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The lipids of the oyster (Crassostrea hongkongensis) have a special physiological

activity function, which is essential to maintain human health. However,

comprehensive research on their lipids species andmetabolism is not so common.

In our study, based on the high-performance liquid chromatography/quadrupole

time-of-flight mass spectrometer (HPLC/Q-TOF-MS), the non-targeted

lipidomics research of Crassostrea hongkongensis fresh and dried products was

determined. Meanwhile, we analyzed its lipid outline, screened the di�erences

between the lipid molecules of Crassostrea hongkongensis fresh and dried

products, and determined the lipid metabolic pathway. Results showed that 1,523

lipid molecules were detected, in which polyunsaturated fatty acids mostly existed

in such lipids as phosphoglyceride. Through the multivariate statistical analysis,

according to the conditions of P < 0.05, FC > 2 or FC < 0.05, and VIP > 1.2, 239

di�erent lipid molecules were selected, including 37 fatty acids (FA), 60 glycerol

phospholipids (GP), 20 glycerin (GL), 38 sheath lipids (SP), 31 steroid lipids (ST),

36 polyethylene (PK), and 17 progesterone lipids (PR). Combined with the Kyoto

Encyclopedia of Genes and Genomes (KEGG), the di�erential lipid molecules were

analyzed to mainly determine the role of the glycerin phospholipid metabolic

pathway. As a whole, the results of this study provide the theoretical basis for the

high-value utilization of oysters and are helpful to the development of oysters’

physiological activity functions and deep utilization.
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1. Introduction

The ocean has extremely rich marine resources by virtue of its

vast area. Moreover, it provides human beings with many active

substances for drug-homologous foods. However, the development

and utilization of marine resources are far from enough. In recent

years, due to the development of technology, the industrialization

and utilization of marine resources have also become a hotspot

among the current research (1–3). There are varieties of oysters all

over the world, such as Crossostrea gigas, Crassostrea gigas angulate,

Crassostrea hongkongensis, Ostrea rivularis Gould, and Crassostrea

sikamea (4). In China, oysters have a wide range of breeding and

huge yields (5, 6). According to relevant statistics, the total output

of oysters in China in 2021 reached 5.7962 million tons (7). Its

breeding range from the north to the Yalu River, to Hainan Province

in the south, and there are breeding in coastal areas. As one of the

four major producing areas of Chinese oysters, Guangxi’s oyster

breeding is mainly concentrated on the coast of Beibu Gulf. Only

Qinzhou has an annual output of 297,000 tons of oysters (7), among

which, Crassostrea hongkongensis has a dominant position.

Regarding the record of the excellent pharmacological value

of oysters, it has existed since ancient times. In Shennong’s Herbal

Classic of Materia Medica, oysters can prevent and cure wind-

cold, strengthen the body, and extend the life of human beings.

Many studies have proven that oysters are a kind of nutritional

food, and their active substances have the effects of antibiosis,

antioxidation, anti-inflammation, blood sugar lowering, blood

pressure, liver protection, and skin whitening (8). At present, the

research on oyster nutritional ingredients is mostly concentrated

on the preparation of peptides and their application in trauma

repair (9), the role of polysaccharides in disease prevention and

control (10, 11), the distribution and existence form of minerals

(12), and many more. Nonetheless, there are few studies on oyster

lipid components.

Since Han and Gross (13) proposed the relevant concepts

of lipidomics in 2003, lipids were found to play a crucial

role in the fields of disease prevention and control. Over the

years, an enormous amount of research has been conducted

to determine that multi-unsaturated fatty acids that are rich in

seafood, contribute to reducing cardiovascular and cerebrovascular

diseases, and also have anti-inflammatory and anti-aging effects

(14, 15). In addition, the lipids of some marine sources have

a different positive nature (16). Existing studies have proved

that the phospholipid type docosahexaenoic acid (DHA) and

eicosapentaenoic acid (EPA) play a protective role in liver damage

(17). Compared with other sources of DHA and EPA, they have

higher biological utilization and better antioxidant stability (18).

However, there is a current dearth of comprehensive analysis

regarding the lipid composition and metabolism in oysters, most

of which focus on seasonal changes in oyster lipids (19) and

the study of oxidation of lipids under different conditions (20),

owing to the fact that it may be restricted by the technical

level. Traditional lipid measurements methods such as color

measurement method, fluorescent method, gas chromatography

(GC), and gas chromatography-mass spectrometry (GC-MS) (21),

not only consume a long time, low sensitivity but even with certain

interference factors. The liquid color spectrum series technology

is widely used in the analysis of marine biolip-based components

on account of its high volume and accuracy (22–24). Therefore,

this experiment was based on the application of HPLC/Q-TOF-MS

to study the lipids of Crassostrea hongkongensis. Additionally, due

to the fact that the meat of fresh oysters is easy to be corrupted

and cannot be stored and transported for a long time, many

oysters are processed as dried products (25). The drying process

conditions of marine products can accelerate the fragmentation,

degradation, and oxidation of lipids, in particular, unsaturated fatty

acids (26). Through the analysis of the nutritional components of

Crassostrea hongkongensis fresh and dried products, it can be seen

that after the procedure of processing Crassostrea hongkongensis,

the content of crude fat has changed significantly (27). Therefore,

our study needed to determine the lipid molecules of Crassostrea

hongkongensis fresh and dried products, and according to the

composition and relative content of the lipid molecules of

Crassostrea hongkongensis fresh and dried products, selecting

different lipid molecules after the processing process of Crassostrea

hongkongensis fresh, which clarified the changes in lipid molecules

in the procedure of dry processing in Crassostrea hongkongensis.

The resulting data would provide a better theoretical basis for

the high-value utilization of oysters while helping the in-depth

development of active substances and customizing the production

processes to increase the health-promoting lipid content.

2. Materials and methods

2.1. Preparation of Crassostrea
hongkongensis samples

The experiment purchased fresh shell Crassostrea

hongkongensis from Dongfeng Market in Qinzhou, Guangxi

Province, China. The oysters purchased were produced in Beibu

Gulf. The specifications of oysters are Crassostrea hongkongensis (8

heads/100 g).

After purchasing, they were quickly transported back to the

laboratory for the next process. The purchased shell Crassostrea

hongkongensis samples were randomly divided into two parts,

each of which weighed 500 g. Some of them were immediately

homogenated and mashed as a sample, and −18◦C freezes for

subsequent experimental analysis. The rest of them need to go

through an electro-thermostatic water bath. After cooking them for

3min at 70◦C, we continue to use an electric thermostatic drying

oven to dry them at 70◦C until the water content drops to 18± 1%,

making them into dried oyster products. All tissue samples were

separately pulverized using a stainless-steel mortar and pestle and

mixed on an ultraclean bench and placed in a sterile food-grade

plastic bag until further analysis.

2.2. Total lipid extraction

The two-part oysters were divided into four copies, in which

Group A was Crassostrea hongkongensis fresh, and Group C was

Crassostrea hongkongensis dried products. Take 50mg of the four

copies of Crassostrea hongkongensis fresh (Group A) and four
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FIGURE 1

Total ion flow diagram of QC samples in positive ion mode: (A–E) First detection, second detection, third detection, fourth detection, and fifth

detection.

copies of Crassostrea hongkongensis dried products (Group C)

to the grinding pipe and add a steel ball with a diameter of

2mm. Then, the samples were reconstituted in 100 µl extracting

solution (2:5, V/V = methanol: water), and add 400 µl Methyl

tert-Butyl Ether. Keep the temperature at −20◦C, adjust the

frequency to 50Hz, and grind them with Tissuelyser-24 (Shanghai

Jingxin Industrial Development Co., Ltd) for 6min. Then set the

temperature to 5◦C, adjust the frequency to 49 kHz, and extract

30min at a low-temperature ultrasound. Set the sample at −20◦C

for 30min. The constitution was then centrifuged at 12,000 rpm for

15min at 4◦C, and 40 µl of supernatant was transferred to an EP

tube and blown dry with nitrogen. Add 100 µl extracting solution

(1: 1, V/V = isopropanol: acetonitrile). Sonicated them for 10min

in the ice-water bath at 5◦C and 40KHz. The constitution was then

centrifuged at 12,000 rpm for 15min at 4◦C. Take the supernatant

as a sample. Finally, mix the equal amount as a quality control

(QC) sample.

2.3. HPLC/Q-TOF-MS analysis conditions

This study conducted a quantitative analysis of the lipids

of Crassostrea hongkongensis fresh and dried products through

HPLC/Q-TOF-MS technology. The HPLC separation was carried

out using an Agilent 1,290 series HPLC System (NYSE: A,

USA). The experiment utilized the 100∗2.1mm of the Acquity

UPLC Beh C18 (Waters, USA), and the filler particles are

1.7µm BEH particles. The mobile phase A consisted of a

water solution with 0.1% formic acid in it. The mobile

phase C consisted of 10% acetonitrile and 90% isopropanol

formate. The column temperature was 45◦C. The two groups

of experiments were maintained at the column temperature of

40◦C, the flow rate was 0.4 ml/min, and the injection volume

was 4 µl.

Gradient program of the mobile phase: 0–2min, 30–60% B;

2–8min, 60–85% B; 8–10min, 85–98% B; 10–15min, 98% B; 15–

16min, 98–30% B; 16–20min 30% B.

Q-TOF-MS is used to experiment with Agilent 6,545 Q-TOF

(NYSE: A, USA), set the capillary voltage to 4,500V, control the

drying air temperature at 325◦C and turn on the dry gas at a flow

rate of 10 L/min. Keep the spray pressure at 20 PSIG, set the craft

of the breaker to 120V, and finally, collect the mass spectrometry

data in the 200–2,000 m/z range for subsequent research

and analysis.

2.4. Data analysis

In this experiment, the MSCONVERT software (Proteowizard)

was employed to convert the detected ion peak and time

Frontiers inNutrition 03 frontiersin.org

https://doi.org/10.3389/fnut.2023.1123636
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Sun et al. 10.3389/fnut.2023.1123636

FIGURE 2

Number of lipid molecules in Crassostrea hongkongensis fresh and

dried products.

signal to a general (MZXML) format. Progenesis QI software

(Non-linear Dynamics, Newcastle, UK) was used for peak

recognition, points, reserved time correction, and peak pairs,

and then output the original mass spectrum peak area and

finally normalize the data. The appraisal of the compound

is based on accurate quality and secondary fragments and

then uses the LipidMaps database for qualitative. Multiple

statistics were analyzed using the R software platform and

SIMCA-P 14.1.

3. Result and discussion

3.1. Lipid group learning detection quality
control

The sample for this study consisted of Crassostrea

hongkongensis fresh and dried products. Repeat QC samples

five times to get samples and the total ion flow diagram (TIC) as

shown in Figures 1A–E. QC samples had high reproducibility of

TIC medium-color peaks, and the reserved time was compared

with the time. This showed that the system stability of the

instrument used in this study was high, and the data obtained

was highly reliable, which can further analyze the lipid data

measured by samples of Crassostrea hongkongensis fresh and

dried products.

3.2. Lipid profile of Crassostrea
hongkongensis fresh and dried products

The results of Crassostrea hongkongensis fresh and dried

products samples were filtered using the FilterVariable function

to retain 25–75% of the sorted positions to obtain the final

lipid molecules of Crassostrea hongkongensis fresh and dried

products. The lipidomic analysis of Crassostrea hongkongensis

FIGURE 3

(A) Relative content of each lipid species in Crassostrea

hongkongensis fresh products. (B) Relative content of each lipid

species in Crassostrea hongkongensis dried products.

fresh and dried products was based on HPLC/Q-TOF-MS. The

lipids were classified according to their chemical structure and

biosynthetic pathways into fatty acids (FA), glycerolipids (GL),

glycerophospholipids (GP), sphingolipids (SP), sterol lipids (ST),

pregnenolipids (PR), saccharolipids (SL), and polyketides (PK)

(13). The lipid molecules measured for these eight classes of

lipids were counted and are shown in Figure 2. A total of 1,523

kinds of lipid molecules were detected, including 290 FA, 212

GL, 406 GP, 206 SP, 160 ST, 92 PR, 11 SL, and 146 PK. This

is a comprehensive representation of the lipid molecules in

Crassostrea hongkongensis fresh and dried products. The relative

content of each liposuction in Crassostrea hongkongensis fresh

and dried products is shown in Figures 3A, B. Among them,

the content of lipid molecules in Crassostrea hongkongensis fresh

and dried products (Select the top 50 lipid molecules with

a relative content from high to low) is detailed in Figure 3,

where GP molecules are shown in Figures 4A, B. The relative

content of each lipid category in Crassostrea hongkongensis fresh

products is FA (57.75%), GP (28.05%), GL (6.87%), SP (2.70%),

ST (2.50%), PK (1.37%), PK (1.37%) PR (0.65%), and SL (0.21%).

As shown in Figure 2C, the relative content of each lipid category

in Crassostrea hongkongensis dried products is FA (33.62%), GP

(43.17%), GL (4.37%), SP (9.35%), ST (5.12%), PK (1.40%), PR

(2.89%), and SL (0.09%). Most of the multi-unsaturated fatty acids

exist in GP.
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FIGURE 4

(A) Heat map of GP molecular content of Crassostrea hongkongensis fresh products. (B) Heat map of GP molecular content of Crassostrea

hongkongensis dried products.
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3.3. Multivariate statistical analysis of lipid
species in Crassostrea hongkongensis fresh
and dried products

3.3.1. Principal component analysis
The clustering analysis of Crassostrea hongkongensis fresh

and dried products was performed by the principal component

analysis (PCA) model in unsupervised mode to observe the

separation of Crassostrea hongkongensis fresh and dried products

and to establish a lipidomic model. The score plot based on

the PCA model is shown in Figure 5. PC1 and PC2 were the

two principal components contributing the most to the model,

with 67 and 17.1%, respectively, and the cumulative contribution

of the principal components reached 84.1%, which could reflect

most of the information of the original variable indicators in a

comprehensive manner. The distribution of samples within the

group of Crassostrea hongkongensis fresh products (Group A)

was more concentrated, and the samples within the group of

Crassostrea hongkongensis dried products (Group C) were more

dispersed, but the separation between the groups of Group A

and Group C was obvious, indicating that the characteristic

lipid molecules were significantly different between Group A

and Group C. The above results indicated that there were

significant differences in lipid molecules between the Crassostrea

hongkongensis fresh and dried products, and the drying process

had a significant effect on the lipid molecules of the Crassostrea

hongkongensis fresh products. Due to the dispersion of the

samples within the group, it was necessary to consider the

differences in lipid molecules within the group; hence, further

analysis was performed using multivariate statistical methods in a

supervised mode.

3.3.2. Orthogonal partial least squares
discriminate analysis

Orthogonal partial least squares discriminate analysis (OPSL-

DA) based on a supervised model was used to model the lipidomics

of the Crassostrea hongkongensis fresh and dried products. The

OPLS-DA score diagram is shown in Figure 6A. The Crassostrea

hongkongensis fresh product group (Group A) and the Crassostrea

hongkongensis dried product group (Group C) were within the

95% confidence interval, respectively, and the two groups were

completely separated with a large difference in the horizontal

coordinates, indicating that the lipid molecules between the

Crassostrea hongkongensis fresh and dried product were highly

differentiated and the lipid molecules in them changed significantly

after drying of the Crassostrea hongkongensis fresh product. The

random model R2 and Q2 values and RY and Q regression lines

were obtained by the replacement test (200 times) to determine

whether the OPLS-DA model was over-fitted, and the results of

the replacement test are shown in Figure 6B. The results of the

permutation test are shown in Figure 6B. The R2 and Q2 of

the stochastic model were lower than the original values of the

model, and the intercept of the model Q2 regression line was

−0.502, which was <0. This indicates that the OPLS-DA model

established in this study is not over-fitted. In summary, according

to the results of the permutation test, the stability and reliability

of the OPLS-DA model established for Crassostrea hongkongensis

fresh and dried products were high, with no over-fitting

phenomenon, and the subsequent analysis of the relevant data was

statistically significant.

3.4. Comparative and analysis of lipid
di�erences between Crassostrea

hongkongensis fresh and dried products

3.4.1. Di�erential lipid screening of Crassostrea
hongkongensis fresh products and dry products

The OPSL-DA model outputted the S-PLOT load chart

based on Section 3.3.2, as shown in Figure 7A. The S-PLOT

load graph could identify statistically significant and potential

biomarkers (28). The farther away from the scattered point of

the origin or the scattering point at the edge area is, the more

different the corresponding lipid molecules will be in Crassostrea

hongkongensis fresh and dried products. It is a characteristic

lipid molecule for changing Crassostrea hongkongensis fresh and

dried products.

To further clarify the differential lipid molecules in Crassostrea

hongkongensis fresh and dried products, they were screened

according to the conditions of P < 0.05, FC > 2, or FC < 0.5

by combining the P-value and Fold Change (FC) in the statistical

method T-test and presented in the form of volcano plots. As

shown in Figure 7B, there were 860 differential lipid molecules

between the fresh and dried Hong Kong oyster products, in which

374 lipid molecules were significantly upregulated and 486 were

significantly downregulated.

3.4.2. Identification of di�erential lipid molecules
The number of differential lipid molecules between Crassostrea

hongkongensiss fresh and dried products screened according to

the P and FC values was large. In order to further screen

for more significant differential lipid molecules, the screening

was carried out by combining the variable importance in

the projection (VIP) and using VIP > 1.2 as the screening

condition. A total of 239 differential lipid molecules were screened,

including 37 FA, 60 GP, 20 GL, 38 SP, 31 ST, 36 PK, and 17

PR. Meanwhile, according to the lipid subclasses, it could be

found that the content of glycerol phosphate and neutrophils

increased, while the glycerol phosphate and alcohol decreased

(Table 1).

3.5. Enrichment analysis of di�erential lipid
molecule metabolic pathways

The screened lipid molecules with KEGG numbers

were matched with the KEGG database through the

Metabolomics Pathway Analysis software, and the

results could be seen as shown in Figure 8. According

to the conditions of P < 0.05, the matching pathway

was screened to obtain the glycemic phospholipid

metabolic pathway.
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FIGURE 5

PCA score of Crassostrea hongkongensis fresh and dried products.

4. Discussion

Lipidomics is a system analysis of the molecularity of various

lipids and interactions in organisms. The current lipidomics mainly

includes lipids and their metabolites (29, 30), lipid function

and metabolic regulation (31, 32), lipid metabolic channels and

networks (33, 34), lipid biomarkers (35), and other research

content. Lipidomics can be divided into targeted lipidomics

and non-targeted lipidomics, depending on the requirements of

the study. Targeted lipidomics characterizes known lipids and

allows for multiple analyses, including absolute qualitative and

quantitative analysis of the lipids to be measured using standards

but has the disadvantage of having a limited number of lipids

to measure; non-targeted lipidomics aims to capture all the

lipids that can be measured, with the disadvantage that false-

positive signals may interfere with the results and the data

measured cannot be quantified absolutely (36). Li et al. (37)

used UPLC-Q-Exactive Orbitrap Mass Spectrometry to analyze

the lipidomics of goat, soy, and cow milk. It identified 14

kinds of lipids as biomarkers and established the PLS model,

comparing three types of milk lipids. Sun et al. (38) used

UPLC-QTOF-MS to perform untargeted lipidomics on hazelnut

oil extracted by pressing, ultrasound-assisted hexane, and enzyme-

assisted methods; measured 98 lipid molecules; and quantified

the measured lipid molecules by combining stable isotope labeled

internal standards. In this study, the lipids of Hong Kong oyster

fresh and dried products were analyzed based on non-targeted

lipidomics, aiming to identify the differences in lipid molecules

present in Crassostrea hongkongensis fresh and dried products,

and to further illustrate the dynamic changes in lipid profiles

that occur in Crassostrea hongkongensis fresh products during the

drying process.

This study determined the lipid molecules in positive ion

mode, filtered through the Filter variable function, and only

retained the results of 25–75% of the sorting position. A

total of 1,523 lipid molecules were measured and 406 kinds

of phospholipids in it. Among the common foods in daily

life, milk as a non-aquatic product contains 378 kinds of

lipid molecules (39), and Gadus as a member of an aquatic

product contains 498 kinds of lipid molecules (40). By contrast,

the types of lipid molecules of Crassostrea hongkongensis are

more abundant.
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FIGURE 6

OPSL-DA score of Crassostrea hongkongensis fresh and dried products and replacement test of OPLS-DA model. (A) OPSL-DA score of Crassostrea

hongkongensis fresh and dried products. (B) Replacement test of OPLS-DA model of Crassostrea hongkongensis fresh and dried products.

Frontiers inNutrition 08 frontiersin.org

https://doi.org/10.3389/fnut.2023.1123636
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Sun et al. 10.3389/fnut.2023.1123636

FIGURE 7

S-plot loadings of fresh and dried Crassostrea hongkongensiss and volcanoes of di�erential lipid molecule screening. (A) S-plot loadings of fresh and

dried Crassostrea hongkongensiss. (B) Volcanoes of di�erential lipid molecule screening of fresh and dried Crassostrea hongkongensiss. In the

figure, the red dot (Up) represented a lipid molecule that significantly increased Crassostrea hongkongensiss fresh and dried products; the blue dot

(Down) represented a lipid molecule that was significantly reduced between the fresh content between Crassostrea hongkongensiss fresh and dried

products; the gray dot (Not) indicated that there was no significant change in lipid compounds between Crassostrea hongkongensiss fresh and the

dried products.
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TABLE 1 Molecular classification of di�erential lipids in fresh and dried products of Crassostrea hongkongensis.

Lipid category Subcategory Upregulate Downregulate

FA Fatty acids and conjugates 7 8

Octadecanoids 2 0

Eicosanoids 0 3

Fatty esters 2 2

Fatty amides 3 8

Fatty acyl glycosides 0 2

GP Glycerophosphocholines 10 16

Glycerophosphoethanolamines 2 6

Glycerophosphoserines 2 4

Glycerophosphoglycerols 1 2

Glycerophosphoinositols 3 5

Glycerophosphates 3 6

GL Diradylglycerols 1 6

Triradylglycerols 4 9

SP Sphingoid bases 6 4

Ceramides 1 0

Phosphosphingolipids 0 3

Neutral glycosphingolipids 14 2

Acidic glycosphingolipids 5 3

ST Sterols 6 13

Steroids 0 1

Secosteroids 5 4

Bile acids and derivatives 1 0

Steroid conjugates 1 0

PK Flavonoids 2 34

PR Isoprenoids 6 8

Quinones and hydroquinones 1 2

Among them, polyunsaturated fatty acids of Crassostrea

hongkongensis mostly exist in GP. Among the relative content

of each lipid category in Crassostrea hongkongensis, the relative

content of non-esterified fatty acid (57.75%) was the highest,

followed by GP (28.05%), and glycerin lipids (6.87%). Furthermore,

there are rich types of phospholipids, with more than 160

phospholipid molecules owned by Apostichopus japonicus (41). In

Crassostrea hongkongensis dried products, the relative content of

fatty acids (33.62%) decreased, the relative content of GP (43.17%)

increased substantially, and the relative content of glycerin lipid

(4.37%) decreased. Previous studies showed that Neri et al. (42)

and Luo et al. (43) during the hot air drying process, the lipid

components were oxidized violently. Additionally, the oxidation

rate of fatty acids was fast, followed by triglycerides. These

data also demonstrated our study, that is, during the process

of drying, the content of its lipid composition has changed

significantly. It has been shown that the fresh products of

Crassostrea hongkongensis have higher nutritional value compared

to their dried products. In addition, studies have shown the

positive effect of omega-3 polyunsaturated fatty acids in fish oil

on human health (44). Based on the anti-cardiovascular activity

of unsaturated fatty acids as described previously (45), as well as

the characteristics of low-free fatty acid content and low glycerin

content, Crassostrea hongkongensis can be used as a good healthy

food. At the same time, the study of specific molecular types of

oysters can be used for further research and applied to nutrition

and medicine.

Studies have shown that PC and PE are important

phospholipids, and they are also important parts of glycerin

phospholipid metabolism (46). Our results suggested that in GP,

the relative content of phospholipidized choline was significantly

reduced, and the content of hemolytic phospholipidized alkaline

was significantly increased. The reason was that under the action of

enzymes, phosphatidylcholine produced hemolytic phospholipidal

alkaline through hydrolysis (47), which was consistent with the

glycerin phospholipid metabolic pathway by KEGG.
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FIGURE 8

E�ect of di�erential lipid molecule metabolic pathways in fresh and dried products of Crassostrea hongkongensis. Each bubble in the figure

represented a metabolic channel, and its horizontal coordination and bubbles shall jointly indicate the influence of the corresponding metabolic

pathway in the di�erent lipid molecules of fresh and dried products of Crassostrea hongkongensis.

In this study, the effects of seasonal changes of Crassostrea

hongkongensis and cultural environmental problems on the lipid

composition of Crassostrea hongkongensis were not emphasized,

and no other methods were used to process Crassostrea

hongkongensis dried products and conducted component analysis

and discussion. However, in future research, it is necessary to

comprehensively understand and analyze the above. Furthermore,

research should further study new nutritional functions. Just as

recent studies have shown Sun et al. (48), the study of lipidomics

can provide a basis for a reasonable diet and further clarify the fat

composed of specific composition, such as the relationship between

PUFAs and related metabolic diseases. Exploring the digestion and

absorption process of oyster lipids on the human body and the

biological synthetic pathway of oyster phospholipid. In short, the

results of our research are capable of providing the theoretical basis

for the high-value utilization of oysters and a certain reference for

the development of oysters’ physiological activity functions and

deep utilization.

5. Conclusion

To summarize, comprehensive lipid information including

qualitative and quantitative results in Crassostrea hongkongensis

fresh and dried products were determined by using HPLC/Q-

TOF-MS. The results showed that dehydration reduced the relative

content of fatty acids and increased the relative content of

GP in Crassostrea hongkongensis fresh and dried products. In

addition, multivariate statistical analysis was adopted to screen

a total of 239 different lipid molecules. Among them, the up-

regulate lipid molecules existed more in glycerol phosphate and

neutral sheathose lipids, and the down-regulate lipid molecules

were more in glycerine phosphate and sterol. By combining the

KEGG database to match the metabolic path analysis, the results

showed that the different lipid metabolic pathways in Crassostrea

hongkongensis fresh and dried products were mainly through

glycerin phospholipid pathways. The number of lipid molecular

species that could be detected and the analysis of lipids in common

oysters were quite rare in previous studies. These massive data

provided a more sophisticated and well-equipped basis for further

research, such as the high-value utilization of oysters and the

mechanism of phospholipids on health.
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