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Early transcriptome changes 
associated with western diet 
induced NASH in Ldlr−/− mice 
points to activation of hepatic 
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Background: Nonalcoholic fatty liver disease (NAFLD) is a global health problem. 
Identifying early gene indicators contributing to the onset and progression of 
NAFLD has the potential to develop novel targets for early therapeutic intervention. 
We report on the early and late transcriptomic signatures of western diet (WD)-
induced nonalcoholic steatohepatitis (NASH) in female and male Ldlr−/− mice, 
with time-points at 1  week and 40  weeks on the WD. Control Ldlr−/− mice were 
maintained on a low-fat diet (LFD) for 1 and 40  weeks.

Methods: The approach included quantitation of anthropometric and hepatic 
histology markers of disease as well as the hepatic transcriptome.

Results: Only mice fed the WD for 40 weeks revealed evidence of NASH, i.e., 
hepatic steatosis and fibrosis. RNASeq transcriptome analysis, however, revealed 
multiple cell-specific changes in gene expression after 1 week that persisted 
to 40 weeks on the WD. These early markers of disease include induction of 
acute phase response (Saa1-2, Orm2), fibrosis (Col1A1, Col1A2, TGFβ) and NASH 
associated macrophage (NAM, i.e., Trem2 high, Mmp12 low). We also noted the 
induction of transcripts associated with metabolic syndrome, including Mmp12, 
Trem2, Gpnmb, Lgals3 and Lpl. Finally, 1 week of WD feeding was sufficient 
to significantly induce TNFα, a cytokine involved in both hepatic and systemic 
inflammation.

Conclusion: This study revealed early onset changes in the hepatic transcriptome 
that develop well before any anthropometric or histological evidence of NALFD 
or NASH and pointed to cell-specific targeting for the prevention of disease 
progression.
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Introduction

Nonalcoholic fatty liver disease (NAFLD) is the most common 
form of chronic fatty liver disease worldwide; ~25% of the global 
population is estimated to have some level of NAFLD (1–3). The 
World Health Organization reported over 1.9 billion overweight 
adults in 2016; and this level of obesity parallels the global increase in 
NAFLD patients (1, 2, 4, 5). The National Health and Nutrition 
Examination Survey (NHANES) estimates nearly 40% of adults in the 
US are obese (2). Obesity severity increases the incidence of NAFLD 
ranging from 75% in overweight individuals to over 90% in morbidly 
obese individuals (1, 2, 6, 7). NAFLD is associated with metabolic 
syndrome (MetS) and MetS is linked to obesity, type 2 diabetes 
mellitus (T2DM), dyslipidemia and hypertension. These are the top 
four risk factors associated with NAFLD, and they are strongly 
associated with patients with a BMI > 30 (1, 4).

From a clinical perspective, NAFLD is a continuum of fatty liver 
diseases ranging from simple steatosis to nonalcoholic steatohepatitis 
(NASH, the progressive form of disease), cirrhosis, hepatocellular 
carcinoma (HCC) and liver failure (8, 9). NAFLD occurs in children 
and adults, both males and females (1). Factors contributing to the 
onset and progression of NAFLD include diet, lifestyle, genetics, 
gender, ethnicity and genetic polymorphisms. Since there are no 
FDA-approved treatment strategies for NAFLD, current treatment 
strategies focus on treating the comorbidities associated with NAFLD, 
such as T2DM, insulin resistance, obesity and hypertension (1, 4, 10).

Diet plays a major role in the onset and progression of NAFLD; 
and the diet most commonly associated with NAFLD is the western 
diet (WD) (11–16). The WD is a diet high in saturated, 
monounsaturated and trans-fat, cholesterol, simple sugar, low in fiber, 
and essential fatty acids, i.e., ω3 and ω6 polyunsaturated fatty acids 
(PUFA). While clinical and histological features of NAFLD are well-
defined, the role of chronic ingestion of a WD on the pathogenesis of 
NAFLD and its progression to NASH is not fully elucidated. 
Particularly relevant is the lack of a comprehensive understanding of 
the early effects of an unhealthy diet on the onset and progression to 
NASH. This further encumbers the identification of biomarkers that 
may be useful in the diagnosis and treatment of NALFD before the 
onset of hepatic injury leading to fibrosis, cirrhosis, HCC and liver 
failure. Most time-course studies using preclinical mouse models 
designed to assess liver status in response to diet have the first time 
point after 8 weeks on a WD (17, 18). It is reasonable to expect there 
are earlier events leading to changes in liver function that set the stage 
for NASH.

Our aim is to identify early changes in the hepatic transcriptome 
linked to NASH pathogenesis that occur in a preclinical mouse model 
of NASH in response to the WD. Accordingly, we used an established 
mouse model for diet-induced NASH, i.e., the low-density lipoprotein 
receptor knockout (Ldlr−/−) mouse, fed a commercially available 
western diet (WD) (19–24). Ldlr−/− mice fed the WD become obese 
and develop markers of insulin resistance, i.e., elevated HOMA-IR, 
dyslipidemia, endotoxinemia and elevated markers of hepatic 
macrosteatosis, inflammation, fibrosis and hepatic injury [alanine 
aminotransferase (ALT) and aspartate aminotransferase (AST)] (19, 
21, 25). Herein, we report that 1 week on the WD is sufficient to 
induce multiple hepatic markers of NASH that precede liver injury as 
manifested by hepatic macrosteatosis and fibrosis. These early changes 
in the hepatic transcriptome likely set the stage for disease progression 
resulting in significant liver injury and NASH.

Materials and methods

Animals and diets

All procedures for the use and care of animals used in our 
laboratory research were followed and approved by the Institutional 
Animal Care and Use Committee at Oregon State University (OSU). 
The study described below used two-month-old female and male 
Ldlr−/− [B6;129S7-LdlrTm1Her/J mice, stock# 002207] purchased from 
Jackson Laboratories. The study was carried out concurrently with 
both female and male mice. Mice were housed (5 mice/cage) at the 
OSU Linus Pauling Science Center vivarium in the same room and 
handled by the same personnel throughout the study. Mice were 
maintained on a 12-h light/dark cycle.

Mice were fed a purified low-fat diet (LFD) [Research Diets: 
D12450K] for 2 weeks prior to initiating the feeding trial to acclimate 
the mice to a purified diet and the vivarium. The 40 weeks’ time-
course study of female and male mice consisted of two randomized 
groups for each sex: the LFD [Research Diets: D12450K] group and 
the Western Diet (WD) [Research Diets: D12079B] group. The 
purified LFD contained 20% of energy as protein (casein, cysteine), 
70% energy as carbohydrate [corn starch (52%), maltodextrin (14%), 
sucrose (0.4%)], 10% energy as fat (soybean oil, lard) and cholesterol 
(0.002 mg/g) of diet. The purified WD contained 17% energy as 
protein (casein, methionine), 43% energy as carbohydrate [sucrose 
(30%); corn starch (10%), maltodextrin (3%)], 40% energy as fat 
(butter, corn oil), and cholesterol at 1.5 mg/g of diet. Both diets 
contained a vitamin and mineral mix and fiber, while the WD 
contained an additional antioxidant. The energy density of the LFD 
and WD was 3.82 kcal/gram and 4.67 kcal/gram, respectively.

After 2 weeks on the LFD, female and male mice were maintained 
on the LFD for 1 and 40 weeks (4 mice/gender and time point), while 
the remaining female and male mice were switched to the WD (8 
mice/gender and time point; Figure 1A). Mice were weighed and had 
their health assessed twice weekly. Chow remaining from the previous 
feeding was weighed, discarded and fresh food added. Mice were 
euthanized by CO2 at 1 and 40 weeks on the WD; and 1 and 40 weeks 
on the LFD. Upon sacrifice, liver and blood was collected and 
processed for analyses as described previously (23, 24).

Liver histology

Mouse livers (~100 mg) were fixed in buffered formalin, paraffin 
embedded, sliced and stained with hematoxylin–eosin (H&E) or Pico 
Sirius red (PCR; Nationwide Histology, Veradale, WA) (22, 24). Each 
slide contained 2 to 4 liver slices. Images were photographed using an 
Olympus inverted microscope equipped with a digital camera. Liver 
histology was scored by board-certified veterinary pathologists for 
hepatic macrosteatosis and fibrosis.

RNA extraction and RNA sequencing library 
preparation

Liver RNA was extracted using Trizol (Life Technologies) (20, 21, 
24), quantified and used for RNA sequencing (RNASeq) analysis 
following methods previous described (26). Briefly, RNA was 
quantified, and cDNA was prepared using the qScript reverse 
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FIGURE 1

Study design, anthropometric features and hepatic transcriptome. (A) Study design for female and male Ldlr−/− mice fed a low-fat diet (LFD) or western 
diet (WD) for 1 and 40 weeks. (B,C) WD effects on anthropometric markers, including (B) body weight (BW) of female and male mice after 1 and 40 
weeks on the LFD and WD. Bar plot represents the mean +/− stderr and using Tukey’s post-hoc test for significance (*). (C) Liver weight as a % of body 
weight (LW%BW). LW%BW is a measure of hepatomegaly, a feature associated with fatty liver disease. (D,E) Heatmap of the hepatic transcriptome 
analysis of the female and male Ldlr−/− mice after 1 week (D) and 40 weeks (E) on the LFD and WD. The heat map was prepared using the geometric 
mean of gene expression of LFD and WD fed female and male mice. Results are represented as differential gene expression between WD, and LFD-fed 
mice with an FDR  <  10%. (F) The overlap and differences among early and late transcriptome from LFD and WD-fed mice shown in panels (A,B). 
Hepatic transcripts increased or decreased by the WD are described in Supplementary Figures 2A–F.
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transcription kit from Quantabio (Thermo-Fisher). The qPCR 
procedure used Perfecta SYBR mix (Quantabio) and StepOne Plus 
RTPCR and software (Applied Biosystems). The RNA libraries were 
prepared using Quant 3’ mRNA-Seq Library Prep Kit (Lexogen) and 
sequenced using Illumina NexSeq. Sequences were processed to 
remove adapter, poly A and low-quality bases by BBTools1 using the 
bbduk parameters: k = 13, ktrim = r, fortrimleft = 12, useshortkmers = t, 
mink = 5 qtrim = r, trimq = 15, minlength = 20. Reads were aligned to 
the mouse genome and transcriptome (ENSEMBL NCBIM37) using 
Tophat (v2.1.1) (27, 28). The number of reads per million for mouse 
liver genes were counted using HTSeq (v 0.6.0) and quantile 
normalized. BRB-ArrayTools was used to identify differentially 
expressed genes between treatments.

RNA extraction and quantitative RT-PCR

Total RNA was extracted from mouse liver, and specific transcripts 
were quantified by quantitative RT-PCR (qRT-PCR). Primers for each 
transcript are listed in Supplementary Table 5. Cyclophilin was used 
as the internal control for all transcripts as described in the references 
(22, 24).

Heatmap, clustering, and summation of 
gene expression per cluster

Pair-wise comparison of genes between all 4 groups among 1 week 
(LFD and WD) and 40 weeks (LFD and WD) with established 
interaction between time and diet (FDR < 0.1, two-way ANOVA) were 
selected for downstream analysis. The k-mean clustering for geometric 
mean expression from the individual time points and diet were 
performed using Morpheus,2 a heatmap was created, genes belonging 
to each cluster were identified. The geometric mean expression for 
each gene in the cluster was summarized and a single value was 
obtained as representative for the cluster at each time point and diet.

Single-cell RNA sequence data reanalysis

We used the single cell dataset (GSE129516) that was obtained 
from single cell RNA-sequence on non-parenchymal cells of healthy 
and NASH mouse livers (29). We reanalyzed the dataset and used it 
for assignment of cell type for the genes in our bulk RNASeq data. The 
standard method was followed as described previously for the analysis, 
filtering, normalization, identification of clusters and cell types.

Single-cell RNA sequence for assignment 
of gene to a specific cell type

Briefly, the normalized unique molecular identifier or UMI > 1.0, 
with a significant fold change and uniquely expressed genes in a cell 

1 https://doe.gov/data-and-tools/bbtools/

2 https://software.broadinstitute.org/morpheus/

specific cluster were then assigned to that specific set of genes in the 
time course bulk RNASeq data to indicate they belong to that specific 
cell type (30).

Gene ontology and functional enrichment

Functional enrichment of clusters was then performed using 
Metascape with mouse genome as background (31).

Statistical analysis

Statistical analysis of mouse anthropometric features and 
histology used the MS-Excel statistical package for determining the 
mean and standard deviation. Mouse transcriptome data are expressed 
as geometric means of replicates. Group comparisons were performed 
using an unpaired t-test and two-way analysis of variance (ANOVA), 
followed by multiple comparisons tests, with p < 0.05 indicating 
statistical significance. A false discovery rate (FDR) value of 0.1was 
considered highly significant. Details of statistical analyses are 
described in the corresponding figure legends. The GraphPad Prism 
9.0, BRB-ArrayTools3 and R statistical packages were used for the 
transcriptome and single cell data analysis.

Results

Female and male mice were fed the LFD and WD for 1 week and 
40 weeks. One week of WD feeding had no significant effect on body 
weight or liver weight as a percentage of body weight (LW%BW; 
Figures 1B,C). LW%BW is an indicator of hepatomegaly and a marker 
of liver disease (19). After 40 weeks on the diet, however, both body 
weight and LW%BW were significantly increased in WD-fed mice 
when compared to mice fed the LFD for 40 weeks. The effect of the 
WD was seen in both female and male mice.

We next examined hepatic histology for evidence of liver disease. 
Mice fed the LFD for 1 and 40 weeks and the WD for 1 week revealed 
no histological evidence of liver disease, such as steatosis or fibrosis. 
After 40 weeks on the WD, however, both female and male mice 
displayed histopathological evidence of NASH, which included both 
hepatic macrosteatosis and fibrosis (Supplementary Figures 1A,B). 
Histological scoring indicated that only mice fed the WD for 40 weeks 
displayed features of NASH. These results are consistent with our 
previous studies on WD-induced NASH in female and male mice 
(21, 24).

We next examined the hepatic transcriptome (available at NCBI-
National Center for Biotechnology Information, accession number 
GSE223193) obtained from the 8 groups of mice: female and male 
mice fed the LFD and WD for 1 and 40 weeks. The RNASeq approach 
identified 10,162 transcripts in each of the 8 groups. We identified 
hepatic transcripts that were significantly affected after mice were fed 
the WD for 1 and 40 weeks. Our criterion for significance is: ≥2-fold 
increase or ≤ 0.5-fold decline in abundance, i.e., WD/LFD with an 

3 https://brb.nci.nih.gov/BRB-ArrayTools/
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FDR ≤ 0.1. The heat maps reveal diet and gender effects on the hepatic 
transcriptome in mice fed the LFD and WD for 1 and 40 weeks 
(Figures 1D,E). This report, however, focuses on WD effects on the 
hepatic transcriptome.

Since we were interested in identifying WD-regulated transcripts 
common to both female and male mice, we  pooled the RNASeq 
results of female and male mice. Accordingly, after 1 week on the WD, 
342 transcripts were significantly different between LFD and WD-fed 
mice, which represents ~3.4% of the hepatic transcriptome 
(Supplementary Table 1). Of these, 270 transcripts were significantly 
increased while 72 transcripts were significantly decreased by WD 
feeding (Figure 1D; Supplementary Figures 2A,B). After 40 weeks on 
the WD, 3,788 transcripts were significantly affected by the diet, 
representing ~37% of the hepatic transcriptome 
(Supplementary Table 2). Of these 2,385 were significantly increased, 
while 1,403 were significantly decreased by WD feeding (Figure 1E). 
Of particular interest were transcripts that were affected by the WD 
early, after 1 week, and persisted to 40 weeks on the WD. Our analysis 
identified 135 transcripts responding to the WD after 1 week that were 
also altered by the WD after 40 weeks (Figure 1F).

Further gene enrichment analysis was performed for the up-and 
down-regulated transcripts in the 1 week and 40 weeks gene sets 
(Supplementary Figures 2A–E). Interestingly, the early onset changes 
reveal a path toward induction of an acute phase response, several 
dysregulated metabolic pathways and induction of inflammatory 
markers characteristic of NASH (Supplementary Figures  2C,D). 
While not all changes occurring in the liver transcriptome in response 
to the WD are related to NASH pathology, many of these genes are 
indicative of the dysregulated metabolic (Lgals1, Fabp5, Lpl and Hk2) 
and inflammatory processes (Itgax, Cd68, Sparc and Cyba).

The transcriptome analysis for common 
genes with interactions of time and diet 
reveal early gene markers of NASH

We next analyzed and compared the early onset changes in the 
hepatic transcriptome at 1 week that are associated with NASH at 
40 weeks in a diet and time-dependent manner (Figures 2A,B). 
We identified 3,214 transcripts that were regulated by the WD after 
both 1 and 40 weeks (with a two-way ANOVA for merged set of 
genes from 1 week and 40 weeks, diet and time interaction 
FDR < 1%; Supplementary Table  3). These common genes are 
associated with NASH pathogenesis, and include proteins linked to 
hepatic fibrosis (collagen 1a1; Col1a1, Col1a2 and Col3a1), 
metabolic syndrome [MetS; galectin 3 (Lgals3), lipoprotein lipase 
(Lpl), glycoprotein nmb (Gpnmb), fatty acid binding protein-5 
(Fabp5), and the acute phase response (Saa1-3)]. All of these 
transcripts were induced in response to WD feeding. In addition to 
playing a role in hepatic fibrosis, many of these proteins are reported 
to promote chemotaxis, cytokine induction, matrix 
metalloprotease-9 (Mmp9) release, the generation of reactive 
oxygen species [ROS (genes as in 40 weeks, Ecto-NOX Disulfide-
Thiol Exchanger 2, Enox2)], and macrophage differentiation in 
response to inflammation and tissue injury (Figures 2A,B) (32).

After 40 weeks on the WD, additional transcripts associated with 
NASH were induced that were not induced after 1 week on the 
WD. These transcripts included, matrix metalloprotein-12 (Mmp12), 

betacellulin (Btc), activating transcription factor 3 (Atf3) and S100 
calcium binding protein A9 (S100a9). Recent studies suggest these late 
transcripts play a major role in the pathology of MetS, type 2 diabetes 
(T2D) and NASH (33).

Among the significantly down-regulated genes, acyl CoA thioesterase 
1 (Acot1) expression is regulated by the fatty acid-regulated nuclear 
receptor peroxisome proliferator activated receptor (PPARα) (24). Acot1 
affects fatty acyl CoA levels and protects the liver from excess FA oxidation 
and the ensuing oxidative stress and inflammation (34). Flavin-containing 
monooxygenases (Fmo3), an enzyme that is involved in metabolism of 
dietary and xenobiotic compounds, was significantly down-regulated by 
the WD. Some studies suggest Fmo3 plays a role in metabolic diseases 
including diabetes (Figure 2B) (35).

Gene ontology for the common genes 
from early to late transcriptome analysis 
suggests increased cytokine production 
and compromised mitochondrial function

Herein we reveal the cluster-wise gene ontology of the transcripts 
significantly regulated by the interaction of diet and time. K-mean 
clustering identified 8 distinct clusters, i.e., C1–C8 (Figure 2C). The 
top enrichment categories for the individual clusters were, 
Developmental Growth involved in morphogenesis, Chromatin 
Organization, Regulation of Cytokine Production (with myeloid 
activation), Monooxygenase Activity, Ribosome, Mitochondrial 
Membrane and Mitochondrial Envelope. There were two distinct 
clusters enriched with inflammatory pathways and two clusters 
enriched with mitochondrial organization indicating the importance 
of these responses of the hepatic transcriptome to WD feeding. The 
distinction between the mitochondrial clusters is evident in terms of 
functional enrichment. The Mitochondrial Membrane cluster is also 
enriched with mitochondrial matrix and tricarboxylic acid cycle 
(TCA) processes, while the Mitochondrial Envelop cluster is 
additionally enriched with fatty acid metabolism and cholesterol 
metabolic processes. The cluster of down-regulated genes enriched in 
structural constituents of Ribosomal function and translation are 
consistent with our previous analysis with WD (33). Clusters C1-C3 
and C8 (Figure 2C) had transcripts highly upregulated after 40 weeks 
of WD feeding. Importantly, the transcripts down regulated after 40 
weeks on the WD were distributed among clusters C4–C7 (Figure 2D).

Clusters C2–C4 and 8 (Figure 2C) were the early indicators of WD 
induced gene functions such as monooxygenase activity (which is 
strikingly up regulated early on but down-regulated after 40 weeks on the 
WD; and included genes such as Cyp2f2, Cyp2c50, Cyp2c23, Cyp2c54, 
Pah, and Akr1c12), inflammatory cytokine production, myeloid 
activation, response to interferon-γ and growth. The clusters C4 and C6 
(Figure 2D) had several biological processes down-regulated at 40 weeks, 
which included enrichment in lipid catabolic processes.

WD-induced transcripts (1,533, expressed positively with 
FDR < 1%) at both time points were enriched for cytokine production 
and leukocyte activation indicating a proinflammatory process 
(Figure 3A). These interacting networks of biological processes show 
the connections between the major components of immune system, 
such as leukocyte activation, positive regulation of response to 
external stimulus and leukocyte migration. In contrast, the 917 
transcripts suppressed by the WD (expressed negatively with 
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FIGURE 2

Pair-wise comparison between all groups: 1 and 40 weeks and with time and diet interaction (FDR  <  0.1). In this analysis, we pooled the transcriptomic 
data of female and male mice for the time and diet comparison. Specifically, a time (1 vs. 40 weeks) and diet (LFD vs. WD) interaction (two-way 
ANOVA) with an FDR  <  0.1. (A) Time and diet interactions, early 1 week log2 fold change (FC; WD/LFD) from the gene expression with genes marked in 
red to indicate induction and blue to indicate repression, with y-axis corresponding to p-values indicated in-log10 scale. (B) Similar volcano plot for the 
hepatic transcriptome at 40 weeks with genes marked in red to indicate induction and blue to indicate repression, with y-axis corresponding to p-
values indicated in-log10 scale. (C) The heatmap from clustering of all 4 groups of hepatic transcriptomes for time and diet i.e.,1 week and 40 weeks 

(Continued)
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FDR < 1%) were associated with pathways involved in lipid and RNA 
metabolism, as well as mitochondrial fatty acid β-oxidation. This 
outcome suggests the negative impact of the WD on hepatic energy 
metabolism and mitochondrion organization (Figure 3B). Specifically, 
these interacting networks of biological processes are indicative of the 
earliest events in NASH pathogenesis.

To assess pathway enrichment by WD at early and late timepoints, 
we  used Gene Set Enrichment Analysis (GSEA) (36) with these 
common genes across both time points (FDR < 0.1). Surprisingly, 
we could see early indicators of steatosis, inflammation and fibrosis 
pathway enrichment at 1 week and more so after 40 weeks. Specifically, 
TGFβ and TNFα signaling were increased via the NFκβ pathway 
indicating progression of profibrotic and inflammation pathways. The 
hallmarks of adipogenesis and fatty acid metabolism enrichment are 
likely early indicators of steatosis (Figure 3C).

Liver cell-specific gene assignments 
indicate macrophage and other specialized 
liver cells respond rapidly to the WD

Information regarding the association of specific transcripts with 
specific hepatic cell types provides a better understanding of how the 
WD effects liver cellular function. Accordingly, we  have matched 
specific transcripts with a specific hepatic cell types using the publicly 
available cell-specific RNASeq data base for NASH in C57BL/6 J mice 
(GSE129516) (29). The inferred cell types for our cell-free bulk RNA 
sequence from both 1 week and 40 weeks on the WD gave us an 
opportunity to unravel functional and pathological processes to 
specific liver cells from this early and late hepatic transcriptomic 
data set.

Broadly, 12 different cell types in liver (~15,260 single cells from 
mouse NASH dataset) that could be identified distinctly from the 
reanalysis of the single cell transcriptome could be assigned to genes 
in our hepatic transcriptome analysis. The highest number of genes 
were assigned to macrophages, more than 50% of all genes 
(1,374/3,214 genes). The number of genes associated with liver-
specific and functionally specialized hepatocytes (~15% of the gene 
assigned), hepatic stellate cells (HSC) and cholangiocytes (<10% each) 
were lower (Figure 4A). There was a similar trend in cell assignments 
observed during the assignment of genes individually to 1 week and 
40 weeks of WD-transcriptome data sets (Supplementary Figures 3A,B).

Interestingly, the macrophage subtypes, such as Kupfer like cells 
(KC-MC1) and NASH-associated macrophages (NAM-MC2), 
distinctly over-express many marker genes in the early and late time 
points. The KC-MC1 cells were identified with the classical Kupffer 
cell markers Clec4f and Cd5l and the NAM-MC2 were identified with 
Trem2 higher expression. It is noteworthy that the KC-MC1 (cells with 
Mmp12high, Trem2low) were more enriched with proinflammatory genes 
and with genes associated with insulin resistance and metabolic 
inflammation (29, 33, 37). In the NAM-MC2 (cells with Trem2high, 
Mmp12low) marked increase in Trem2 expression was observed at 40 

weeks (Figure 4B). To identify the distinct sub-clusters in macrophages 
and to identify the early changes in the genes of a specific sub-cluster, 
we re-analyzed just the macrophages (38–41). The macrophages were 
grouped into four sub-clusters, the two major cell types described 
previously (KC-MC1 with about 2,517 cells and NAM-MC2 with 
about 1961 cells) along with two monocyte-derived macrophage 
subtypes (Ly6c2-hi cluster with about 1,377 cells and Ly6c2-low with 
about 348 cells) forming minor population of cells 
(Supplementary Figures 3C,D). Here the NAM-MC2 cells had a major 
part of the genes (~420 out of 487 genes) assigned with the interaction 
effects of diet and time. While the KC-MC1 has around 310 genes, 
Ly6c2-hi cells had 7 and Ly6c2-low had about 50 genes assigned 
among the interaction effects of diet and time, respectively 
(Supplementary Figure 3E). The induction of several genes in the 
NAM and KC-like macrophages at the early stage and continued over 
expression at 40 weeks indicate the highly active immune processes 
during the progression to NASH (Supplementary Figure 3E).

In the genes assigned to hepatocytes, the acute phase response 
genes (Saa1, Saa2, and Orm2) were markedly induced and 
overexpressed over the duration of 1 to 40 weeks feeding period of the 
WD indicating a modulation of metabolic and innate immune system 
activities (Figure 4B). In the hepatic stellate cell genes associated with 
genes associated with fibrosis (Col1a1, Col1a2, and Col3a1), cytokines/
chemokines (Cxcl14) along with cell division (Zfp281, Emp1, Dcn) and 
activation markers (Sparc, Col1a1, Gpx3) were induced at early 
timepoints and significantly over-expressed after 40 weeks of 
WD feeding.

To evaluate the transcriptome (RNASeq) data studied, 
we  independently verified the selected few important genes using 
qRTPCR to quantify transcript abundance and were chosen 
representatives of the differently regulated and from multiple cell types 
as described above (Supplementary Tables 4, 5). Evidently, they 
correlate significantly in both the approaches (qRTPCR vs. RNAseq) 
at each of the two timepoints (Supplementary Figures 3F,G) and with 
respective diets. Here, as the 40 weeks fed with WD represents the 
NASH disease state in mice and we have studies at similar (late) time 
points (19, 20, 24), this allows to us evaluate not only the technical 
issues (qRTPCR vs. RNAseq) but also to compare with similar gene 
profiles emerging from independent studies including the NASH 
single cell RNASeq analysis.

To investigate further, whether the differentially regulated genes 
that are indicative of pathogenic processes indeed have interactions, 
we took advantage of protein–protein interaction network. For ~150 
of the top genes with expression at 1 week (fold change > 0) and those 
that are highly upregulated with WD at week 40 (fold change > 2, with 
interaction FDR < 0.1), the STRING mouse protein–protein 
interaction network (42) with medium interaction confidence of ~0.4 
was investigated and analyzed. The clusters of interaction network 
thus obtained established that acute phase proteins, and proteins 
involved in oxidative stress, collagen formation and activated immune 
responses are altered in the early response to the WD 
(Supplementary Figure 4).

and LFD and WD. The eight clusters (Cl1-Cl8) formed with k-mean clustering also shows top functional enrichments for the individual clusters. The 
color indicates red for row max and blue for row min gene geometric mean expressions. (D) The bar plot is a summarized median gene expression 
value from clusters for each dataset from the heatmap (as detailed in Materials and methods).

FIGURE 2 (Continued)
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FIGURE 3

Gene ontology and functional enrichment networks. (A) Gene ontology and function al enrichment network: in both 1 and 40 weeks, interaction 
FDR  <  0.1; 1,533 genes. (B) Gene ontology and functional enrichment: Down regulated in both 1 week, 40 weeks, for genes with diet and time 
interaction FDR  <  0.1; 917 genes. (C) Gene set enrichment analysis (GSEA) from the gene expression at 1 week (LFD and WD) and 40 weeks (LFD and 
WD), respectively, against the hallmark pathways for selected representative processes.
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FIGURE 4

Genes assigned to different liver cells with a 1 week and 40 weeks transcriptome interaction (FDR  <  0.1) using information from reanalysis of the NASH 
single cell RNASeq analysis (GSE129516). (A) A bar plot of the percentage of genes assigned to different cells in liver from the reanalysis of NASH mouse 
single cell RNA sequence (GSE129516) in a pair-wise comparison between all 4 groups of the transcriptome with interaction FDR  <  0.1. (B) The most 
prominent cell types from the cell assignments with a subset of specific genes from different cell types in liver show early onset expression at 1 week 
(fold change; FC  >  0) and are highly upregulated with WD at week 40 (fold change; FC  >  2). KC-MC2, Kupffer cell-macrophage; NAM-MC2, Nash-
associated macrophage; HSC, hepatic stellate cells; DC, dendritic cells, E, endothelial cells.
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Discussion and conclusion

The western diet is associated with multiple related diseases such 
as NAFLD/NASH, T2DM, cardiovascular disease (CVD) and MetS, 
commonly known as metabolic diseases (11, 14). Here we analyzed 
the rapid and long-term changes that occur after feeding female and 
male Ldlr −/− mice a WD for 1 and 40 weeks. This is an established 
preclinical model of NAFLD/NASH that reveals all the hallmarks of 
chronic liver disease including hepatic macrosteatosis, inflammation, 
oxidative stress and fibrosis as well as other markers of metabolic 
disease such as obesity, dyslipidemia and insulin resistance (19, 
21, 24).

In addition to RNASeq transcriptome analysis, we used multiple 
approaches for functional enrichment (43), gene set enrichment 
analysis, protein–protein interaction network, as well as single cell 
RNA sequence data available publicly to enrich the information 
regarding the cell-specific associations of the transcripts. This 
allowed us to discern the early onset activation of specific 
macrophage subtypes including NASH-associated macrophages, 
Kupffer cells and other specialized hepatic cells such as hepatocytes 
and stellate cells. These molecular events show the hepatic stellate 
fibrosis markers (Col1a1, Col1a2, and Col3a1), macrophage 
mediated cytokine production (TGFβ and TNFα), metabolic disease 
markers (Mmp12, Trem2, Lgals3, Lpl, Gpnmb, and Fabp5) and 
hepatocyte acute phase response (Saa1, Saa2, and Orm2) are 
transcriptional markers and cell signatures of the early response to 
the WD. This early onset model agrees with the previous literature 
(35, 36) on the processes of immune activation and dysregulated 
lipid and metabolic processes. Early monooxygenase activation and 
reduced ribosomal function are specific characteristics we  have 
unearthed in this study that need to be further investigated in the 
future. Moreover, we have identified novel molecular targets that 
were previously unknown to be affected after such brief exposure to 
the WD (35, 36). This much-needed molecular and cell-associated 
detail are useful in directing early patient monitoring and 
therapeutic intervention.

Importantly, at the gene ontology and functional level with 
upregulated genes, inflammatory response and steroid metabolic 
process are the early onset functional processes associated with the 
onset of pathogenesis after 1 week of WD. While the downregulated 
processes included fatty acid metabolic process and regulation of lipid 
storage indicating dysregulation of hepatic metabolism at early stage 
of this progressive fatty liver disease.

The study described herein is the first study that examined early 
events in the process of WD induced NAFLD/NASH. The prevailing 
view of NASH onset and progression is that steatosis and lipo-toxicity 
precede inflammation and fibrosis. Our findings indicate otherwise, 
and these inflammatory changes occurred at a time preceding overt 
disease development, such as hepatosteatosis and fibrosis.

In summary, this study provides an in-depth analysis of early 
transcriptomic indicators of WD-mediated changes in the liver that 
persist throughout the 40 weeks WD feeding trial leading to 
NASH. The study includes an analysis of molecular, cellular, and 
functional interactions and biological networks associated with 
NASH. The identification of the early cell-specific markers may 
be useful in early clinical assessment and therapeutic intervention 
of NASH.
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