIP (0.1 g, W1) was added to 10 mL distilled water and 

equilibrated at 37°C for 2 h. After centrifugation at 4,800 rpm for 
10 min, the residue was immediately extracted and the weight (W2) 
was determined (33). Finally, the WHC was calculated by the 
following equation:

 WHC W W W= −( )2 1 1/ .

2.7.3. Oil-holding capacity (OHC) analysis
WIP (0.1 g, O1) was added to 10 mL soybean oil and equilibrated 

at 37°C for 2 h. After centrifugation at 4,800 rpm for 10 min, the 
residue was immediately extracted and the weight (O2) was 
determined (33). Finally, the OHC was calculated as follows:

 
OHC O O O= −( )2 1 1/ .

2.8. Detection of FODMAPs adsorption 
capacity

0.1 g samples (WIP, CMP) were mixed with 10 mL different 
FODMAPs (fructose, lactose and sorbitol) solution (5 mmol/L), 
respectively, and incubated for 6 h at 37°C. The contents of fructose 
and lactose in supernatant were determined by DNS method, and the 
content of sorbitol in supernatant was measured by the sorbitol 
detection kit.

 FODMAPs adsorption capacity n n n m= − −( ) 2 1 0 /

In the formula, m is the sample mass/g; n0 is the FODMAPs 
content of the blank group /mg; n1 is the FODMAPs content of the 
sample group /mg; n2 is the FODMAPs content of the control group/
mg (34).

2.9. Density measurement

0.5 g samples (WIP, CMP, INU) were added into 10 mL 
measuring cylinder and the volume of samples were recorded. 
The cylinder was then tapped 100 times on the table, and the 
volume of samples were recorded again. Bulk density and tapped 
density were calculated as the ratio of weight to volume (35). 
Hausner’s ratio and compressibility index were calculated by the 
following equation:

 
Hausner's ratio Tapped density Bulk density= /

 
Compressibility index

Tapped density Bulk density

Tapped de
=

−
nnsity

×100.

2.10. In vitro fermentation

2.10.1. Collection and preparation of fecal 
inoculum

Fresh feces of three healthy donors (two women and one man, 
aged from 22 to 25, who had no record of antibiotic use in the past 
3 months) were collected. Then, the fecal samples from three donors 
were mixed evenly at a mass ratio of 1:1:1, diluted 10 times with 
diluent (0.24 g KH2PO4, 1.44 g Na2HPO4, 8.0 g NaCl, and 0.2 g KCl per 
liter). The supernatant was collected after centrifugation to obtain a 
10% (w/v) fecal inoculum (36).

2.10.2. In vitro colonic fermentation
Fermentation was studied in vitro according to the previously 

described method with slight modification (25, 37). Briefly, after 
sterilized by UV irradiation for 12 h, 100 mg of samples (WIP, 
CMP, INU) were added into sterile fermentation containers, 
respectively. In addition, 1 mL fecal inoculum and 9 mL sterilized 
fermentation medium [10.0 g peptone, 4.0 g yeast extract, 1.0 g 
cysteine hydrochloride, 1.0 g NaCl, 0.45 g KH2PO4, 0.45 g K2HPO4, 
0.05 g Hemin, 0.2 g CaCl2, 4.5 g MgSO4, 0.25 g resazurin, 10 μL 
Vitamin K1 per litter (pH 6.8)] were added, mixed, and placed in 
an anaerobic incubator at 37°C for 6 h. The changes of pH were 
measured before and after fermentation and each post-
fermentation sample was collected and stored at −20°C for 
further analysis.

2.11. Post fermentation analysis

2.11.1. Quantification of reducing sugar and 
ammonia

The content of reducing sugar in post-fermentation samples 
was detected by DNS method, and the phenol-sodium hypochlorite 
colorimetric method was used to detect the content of ammonia 
(38). Briefly, the broth was centrifuged after fermentation and 
40 μL of supernatant was taken. Then, 40 μL of distilled water, 
2.5 mL of phenol chromogenic reagent and 2.0 mL of hypochlorite 
reagent were added and mixed well. After heating at 37°C for 
30 min, the absorbance was detected at 550 nm, and the ammonia 
concentration was calculated.

2.11.2. Morphological analysis
Samples before and after fermentation were completely dried and 

fixed on aluminum posts using double-sided tape. Then, a thin layer 
of gold was sputtered on the surface by ion sputtering in a vacuum for 
30 s. The surface and microstructure were observed with SEM 
(SU8020 scanning electron microscope, Hitachi, Tokyo, Japan) at 
5,000× magnification.

2.11.3. Gut microbiota analysis
Genomic DNAs were extracted by CTAB or SDS method. The 

V3-V4 region of bacterial 16S rRNA gene was amplified using 515F 
and 806R primers by PCR. Products were detected, purified and 
collected. The library was constructed using the NEBNext® Ultra™ 
IIDNA Library Prep Kit, and quantified by Qubit and 
Q-PCR. NovaSeq6000 was used for sequencing. Paired-end 
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sequencing was used with a length of 250 bp at each end; noise 
reduction was performed by DADA2; QIIME2’s classify-sklearn 
algorithm was used to annotate species for each ASV using a 
pre-trained Naive Bayes classifier; Based on the annotated results of 
ASVs and the character of each sample, tables of species abundance at 
the level of kingdom, phylum, order, family, genus and species were 
obtained; Unifrac distances were calculated by QIIME2 software and 
R software was used to plot PCA, PCoA and NMDS downscaling 
maps. PCA and PCoA invoked packages ade4 and ggplot2  in R 
software (37).

2.12. Statistical analysis

Statistical analysis in this study was performed using GraphPad 
Prism 8 (La Jolla, CA, United  States). All the experiments were 
performed in triplicate, and the data were presented as the 
mean ± standard deviation (SD). Significance was assessed by one-way 
analysis of variance (ANOVA) and student’s t test. P-values <0.05 was 
considered to be  statistically significant (*p < 0.05, **p < 0.01, 
***p < 0.001).

3. Results and discussion

3.1. Structure identification and thermal 
stability analysis of WIP

WIP is an acidic polysaccharide that is insoluble in water but 
soluble in alkaline conditions. Results of extraction and properties of 
WIP are shown in Table 1. The extraction yield of WIP was 61.6% after 
dialysis and freeze drying. The total sugar content detected by the 
method of phenol-sulfuric acid was about 90.57%. HPGPC analysis 
of WIP showed a single homogeneous composition and the molecular 
weight was 8.107 × 103 Da (Figure  1). According to the dispersion 
coefficient of WIP, the homogeneity of its molecular weight was high 
and the molecular weight distribution was narrow. Compared with the 
results in previous study of Liu et al., the extraction yield of insoluble 
Wolfiporia cocos polysaccharide was 39.8% and the molecular weight 
was 4.486 × 106 Da (10). In our study, the extraction yield of WIP was 
higher and the molecular weight was lower, which might attribute to 
the differences in the origin of W. cocos and the extraction process 
of polysaccharides.

The Fourier transform infrared (FT-IR) spectrum of WIP in 
Figure 2A showed that the absorption peaks at 3,424 and 2,898 cm−1 

were corresponding to the vibration of O-H and C-H; the 
absorption peak at 1,655 cm−1 was caused by an asymmetric 
vibration of -C=O; the absorption band centered at 1,200–
1,000 cm−1 indicating the vibration of -C-O-C, -C-O-H; the 
absorption peak at 890 cm−1 showed the presence of β-glycosidic 
linkages. Based on the findings, WIP was indicated as a kind of 
pyranose form of sugar with β anomeric configuration.

According to the UV scanning result of WIP solution in Figure 2B, 
there was no characteristic absorption peak at 260–280 nm, 
demonstrating that WIP contained almost no protein.

In consistent with the reported study, (10) signals at 103.5/4.5, 
73.3/3.27, 86.7/3.44, 68.8/3.20, 76.8/3.27, 61.3/3.69 observed in the 1H and 
13C Nuclear Magnetic Resonance (NMR) spectra of WIP confirmed that 
the main chain of WIP was 1,3-β -glucan (Figures 2C,D).

Result of X-ray diffraction (XRD) in Figure 2E showed that the 
main diffraction peaks of WIP were located at 2θ = 6° and 18.3° with 
weak intensities, indicating that WIP was crystallized inside, and the 
crystallinity was very weak, which belonging to the amorphous 
structure (39).

Since heat treatment is unavoidable in food processing, thermal 
stability is an important property of polymers used in food. In the 
process of heating, evaporation of free and bound water occurred at 
first. With the increase of temperature, the disaggregation of 
polysaccharide chains and the fracture of C-H bonds lead to the 
weight loss in the thermal decomposition process. The 
thermogravimetric (TGA) curve in Figure 2F demonstrated that the 
maximum weight loss occurred in the second stage (270–350°C), 
which may be affected by the thermal decomposition of WIP. In the 
final stage (350–600°C), the weight loss rate of WIP slowed down, 
which may be due to the thermal decomposition of carbon (39). The 
Dynamic Stability Control (DSC) curve in Figure 2F showed that 
there was an absorption peak around 100°C, which was formed by the 
free water and bound water evaporated in the sample (40). The 
endothermic processes were at 58.8, 283.5, and 302.1°C, respectively, 
and the maximum peak appeared at 322.2°C. This was due to the 
violent thermal decomposition reaction, leading to the breakage of 
carbon and hydrogen chains. Yang et al. also found the similar range 
of weight loss in acidic polysaccharide from Ribes nigrum L; Arab et al. 
showed that polysaccharide from Ocimum album L. seed had familiar 
thermal properties (40, 41). These results proved that WIP had good 
processing thermal stability.

3.2. In vitro digestibility

In general, cleavage of glycosidic bonds in polysaccharides leads 
to an increase in the number of reducing sugars (42). In the process of 
WIP in vitro digestion, there was no significant difference in the 
amount of reducing sugar released during oral digestion by the 
Student’s t test statistical analysis (Figure 3A), indicating that WIP 
could hardly be hydrolysed by saliva; After gastric digestion for 2 h, 
the content of reducing sugar increased from 0.06 to 0.11 mg, which 
might be related to the partially decomposition of glycosidic bonds 
and formation of reducing ends in WIP under the environment of 
gastric acid and pepsin (Figure 3B); After 2 h of intestinal digestion, 
the reducing sugar content increased from 0.11 mg to 0.15 mg, 
probably due to the action of trypsin and bile salt (Figure 3C). In Zhu’s 
study, an increase in the amount of reducing sugar was observed after 

TABLE 1 Properties of water-insoluble polysaccharide from W. cocos 
(WIP).

Properties Results

Extraction yield of WIP 61.6%

Polysaccharide content 90.57%

Protein content 0

Mn 6,192

Mw 8,107

Mw/Mn 1.31
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in vitro digestion, which related to the hydrolyzed effect of amylase 
(43). Based on the findings that only a small amount of WIP was 
degraded during the oral and gastrointestinal digestion process, 
we speculated that WIP had low bioavailability and might reach the 
colon mostly without being digested.

3.3. Viscosity and osmotic activity analysis 
of WIP

Studies confirmed that non-viscous insoluble fibers (such as 
wheat bran and cellulose) can mechanically stimulate the intestinal 
mucosa and promote mucus secretion (19, 44). Molecular particle size 
of carbohydrates determines the sensitivity to digestion, water-holding 
capacity and intestinal transport time (45). What’s more, Yao et al. 
exhibited that particle size of dietary fiber has diverse effects on in 
vitro gut fermentation rate (46).

Increased water content in the intestinal lumen is associated with 
smaller particle size of carbohydrates. Small molecules that are 
osmotically active, causing water to be reabsorbed into the colon, 
which stretches and softens stool. However, if infiltration occurs over 
time or in excess, it can cause diarrhea and may exacerbate symptoms 
in people with diarrhea-predominant IBS (IBS-D).

Therefore, in this part of study, we  investigated the viscosity 
characteristics and particle size of WIP. Two kinds of water-soluble 
polysaccharides are selected as comparisons. One is Inulin (INU), 
which is rich in water-soluble dietary fiber and is often used as a high-
fiber food ingredient; the other is Carboxymethyl Wolfiporia cocos 
polysaccharide (CMP), which is made by carboxymethylation 
modification on the basis of WIP to increase its solubility (47). The 
purpose of selecting CMP as comparison is to explore the effect of 
solubility and carboxymethyl structure on the functional 
properties of WIP.

The results of viscosity measurement in Figure 4A showed that 
with the increase of shear rate, the viscosity of WIP, CMP and INU 
decreased, indicating that the shear thinning flow occurred. Shear 
thinning fluid conforms to the pseudoplastic flow law, and most of 
the liquid foods are shear thinning fluid. WIP maintained a low 
viscosity with the change of shear rates, which may be related to its 
water-insoluble property. According to the results in Figure 4B, the 
particle size of WIP is larger than INU and CMP, which indicated 
that its osmotic activity is poor and would not cause diarrhea or 
other symptoms due to osmosis. Clinical study confirmed that the 
effect of larger insoluble fibrous particles on the colonic mucosa, 
such as stimulates water and mucus secretion, shortens transit time 
and increases stool volume for fecal excretion (48). Therefore, WIP 

A

B

FIGURE 1

HPGPC analysis of WIP. (A) Molecular weight of WIP, (B) peak of mobile phase.
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with low viscosity and large particle size related low osmotic 
activity may be helpful for both IBS-D and constipated IBS (IBS-C) 
patients.

3.4. Adsorption characteristics analysis of 
WIP

3.4.1. Water/oil-holding capacity (WHC/OHC) of 
WIP

Water and oil-holding capacity provides information on the pore 
volume of dietary fibers, which reflects their function during the 
intestinal transit. The hydration properties of fibers affect their 

metabolic activity in the intestinal tract, and the swelling effect of feces 
is also related to the water retention of fiber (49). Moreover, in the 
self-reported food intolerance survey of IBS patients, many intestinal 
symptoms are associated with high-fat food intake (50, 51). Therefore, 
supplementing the diet with ingredients that can absorb oil may 
relieve the symptoms of IBS patients.

According to the results in Figure  5A, the water swelling 
capacity (WSC) of WIP in simulated intestinal fluid was 5.33 mL/g. 
WHC and OHC of WIP were 21.825 and 22.65 g/g, respectively 
(Figure  5B), which were higher than reported dietary fibers 
extracted from sweet potato residue (52) and Foxtail millet bran 
(53). WHC and OHC of dietary fiber are related to particle size, 
surface characteristics and hydrophobicity (54). Good WHC and 

A B

C D

E F

FIGURE 2

Structural characterization of WIP. (A) FT-IR, (B) ultraviolet spectrogram, (C) 1H spectrum in DMSO-d6, (D) 13C spectrum in DMSO-d6, (E) XRD, (F) DSC 
and TGA of WIP.
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OHC of WIP may attribute to its fluffy texture and large particle 
size, indicating that WIP had potential in promoting fecal volume 
expansion and accelerating defecation.

3.4.2. Fructose adsorption capacity of WIP
Many symptoms of IBS may be caused by the intake of poorly 

absorbed FODMAPs with high osmotic activity, especially fructose, 
lactose, and sorbitol (55). Fermentation of these molecules in the 
proximal colon can produce gas, leading to swelling, abdominal 
distension and abdominal pain symptoms (56). Some insoluble 
dietary fibers have been confirmed to have the property of adsorbing 
glucose (34, 57), thus we carried out the adsorption experiment of 
WIP on fructose, lactose and sorbitol.

Comparing with the control and CMP group, the fructose content 
in the solution was significantly reduced after the WIP adsorption 
treatment. Therefore, we  concluded that WIP has some ability to 
adsorb fructose and the adsorption capacity was 0.17 mg/g based on 
the data in Table 2. However, it had no obvious adsorption effect on 
lactose and sorbitol (Table  2).This specific adsorption effect may 
be due to the lower molecular weight (fructose Mw = 180.16, lactose 
Mw = 342.3, sorbitol Mw = 182.17) and higher solubility of fructose 

(fructose 3.75 g/mL, lactose 0.216 g/mL, sorbitol 2.2 g/mL), which had 
a higher diffusion rate in the solution system and easier to be adsorbed 
by WIP. The results confirmed that WIP had the ability to adsorb 
FODMAP components and might reduce the occurrence of IBS 
symptoms. While CMP had poor adsorption capacity compared with 
WIP, we supposed that it related to its tighter texture, smaller particle 
size and higher bulk density. Therefore, we  studied their density 
characteristics in the next chapters.

3.5. Density characteristics of WIP

It has been reported that the mechanism of adsorption capacity of 
dietary fiber is due to the absorption or inclusion of small molecules 
in its internal structure (34, 58). The bulk density and tapped density 
provide insight into the particles accumulation, arrangement and the 
compaction distribution of the material. Bulk and tapped densities, 
Hausner’s ratio and compressibility index depend on particle shape, 
distribution of size and tendency to stick together (59). To explore the 
mechanism related to the adsorption property of WIP, we measured 
its density-related indicators.

A B

FIGURE 4

Viscosity and osmotic activity of WIP. (A) Viscosity, (B) particle size of WIP, CMP and INU.

A B C

FIGURE 3

Changes in reducing sugar contents of WIP. (A) Oral digestion, (B) gastric digestion, (C) intestinal digestion during In vitro digestion.
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WIP had the lowest bulk and tapped densities compared with CMP 
and INU (Figures 6A,B), suggesting a looser porous texture which could 
explain its ability to absorb fructose. Normally, Hausner’s ratio greater 
than 1.60 indicates that the material has very poor fluidity; simultaneous 
compressibility index value >38% also leads to very poor fluidity (60). 
According to the results of Hausner’s ratio in Figure  6C, it can 
be concluded that comparing with CMP and INU, the fluidity of WIP 
is poor, which may be  related to its larger particle size. Interstitial 
cavities (external porosity) result in high compressibility and the more 
holes in a matrix, the higher of its compressibility (61). Figure  6D 
showed that WIP had a higher compressibility index than CMP and 
INU, which might explain its ability to adsorb water, oil and fructose. In 
addition, Hausner’s ratio is used to reflect the flow capacity of powder. 
The fluidity of the powder affects the choice of formulation type and 
surface morphology in its applications. For example, powders with poor 
fluidity often have rough surfaces that are not easily dispersed and 
should not be  made into granules. Therefore, granulation should 
be avoided in applications of WIP.

3.6. In vitro fermentation characteristics of 
WIP

3.6.1. Effect of WIP on pH, reducing sugar and 
ammino content

In vitro fermentation are widely involved in evaluating the ability 
of gut microbiota to metabolize various foods under anaerobic 
conditions, providing theoretical bases for the development of 
functional foods (42). Therefore, it is necessary to study the metabolic 
properties of fibers by in vitro fermentation, and to select the dietary 
supplement ingredients that are expected to be  used in the low 
FODMAP diet therapy. Due to the size limitation of the anaerobic 

incubator in this rapid fermentation model, it was difficult to place a 
stirring device in it, so we simply vortex-mixed the samples prior to 
performing the in vitro fermentation. In our future study, a stirring 
device will be set up in a new anaerobic incubator.

In our early exploration of the prebiotic activity of WIP, we found 
that it was not easy to be utilized by Lactobacillus rhamnosus GG 
(Supplementary Figure S1). Therefore, we speculated that WIP had 
low fermentation activity and might be a kind of dietary fiber suitable 
for IBS patients.

Fermentation of polysaccharide by the gut microbiota produces 
acidic end products such as lactic acid and short-chain fatty acids, 
which lead to a decrease in the intestinal pH. By monitoring the pH 
changes during the fermentation process, we found significant drop 
in the pH values of the WIP, CMP and INU groups after fermentation 
(Figure 7A). There was no significant difference among the WIP, CMP 
and CON groups, while pH in the INU group showed the greatest 
decline, which indicated that the fermentation performance of WIP 
and CMP was lower than INU. So et al. proved that the total gas 
production has negative correlation with post-fermentation pH (25). 
Based on the change trend of pH, it was speculated that the gas 
production of WIP should be much lower than INU. Therefore, WIP 
was less likely to cause abdominal distension and more suitable for 
IBS patients.

Traditional in vitro fermentation models usually run for 24 or 
48 h, which lacks clinical relevance to irritable bowel syndrome, 
where symptoms are more attributable to the rapid production of 
gas over a short period of time, so we  opted for a short, rapid 
fermentation model (25, 37). In the initial fermentation, the gut 
microbiota hydrolyzed the glyosidic bonds of the polysaccharides 
to release reducing sugars as a carbon source and an increase in 
reducing sugar content usually occurs at the beginning of 
fermentation. Guo et  al. (42) mentioned that during the 
fermentation process, the intestinal flora utilized polysaccharides 
from Clitocybe squamulosa continuously, resulting in the breakage 

A B

C D

FIGURE 6

Density characteristics of WIP. (A) Bulk density, (B) Tapped density, 
(C) Hausner’s ratio and (D) compressibility index of WIP, CMP, and 
INU. ***p < 0.001 and ****p < 0.0001.

A B

FIGURE 5

Water and oil adsorption characteristics of WIP. (A) WSC, (B) WHC 
and OHC of WIP.

TABLE 2 The contents of FODMAPs after the WIP adsorption treatment.

Fructose 
content (mg)

Lactose 
content (mg)

Sorbitol 
content 

(mg)

CON 0.512 ± 0.007 0.694 ± 0.011 9.81 ± 0.117

WIP 0.495 ± 0.001* 0.697 ± 0.009 8.40 ± 0.038

CMP 0.503 ± 0.008 0.680 ± 0.012 8.60 ± 0.020

(Means ± standard deviation. *After the data indicates a significant change p < 0.05).
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of glyosidic bond and the exposure of reducing ends, producing 
short-chain reducing sugars. When the fermentation time increased 
from 0 to 6 h, the reducing sugar content increased from 0.50 ± 0.03 
to 0.80 ± 0.02 mg/mL. A significant increase in the amount of 
reducing sugars during fermentation was also observed in the study 
of Liu et al. (62). In our experiment, there was no difference among 
the WIP, CMP and CON group after fermentation, while the 
amount of reducing sugar in INU group increased significantly 
(Figure 7B), confirming that WIP was lower fermented by the gut 
microbiota. In addition, the solubility and carboxymethyl structure 
would not affect its low fermentation characteristics. It is worth 
noting that the determination of ammonia content showed no 
difference among the WIP, INU and CON group, while the 
ammonia content in CMP group increased lightly (Figure  7C), 
indicating that the CMP group had a higher level of protein 
fermentation. This may be due to the differences in solubility and 
viscosity between WIP and CMP (38).

These results showed that compared with INU, WIP was more 
suitable for IBS patients, and the presence of carboxymethyl structure 
also had impact on its fermentation performance.

3.6.2. Morphological changes of WIP after 
fermentation

Porosity determines the extent that enzymes or bacteria can 
diffuse into the fiber, which will greatly affect its fermentability (48). 
Low porosity of the food matrix in the large intestine of humans 
usually hinders its fermentative degradation. According to the 
scanning electron microscope (SEM) images, the WIP was a kind of 
flat and dense sheet with few pores (Figures 8A,B). After fermentation, 
its structure remained intact, with increasing roughness of the surface 
(Figures  8C,D). Guillon et  al. pointed out that the pore volume 
accessible to gut bacteria in beet fiber affected its fermentability, which 
consistent with our findings (63). Hence, we speculated that due to the 
low porosity, flat and dense surface of WIP, it had low fermentation 
characteristics and might be suitable for IBS patients.

3.6.3. Effect of WIP on gut microbiota 
composition

Gut microbiota plays an important role in maintaining host health, 
and dysbiosis of intestinal flora associated with increased susceptibility 
to disease (64). In this study, we collected stool samples from healthy 
donors, sequenced the fermented flora, combined with relevant 

literature to explore whether WIP has a modulating effect on the flora 
associated with the development of IBS. It is carried out based on the 
published papers which used in vitro fermentation of healthy human 
fecal samples to demonstrate the ability of the substrates to improve the 
disease. For example, in the study of Ge et al. (37), stool from a healthy 
donor was used to explore the potential of bamboo dietary fiber to 
improve obesity based on its modulation on the obesity-related flora. 
Although healthy human fecal samples were used in current studies to 
illustrate the modulatory effect of the samples on the disease-associated 
flora, this is limited by the fact that the samples cannot be guaranteed 
to have the same effect after changes in the intestinal microecology of 
patients. Therefore, we are working with Nanjing Hospital of Chinese 
Medicine Affiliated to Nanjing University of Chinese Medicine to 
collect stool samples from IBS patients to verify the effect of WIP on 
the regulation of IBS related intestinal flora in the future.

Changes in gut bacterial composition can be determined by high-
throughput analysis of 16S rRNA of fermentation broth. Simpson index 
can be involved to evaluate the diversity and evenness of gut microbial 
communities. The better evenness of species, the greater of the Simpson 
index. The Shannon index is widely used to describe the uncertainty 
and disorder of the individual species. The higher the uncertainty, the 
higher the diversity. Bacterial diversity may be affected by different 
algorithms, leading to different results (65). Our results in Figure 9A 
showed that the Simpson index of each group was large and there was 
no obvious difference, indicating that the species diversity and 
uniformity in each group was good. The Shannon index was slightly 
down-regulated in all groups after fermentation, while the changes were 
not significant (Figure 9B). It was reported that Bacteroidetes, Firmicutes, 
and Proteobacteria can degrade complex and indigestible 
polysaccharides (66). Ternary analysis in Figure  9C showed that 
Bacteroidetes, Firmicutes, and Proteobacteria were dominant phyla 
among all the groups, indicating they were the main bacterial groups 
that degraded WIP, CMP, and INU.

Differences among the gut microbial communities in each 
group were analyzed according to the β-diversity. There were 
statistical differences among the groups after 6 h of fermentation, 
and the principal coordinate component (PCoA) PC-1 exhibited 
the maximum data change of 88.34%. All groups were far away 
from the initial flora before fermentation (INI group), indicating 
that the diversity of bacterial community changed after in vitro 
fermentation (Figure 10A). Non-metric multidimensional scale 
(NMDS) was also used to assess the similarity of microbial 

A B C

FIGURE 7

Effect of WIP, CMP and INU on (A) pH value, (B) reducing sugar content, and (C) ammonia content.*p < 0.05 and ***p < 0.001. 

https://doi.org/10.3389/fnut.2023.1119583
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Yang et al. 10.3389/fnut.2023.1119583

Frontiers in Nutrition 11 frontiersin.org

communities among different groups. In Figure 10B, the distances 
between INI and other groups were long, confirming that the 
bacterial communities in WIP, CMP and INU group changed 
significantly after fermentation.

In gut microbiota composition analysis, Simper can be used to 
analyze the contribution of specific species in the change of 
community composition, and select species with significant 
differences among different communities (67, 68). According to the 
result of Simper plot in Figure  11A, the top three differentially 

contributing phyla between WIP and CON were Proteobacteria, 
Firmicutes and Bacteroidetes, respectively. Species belonging to the 
clade of Fibrobacterota possess high proportions of genes encoding 
carbohydrate-active enzymes (CAZy). Hence, Fibrobacteriaceae is 
particularly suitable for degrading dextran, cellulose, mannan, acacia, 
xylan, xyloglucan, chitin, starch and pectin (69). The microbiota 
heatmap in Figure  11B exhibited the highest abundance of 
Fibrobacteriaceae in the WIP group, suggesting that it might be the 
key microorganisms in WIP degradation.

A B C

FIGURE 9

Diversity and evenness analysis of gut microbial communities. (A) Simpson index, (B) Shannon index, and (C) ternary plot in WIP, CMP, and INU.

A B

C D

FIGURE 8

Morphological changes of WIP during in vitro fermentation. (A,B) SEM of WIP before fermentation, (C,D) SEM of WIP after fermentation.
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Intestinal flora imbalance is closely related to the pathogenesis of 
IBS. We further analyzed the relative abundance of species at the 
phylum, family and genus levels, respectively, and identified the 
microorganisms with obvious changes. Yao et al. demonstrated that 
the proportion of Firmicutes/Bacteroidetes (F/B) in stool samples 
from IBS patients was significantly increased (70). As shown in 
Figures  12A,B, the F/B ratio in WIP group was down-regulated 
compared with the INI group, suggesting that WIP had the potential 
to alleviate F/B imbalance in IBS patients.

As a potential marker of intestinal flora imbalance, 
Lachnospiraceae is associated with the occurrence of many diseases. 
Significant increase in Lachnospiraceae abundance was reported in 
IBS-D patients (71). We found that the proportions of Lachnospiraceae 
decreased in both WIP and CMP groups, which was more obvious in 
WIP group (Figures 12C,D). Thus, WIP may regulate the excessive 
proliferation of Lachnospiraceae in IBS patients.

The change of gut microbiota is related to the increase of visceral 
hypersensitivity. Previous studies have shown that the high abundance 
of Prevotella may be positively correlated with the high risk of IBS-D 
(72–74). The genus level abundances shown in Figures  12E,F 
demonstrated that the abundance of Prevotella was significantly 
down-regulated in the WIP and CMP groups after fermentation. 
Based on the results, we speculated that WIP had the high potential 
to regulate IBS related gut microflora.

4. Conclusion

Taken together, the most striking finding in our study was that 
the characteristics and properties of WIP extracted from W. cocos, 
including stability, digestion, viscosity, osmotic activity, adsorption 
and fermentation, meet the requirements of dietary fiber suitable for 

A B

FIGURE 11

Contribution of species on gut microbial communities. (A) Simper analysis of WIP, (B) Heatmap analysis of WIP, CMP, and INU at the phylum level.

A B

FIGURE 10

β-diversity analysis of gut microbial communities. (A) PCoA, (B) NMDS of WIP, CMP, and INU.
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a low FODMAP diet therapy in IBS and related mechanisms were 
also explored. Moreover, it is worth noting that WIP regulates IBS 
associated gut microbiota effectively, such as the abundance of 
Lachnospiraceae and Prevotella. Further studies are ongoing to verify 
the efficacy of WIP in vivo, which is necessary to evaluate its potential 
for use in intestinal disease prevention and gut health improvement 
with specific mechanisms. In the future, randomized clinical 
controlled trials will be  carried out to develop WIP as a dietary 
supplement for IBS patients with low FODMAP diet therapy.
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