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Background: The Composite Dietary Antioxidant Index (CDAI), a composite score

of multiple dietary antioxidants (including vitamin A, C, and E, selenium, zinc, and

carotenoids), represents an individual’s comprehensive dietary antioxidant intake

profile. CDAI was developed based on its combined effect on pro-inflammatory

markers Tumor Necrosis Factor-α (TNF-α) and anti-inflammatory effects of

Interleukin-1β (IL-1β), which are associated with many health outcomes, including

depression, all-cause mortality, colorectal cancer, etc. Handgrip strength is used

as a simple measure of muscle strength, not only is it highly correlated with overall

muscle strength, but also serves as a diagnostic tool for many adverse health

outcomes, including sarcopenia and frailty syndromes.

Purpose: The association between CDAI and Handgrip strength (HGS) is currently

unclear. This study investigated the association between CDAI (including its

components) and HGS in 6,019 American adults.

Method: The research data were selected from the 2011–2014 National Health

and Nutrition Survey (NHANES), and a total of 6,019 American adults were

screened and included. A weighted generalized linear regression model was used

to evaluate CDAI (including its components) and HGS.

Results: (1) CDAI was significantly positively correlated with HGS (β = 0.009,

0.005∼0.013, P < 0.001), and the trend test showed that compared with the

lowest quartile of CDAI, the highest quartile of CDAI was positively correlated with

HGS (β = 0.084, 0.042∼0.126, P = 0.002) and significant in trend test (P for trend

< 0.0100). Gender subgroup analysis showed that male CDAI was significantly

positively correlated with HGS (β = 0.015, 0.007∼0.023, P = 0.002), and the trend

test showed that compared with the lowest quartile of CDAI, the highest quartile

of CDAI was positively correlated with HGS (β = 0.131, 0.049∼0.213, P = 0.006)

and the trend test was significant (P for trend < 0.0100). There was no correlation
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between female CDAI and HGS, and the trend test was not statistically significant

(P > 0.05). (2) The intake of dietary vitamin E, Zinc and Selenium showed a

significant positive correlation with HGS (β = 0.004, 0.002∼0.007, P = 0.006;

β = 0.007, 0.004∼0.009, P < 0.001; β = 0.001, 0.001∼0.001, P < 0.001), vitamin

A, vitamin C and carotenoid were significantly associated with HGS in the Crude

Model, but this significant association disappeared in the complete model with

the increase of control variables. Gender subgroup analysis showed that in model

3, male dietary intake levels of vitamin E, Zinc, and Selenium were significantly

positively correlated with HGS (β = 0.005, 0.002∼0.009, P = 0.011; β = 0.007,

0.004∼0.011, P = 0.001; β = 0.001, 0.001∼0.001, P = 0.004), the rest of the

indicators had no significant correlation with HGS. Among the female subjects,

dietary zinc intake was significantly positively correlated with HGS (β = 0.005,

0.001∼0.008, P = 0.008), and there was no significant correlation between other

indicators and HGS (P > 0.05).

Conclusion: There was an association between the CDAI and HGS, but there was

a gender difference, and there was an association between the CDAI and HGS

in male, but the association was not significant in female. Intake of the dietary

antioxidants vitamin E, selenium, and zinc was associated with HGS in male, but

only zinc was associated with HGS among dietary antioxidants in female.

KEYWORDS

composite dietary antioxidant index (CDAI), handgrip strength, National Health and
Nutrition Examination Survey, muscle strength, antioxidant

1. Introduction

The main physiological feature of sarcopenia is the progressive
loss of skeletal muscle mass and strength, and the disease
is considered to be a multifactorial event characterized by
chronic inflammation, oxidative stress, motor neuron loss,
endocrine dysfunction, nutritional imbalances, physical inactivity
also exacerbates the loss of muscle strength and mass (1). It is
known that oxidative stress and molecular inflammation play an
important role in the decline of muscle strength and muscle mass
associated with sarcopenia (2). Related studies have confirmed that
the increase in chronic inflammation mediated by oxidative stress
can directly induce low bone muscle strength and muscle mass (3).
Many factors related to sarcopenia are not isolated, and many of
their causal pathways have cross-effects or overlapping effects with
oxidative stress (2).

The overproduction of reactive oxygen species (ROS) has been
linked to the development of various chronic and degenerative
diseases, such as cancer, respiratory, neurodegenerative, and
digestive diseases. Under physiological conditions, ROS
concentrations are subtly regulated by antioxidants, which
can be either produced internally or supplemented externally.
The combination of antioxidant deficiency and poor nutrition
may make individuals more vulnerable to oxidative stress, thereby
increasing the risk of adverse health reactions occurring (4).
Antioxidants play a key role at the cellular molecular level, and low
levels of antioxidant intake may lead to the massive production
of reactive oxygen species (ROS) (5). Under normal conditions,
ROS and ROS by-products are produced in the mitochondrial

respiratory chain of aerobic cells, and the excessive production of
ROS will generate oxidative stress (6), indirectly destroying the
structure of muscle cells and inducing muscle cell disorders (7).
Previous studies have confirmed that high levels of ROS can cause
direct damage to macromolecules such as lipids, nucleic acids, and
proteins (2). Mitochondria are the main source of ROS in skeletal
muscle, and mitochondrial DNA may be particularly susceptible
to oxidative DNA damage (8). The accumulation of mitochondrial
and nuclear DNA damage is thought to ultimately impair muscle
health, resulting in the loss of muscle cells, and decreased muscle
strength (9).

Since oxidative stress is one of the important reasons for
mediating the exacerbation of sarcopenia and the decline of
muscle strength, it is known that dietary antioxidants can not
only to reduce the level of oxidative stress in the human body
and maintain skeletal muscle health, but also to improve the
quality of healthy life (10–13). Relevant studies have confirmed
that antioxidants such as retinol, carotenoids, and vitamin E
can effectively control the level of oxidative stress to improve
muscle strength (14–17). A population-based longitudinal study
conducted by Sahni et al. (14) confirmed that dietary intake
of carotenoids, vitamin E, and lutein+zeaxanthin, and other
micronutrients were significantly and positively associated with
handgrip strength. Further support for these findings was provided
by Bruno et al. (18), which found a positive correlation between
serum α-carotene and handgrip strength in older adults. An earlier
study by Semba et al. (19) demonstrated that serum carotenoids,
vitamin E, and higher handgrip strength were associated with older
women. It is known that some previous studies have demonstrated
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the relationship between serum antioxidants and muscle strength,
but most of the relevant studies have used a single class of serum
antioxidants for correlation analysis. So far, few observational
studies have investigated the relationship between comprehensive
dietary antioxidant intake and muscle strength.

Composite Dietary Antioxidant Index (CDAI), developed
by Wright et al. (20), is a composite score of multiple
dietary antioxidants (including vitamin A, C, E, selenium, zinc,
and carotenoids), representing an individual’s overall dietary
Antioxidant intake profile. The CDAI was developed based on
its combined effect on anti-inflammatory effects based on the
pro-inflammatory markers Tumor Necrosis Factor-α (TNF-α) and
Interleukin-1β (IL-1β), which are associated with many health
outcomes, including depression, all-cause mortality, colorectal
cancer, etc. (21–25).

Dietary antioxidants are known to be effective interventions
for adverse health effects such as oxidative stress and chronic
inflammation, but the relationship between CDAI and muscle
strength is currently unclear. In this study, we investigated for
the first time the independent and joint associations of CDAI
(including vitamin A, vitamin C, vitamin E, carotenoids, zinc, and
selenium) with handgrip strength using a cross-sectional design.
Based on previous studies, we hypothesize that there may be a
potential positive relationship between CDAI and HGS, and the
HGS increases with CDAI.

2. Materials and methods

2.1. Design

Participants for the study were drawn primarily from the
National Health and Nutrition Examination Survey (NHANES),
a nationally representative population-based survey led by the
Centers for Disease Control and Prevention to assess the
health and nutritional status of American adults and children.
The Centers for Disease Control and Prevention conducted
and published data from a two-year survey using a stratified
multistage probability design to obtain a representative sample
of a nationally representative sample of approximately 10,000
non-institutionalized individuals across the United States. The
survey protocol was approved by the Institutional Review Board of
the Centers for Disease Control and Prevention (CDC) National
Center for Health Statistics. Each participant agreed to sign an
informed consent form.

Participants were asked questions about demographic,
socioeconomic, diet, and health-related parameters and underwent
medical examinations, including medical, physiological, and
biochemical measurements, etc. Handgrip strength as the main
variable in this study was only tested in the two cycles of NHANES
2011–2014, so it was selected as the main data source.

Between 2011 and 2014, a total of 19,931 participants were
sampled by the National Health and Health Administration. Our
study inclusion criteria were as follows: (i) Adults over 20 years
of age; (ii) Participants underwent a full handgrip strength testing
process; (iii) Providing valid dietary intake data; (iv) Providing
valid self-reported personal interview data (including household,
sample population, and medical statistics questionnaires). After

excluding those who did not meet the criteria or had missing data
(13,912 people), 6,019 people were included as participants in this
study (Figure 1). This study was approved by the Research Ethics
Review Board of the National Center for Health Statistics.

2.2. Procedure

2.2.1. Dietary assessment
During the NHANES investigation professional enumerators

collected through two separate 24-hour dietary recall interviews
and assessed as the average of the two recalls. The first recall was
collected in person at a mobile inspection center, and the second
interview was conducted 3–10 days later by telephone consultation,
using dietary intake data for two non-consecutive days was more
accurate than using single-day data (26). Participants were asked to
recall details of food and drink consumed in the 24 hours preceding
the interview. Six dietary antioxidant exposures of concern
were studied: vitamin A, vitamin C, vitamin E, zinc, selenium,
and carotenoids. Dietary antioxidant estimates do not include
antioxidants obtained from dietary supplements, medications, or
ordinary drinking water. To assess joint exposure from dietary
antioxidant intake, we used a modified version of the Composite
Dietary Antioxidant Index (CDAI) developed by Wright et al. (20,
25, 27).

Briefly, normalization was performed for each of the six dietary
antioxidants by subtracting the mean from the intake of each
antioxidant and dividing by the standard deviation. Next, calculate
the CDAI by adding the standardized dietary antioxidant intake
(21).

CDAI =
6∑

i = 1

xi − µi

si

In this formula, xi represents the daily intake of antioxidant; µi
represents the mean of xi; over the entire cohort for antioxidant; Si
represents the standard deviation for µi (21).

2.2.2. Handgrip strength testing
Handgrip strength (HGS) was measured by a Takei

Dynamometer (TKK 5401; Takei Scientific Instruments, Tokyo,
Japan). Participants were asked to maintain an upright posture,
with their arms vertically downward, and perform handgrip
strength testing with a hand-held ergometer (28). The test
was repeated three times for both hands (dominant and non-
dominant), with the 60 s between each measurement, taking the
highest handgrip strength value for each hand. The ratio of the
sum of the highest handgrip strength values of each hand to the
BMI was used as the relative grip strength.

2.2.3. Covariates
NHANES interviews elicit sociodemographic and

behavioral characteristics as study covariates, including
age, sex, race/ethnicity, education, poverty-to-income ratio,
smoking, alcohol use, physical activity levels, hypertension,
hyperlipidemia, and diabetes.

The rationality of covariate selection in this study was
determined mainly through logical sorting and screening of
previous studies. First of all, age (29), gender (30, 31), BMI (32),
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FIGURE 1

Flowchart depicting participant selection in the study.

and education level (33) as the main demographic characteristics,
have a significant correlation with muscle strength. And Hoge
et al. (34) showed that higher income was associated with
better physical functioning in several areas relative to PIR.
Relevant human (35, 36) and animal (37, 38) studies have
demonstrated significant negative effects of smoking and alcohol
consumption on muscle composition and strength. Scientific
physical activity has been shown to improve human health and
muscle strength levels (36, 39, 40), but sedentary time has a range
of adverse physiological effects on muscle strength independent
of physical activity (41–43). Previous studies have confirmed
that hypertension (44, 45), hyperlipidemia (46–48) and diabetes
(49–51), as common chronic diseases in society, all mediate the
occurrence of low muscle strength and muscle mass through
different physiological pathways.

Gender (Male, Female), Education (Below high school, High
school, and Above high school), Race (Black, White, Mexican,
Other), BMI (< 25, 25–29.9,≥ 30 kg/m2). Poverty-to-income ratio
[PIR, via Calculated by dividing household (or individual) income
by poverty guidelines for the survey year,< 1.3, 1.3–3.49, ≥ 3.5].

Smoking conditions are divided into three categories: never
(smoked less than 100 cigarettes in life), former (smoked more than
100 cigarettes in life and smoke not at all now), now (smoked moth
than 100 cigarettes in life and smoke some days or every day).

Alcohol use is divided into five categories: never (drinking < 12
times in a lifetime), former (drinking ≥ 12 times in 1 year and did
not drink last year, or did not drink last year but drank≥ 12 times in
a lifetime), mild (drinking≤ 1 times a day for female and≤ 2 times
a day for male), moderate (drinking≤ 2 times a day for female and
≤ 3 times a day for male), and heavy (drinking ≤ 3 times a day for
female and ≤ 4 times a day for male).

The NHANES survey includes the Global Physical Activity
Questionnaire, which assesses time spent sitting and engaging in
typical physical activity over the past week. Questions capture the
amount of time spent in physical activity in all areas and intensity,
including vigorous and moderate activity at work, transportation
activity, and vigorous and moderate activity during leisure time.
We calculated the metabolic equivalent (MET) minutes of the task
using the transformation recommended by NHANES. We defined
total physical activity as total MET hours per week and summed
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TABLE 1 Demographic characteristics stratified by Quartile of CDAI (n = 6,019).

Characteristic Overall Quartile 1
(−7.585,−2.143)

Quartile 2
(−2.143,0.017)

Quartile 3
(0.017,2.712)

Quartile 4
(2.712,19.662)

P-value

N 6,019 1,505 1,506 1,503 1,505

Age, years 45.67 (0.53) 45.31 (0.78) 45.85 (0.64) 47.34 (0.72) 44.10 (0.65) < 0.001

Sex 0.01

Female 2,786 (46.29) 762 (52.03) 667 (45.21) 680 (47.49) 677 (44.59)

Male 3,233 (53.71) 743 (47.97) 839 (54.79) 823 (52.51) 828 (55.41)

Race 0.003

Mexican 637 (10.58) 139 (6.52) 166 (7.90) 175 (7.66) 157 (7.28)

Black 1,342 (22.3) 398 (13.14) 337 (10.49) 282 (7.96) 325 (9.98)

White 2,652 (44.06) 639 (67.85) 649 (68.66) 691 (73.02) 673 (70.75)

Other 1,388 (23.06) 329 (12.49) 354 (12.95) 355 (11.35) 350 (11.98)

Body mass index, kg/m2 0.01

< 25 1,931 (32.08) 461 (28.57) 456 (29.73) 489 (32.93) 525 (34.63)

25–29.9 1,984 (32.96) 469 (32.88) 508 (34.74) 508 (34.61) 499 (35.75)

> = 30 2,104 (34.96) 575 (38.55) 542 (35.54) 506 (32.46) 481 (29.62)

Education level < 0.0001

Above 3,742 (62.17) 813 (58.96) 897 (66.25) 1,007 (73.20) 1,025 (73.70)

Below 1,006 (16.71) 327 (15.77) 285 (14.49) 206 (8.83) 188 (8.39)

High school 1,271 (21.12) 365 (25.27) 324 (19.26) 290 (17.97) 292 (17.92)

Poverty to income ratio < 0.0001

< 1.3 1,874 (31.13) 567 (27.73) 471 (21.80) 394 (16.11) 442 (20.07)

1.3–3.49 2,091 (34.74) 550 (38.14) 516 (34.52) 536 (35.32) 489 (30.58)

> = 3.5 2,054 (34.13) 388 (34.12) 519 (43.68) 573 (48.57) 574 (49.35)

Smoke status < 0.0001

Former 1,373 (22.81) 303 (20.03) 353 (24.41) 364 (26.47) 353 (24.64)

Never 3,426 (56.92) 807 (51.82) 831 (55.81) 883 (58.49) 905 (61.07)

Now 1,220 (20.27) 395 (28.16) 322 (19.78) 256 (15.04) 247 (14.29)

Alcohol status 0.01

Former 889 (14.77) 261 (14.86) 210 (10.65) 217 (12.32) 201 (11.32)

Heavy 1,268 (21.07) 318 (24.58) 326 (23.22) 277 (19.34) 347 (23.20)

Mild 2,124 (35.29) 463 (29.78) 545 (38.42) 574 (40.10) 542 (38.20)

Moderate 1,006 (16.71) 252 (19.85) 245 (17.80) 254 (19.13) 255 (19.01)

Never 732 (12.16) 211 (10.93) 180 (9.92) 181 (9.10) 160 (8.27)

Diabetes 0.29

No 5,119 (85.05) 1,257 (87.44) 1,288 (89.29) 1,286 (88.65) 1,288 (90.07)

Yes 900 (14.95) 248 (12.56) 218 (10.71) 217 (11.35) 217 (9.93)

Hypertension 0.34

No 3,712 (61.67) 909 (63.96) 897 (63.32) 944 (65.77) 962 (66.89)

Yes 2,307 (38.33) 596 (36.04) 609 (36.68) 559 (34.23) 543 (33.11)

Hyperlipidemia 0.02

No 2,075 (34.47) 486 (30.48) 506 (33.27) 509 (32.35) 574 (37.64)

Yes 3,944 (65.53) 1,019 (69.52) 1,000 (66.73) 994 (67.65) 931 (62.36)

Hand grip strength,
kg/BMI

2.75 (0.02) 2.62 (0.02) 2.72 (0.03) 2.75 (0.03) 2.88 (0.03) < 0.0001

Composite dietary
antioxidant index

0.83 (0.08) −3.53 (0.04) −1.07 (0.02) 1.28 (0.02) 5.91 (0.12) < 0.0001

(Continued)
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TABLE 1 (Continued)

Characteristic Overall Quartile 1
(−7.585,−2.143)

Quartile 2
(−2.143,0.017)

Quartile 3
(0.017,2.712)

Quartile 4
(2.712,19.662)

P-value

Vitamin A, µ g 644.21 (13.41) 243.38 (6.27) 448.61 (10.60) 689.36 (12.81) 1,127.64 (25.98) < 0.0001

Vitamin C, mg 80.65 (2.16) 30.58 (0.83) 56.59 (1.61) 87.16 (2.44) 139.82 (5.49) < 0.0001

Vitamin E, mg 9.47 (0.12) 4.29 (0.07) 7.15 (0.12) 9.72 (0.13) 15.85 (0.29) < 0.0001

Zinc, mg 11.63 (0.14) 6.04 (0.09) 9.60 (0.13) 12.46 (0.13) 17.55 (0.27) < 0.0001

Selenium, µ g 118.72 (1.09) 67.69 (0.96) 102.84 (1.17) 125.59 (1.45) 170.80 (3.06) < 0.0001

Carotenoid, µ g 9,716.18
(230.25)

2,874.99 (90.48) 5,805.91 (217.22) 9,584.58 (199.75) 19,416.04 (535.30) < 0.0001

Physical activity,
MET-min/week

4,424.94
(142.66)

4,353.98 (265.66) 4,437.34 (184.09) 4,405.62 (221.61) 4,495.13 (188.44) 0.98

Sedentary time, min/day 389.90 (5.29) 373.90 (7.77) 376.16 (8.35) 398.88 (7.25) 407.34 (7.26) < 0.0001

Continuous variables are expressed as mean (standard error), and categorical variables are expressed as n (%). Chi-square test was used for categorical variables, and analysis of One-Way
ANOVA was used for continuous variables. P < 0.05 was set as the threshold of statistical significance and marked in bold values. CDAI quartile range: quartile 1: −7.585−2.143; quartile 2:
−2.144−0.017; Quartile 3: 0.018−2.712; Quartile 4: 2.713−19.662.

over all physical activity questions. Sedentary behavior was defined
as the total amount of time spent sitting, measured in hours per day.

Diagnostic criteria for hypertension: (1) Have you been told
by a doctor or health professional that you have hypertension?
(2) Have you ever used antihypertensive drugs? (3) Systolic
blood pressure ≥ 140 mmhg and diastolic blood pressure
≥ 90 mmhg in three blood pressure measurements are considered
as hypertension patients.

Diagnostic criteria for hyperlipidemia: (1) Triglyceride (TG)
≥ 150 mg/dL. (2) Serum total cholesterol (TC) ≥ 200 mg/dL, low-
density lipoprotein (LDL) ≥ 130 mg/dL, high-density lipoprotein
(HDL) < 40 mg/dL (male), < 50 mg/dL (female). (3) Take lipid-
lowering drugs.

Diagnostic criteria for diabetes: (1) Have you been told by
a doctor or health professional that you have diabetes? (2)
Glycosylated hemoglobin (HbA1c) ≥ 6.5 mmol/L. (3) Fasting
blood glucose (GHLU) ≥ 7.0 mmol/L. (4) Have you ever used
anti-diabetic drugs?

2.3. Statistical analysis

All analyzes in this study include sample weight calculation,
clustering, and stratification. During the data analysis process,
complex sampling weight calculation provided by the NHANES
analysis guide is used, and comprehensive weight calculation
and weighting processing are performed on valid sample data.
The CDAI was converted into quartile groups for demographic
feature description analysis, and the selected demographic feature-
related indicators were expressed as the mean (standard error)
of continuous variables and the percentage (%) of categorical
variables. The chi-square test was used to analyze categorical
variables and the One-Way ANOVA was used to analyze normal
continuous variables. A weighted generalized linear regression
model was used to analyze the linear relationship between CDAI
(including continuous variables and quartile groups) and CDAI
components (vitamin A, vitamin C, vitamin E, selenium, zinc, and
carotenoids) and HGS. Model 1 is a Crude model, and model 2
adds control variables such as age, gender, BMI, education level,

race, PIR, smoking, drinking, physical activity, and sedentary time
on the basis of Model 1. Model 3 adds Control variables such as
diabetes, hypertension, and hyperlipidemia on the basis of Model 2.
Gender subgroup analyzes were further performed after controlling
for covariates in weighted generalized linear models. Two-sided
P < 0.05 was set as the threshold for statistical significance, and
all analyzes were performed by R Studio version (4.2.1, USA).

3. Results

3.1. Demographics

This study included 6,109 participants (Age: 45.67± 0.53 years;
46.29% were female, 53.71% were male). Table 1 shows the baseline
characteristics of the study population according to CDAI quartiles,
gender, age, race, BMI, education level, smoking status, alcohol
status, hyperlipidemia, handgrip strength, and sedentary time in
different quartile groups were significant differences (P < 0.05).

In contrast, the highest CDAI quartile group tends to be
younger, male, white, with a higher BMI, with higher economic
level and education level. Never-smokers and mild drinkers had
higher CDAI levels, and the number of people with hyperlipidemia
also decreased with increasing CDAI levels.

In addition, HGS increased with the increase of CDAI level,
and sedentary time also showed a trend change with the increase
of CDAI level, but there was no difference in physical activity level
among different CDAI quartile groups.

3.2. The association between composite
dietary antioxidant index and handgrip
strength

Table 2 shows the generalized linear regression weighted model
of HGS and CDAI. In the fully adjusted model (Model 3), CDAI
(continuous value) was significantly positively correlated with HGS
(β = 0.009, 0.005–0.013, P < 0.001), and compared with the lowest
quartile of CDAI, the positive correlation between the highest
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TABLE 2 The association between composite dietary antioxidant
index and handgrip strength.

Model I Model II Model III

β (95%CI)
P-value

β (95%CI)
P-value

β (95%CI)
P-value

Composite dietary antioxidant index

CDAI (Continuity
Value)

0.024
(0.018, 0.030)

< 0.0001

0.009
(0.005, 0.013)

< 0.0010

0.009
(0.005, 0.013)

< 0.0010

Quartile 1 Ref Ref Ref

Quartile 2 0.098
(0.027, 0.169)

0.0090

−0.001
(−0.046, 0.044)

0.9620

−0.002
(−0.048, 0.045)

0.9360

Quartile 3 0.132
(0.062, 0.203)

< 0.0010

0.051
(0.006, 0.096)

0.0300

0.05
(0.001, 0.099)

0.0470

Quartile 4 0.264
(0.187, 0.341)

< 0.0001

0.083
(0.043, 0.123)

< 0.0010

0.084
(0.042, 0.126)

0.0020

P for trend < 0.0001 < 0.0010 < 0.0100

Stratified by sex

Male

CDAI (Continuity
Value)

0.024
(0.014, 0.034)

< 0.0001

0.015
(0.007, 0.023)

0.0020

0.015
(0.007, 0.023)

0.0020

Quartile 1 Ref Ref Ref

Quartile 2 0.024
(−0.074, 0.122)

0.6170

−0.026
(−0.099, 0.047)

0.4520

−0.024
(−0.099, 0.052)

0.4900

Quartile 3 0.082
(−0.002, 0.166)

0.0570

0.058
(−0.017, 0.133)

0.1150

0.06
(−0.016, 0.137)

0.1060

Quartile 4 0.222
(0.120, 0.324)

< 0.0010

0.13
(0.050, 0.210)

0.0040

0.131
(0.049, 0.213)

0.0060

P for trend < 0.0001 < 0.0010 < 0.0010

Female

CDAI (Continuity
Value)

0.012
(0.006, 0.019)

< 0.0010

0.003
(−0.001, 0.007)

0.1040

0.003
(−0.001, 0.007)

0.0890

Quartile 1 Ref Ref Ref

Quartile 2 0.009
(−0.073, 0.091)

0.8210

0.021
(−0.036, 0.077)

0.4390

0.017
(−0.041, 0.075)

0.5080

Quartile 3 0.075
(0.008, 0.142)

0.0300

0.037
(−0.008, 0.081)

0.1000

0.032
(−0.014, 0.079)

0.1440

Quartile 4 0.119
(0.048, 0.190)

0.0020

0.025
(−0.021, 0.071)

0.2550

0.026
(−0.020, 0.072)

0.2320

P for trend < 0.0010 0.1460 0.1370

Model I (Crude): unadjusted for covariates; Model II: adjusted for gender, age, race,
BMI, education level, PIR, smoking status, alcohol status, sedentary time, and physical
activity level; Model III: adjusted for gender, age, race, BMI, education level, PIR, smoking
status, alcohol status, sedentary time, physical activity level, diabetes, hypertension, and
hyperlipidemia were adjusted. P < 0.05 was set as the threshold of statistical significance
and marked in bold values.

quartile of CDAI and HGS was more significant (β = 0.084,
0.042 ∼ 0.126, P = 0.002), and the trend test was also significant
(P for trend < 0.0100).

Gender subgroup analysis showed that in model 3, male CDAI
was significantly positively correlated with HGS (β = 0.015, 0.007–
0.023, P = 0.002), and the trend test showed that compared with
the lowest quartile of CDAI, the positive correlation between the
highest quartile of CDAI and HGS was more significant (β = 0.131,
0.049∼0.213, P = 0.006) and the trend test was also significant (P for
trend < 0.0100). There is no correlation between female CDAI and
HGS, and the trend test has no statistical significance (P > 0.05).

3.3. The association between composite
dietary antioxidant index (Components)
and handgrip strength

Table 3 shows the generalized linear regression weighted model
between HGS and dietary antioxidants. In model 1, all dietary
antioxidants are positively correlated with HGS (P < 0.05), but the
fully adjusted model (model 3), only showed that dietary Vitamin
E, Zinc, and Selenium had a significant positive correlation with
HGS (β = 0.004, 0.002∼0.007, P = 0.006; β = 0.007, 0.004∼0.009,
P < 0.001; β = 0.001, 0.001∼0.001, P < 0.001), Vitamin A, Vitamin
C, and Carotenoid were significantly associated with HGS in the
Crude Model, but this association disappeared in the complete
model with the inclusion of control variables.

Gender subgroup analysis showed that in model 3, male
dietary intake levels of Vitamin E, Zinc, and Selenium were
significantly positively correlated with HGS (β = 0.005,
0.002∼0.009, P = 0.011; β = 0.007,0.004∼0.011, P = 0.001;
β = 0.001, 0.001∼0.001, P = 0.004), the other indicators had no
significant correlation with HGS. Among the female participants,
dietary intake of Zinc was significantly positively correlated with
HGS (β = 0.005,0.001∼0.008, P = 0.008), while other indicators
had no significant correlation with HGS (P > 0.05).

4. Discussion

In this nationwide cross-sectional survey based on NHANES,
we found a positive correlation between CDAI and HGS, and
gender subgroup analysis showed that this phenomenon was
more significant in the male population. In addition, the study
confirmed that there was a positive correlation between the dietary
antioxidants vitamin E, zinc, selenium, and HGS, and gender
subgroup analysis showed that there was a positive correlation
between dietary antioxidants vitamin E, zinc, selenium, and HGS in
male, but only a significant positive correlation was found between
zinc and HGS in female.

So far, few studies have reported the association between CDAI
and HGS. This study is the first cross-sectional survey using a
composite dietary antioxidant index to explain changes in the
level of HGS. In addition, our study also conducted an association
analysis between the representative components of CDAI and HGS.
This study confirmed that dietary antioxidants vitamin E, zinc, and
selenium all have a positive contribution to the improvement of
HGS. The following related studies provide further support for the
findings of this study.

A cross-sectional survey from Italy confirmed that low plasma
selenium concentrations were associated with poor skeletal muscle
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TABLE 3 The association between composite dietary antioxidant index (Components) and handgrip strength.

Model I Model II Model III

β (95%CI) P-value β (95%CI) P-value β (95%CI) P-value

Composite Dietary Antioxidant Index (Components)

Vitamin A 0.001 (0.001,0.001) < 0.001 0.001 (0.001, 0.001) 0.435 0.001 (0.001, 0.004) 0.426

Vitamin C 0.001 (0.001,0.001) 0.002 0.001 (0.001, 0.001) 0.126 0.001 (0.001, 0.001) 0.142

Vitamin E 0.021 (0.017,0.026) < 0.0001 0.004 (0.002, 0.007) 0.006 0.004 (0.002, 0.007) 0.006

Zinc 0.036 (0.032,0.040) < 0.0001 0.007 (0.004, 0.009) < 0.0001 0.007 (0.004, 0.009) < 0.001

Selenium 0.004 (0.003,0.004) < 0.0001 0.001 (0.000, 0.001) < 0.001 0.001 (0.001, 0.001) < 0.001

Carotenoid 0.001 (0.001,0.001) < 0.001 0.001 (0.001, 0.001) 0.761 0.001 (0.001, 0.001) 0.741

Stratified by Sex

Male

Vitamin A 0.001 (0.001,0.001) 0.108 0.001 (0.001, 0.001) 0.337 0.001 (0.001, 0.001) 0.343

Vitamin C 0.001 (0.001,0.001) 0.104 0.001 (0.001, 0.001) 0.053 0.001 (0.001, 0.001) 0.060

Vitamin E 0.01 (0.005,0.015) < 0.001 0.005 (0.002, 0.009) 0.009 0.005 (0.002, 0.009) 0.011

Zinc 0.011 (0.006,0.016) < 0.0001 0.007 (0.004, 0.011) < 0.001 0.007 (0.004, 0.011) 0.001

Selenium 0.001 (0.001,0.002) < 0.0001 0.001 (0.000, 0.001) 0.002 0.001 (0.001, 0.001) 0.004

Carotenoid 0.001 (0.001,0.001) 0.389 0.001 (0.001, 0.001) 0.688 0.001 (0.001, 0.001) 0.658

Female

Vitamin A 0.001 (0.001,0.001) 0.181 0.001 (0.001, 0.001) 0.722 0.001 (0.001, 0.001) 0.763

Vitamin C 0.001 (0.001,0.001) 0.016 0.001 (0.001,0.001) 0.864 0.001 (0.001,0.001) 0.828

Vitamin E 0.007 (0.001,0.013) 0.022 0.002 (−0.001, 0.005) 0.155 0.002 (−0.001, 0.005) 0.202

Zinc 0.008 (0.003,0.014) 0.004 0.004 (0.001, 0.008) 0.008 0.005 (0.001, 0.008) 0.008

Selenium 0.001 (0.001,0.001) 0.017 0.001 (0.001,0.001) 0.067 0.001 (0.001,0.001) 0.062

Carotenoid 0.001 (0.001,0.001) 0.002 0.001 (0.001,0.001) 0.836 0.001 (0.001,0.001) 0.816

Model I (Crude): unadjusted for covariates; Model II: adjusted for gender, age, race, BMI, education level, PIR, smoking status, alcohol status, sedentary time and physical activity level; Model
III: adjusted for gender, age, race, BMI, education level, PIR, smoking status, alcohol status, sedentary time, physical activity level, diabetes, hypertension, and hyperlipidemia were adjusted.
P < 0.05 was set as the threshold of statistical significance and marked in bold values.

strength in community-dwelling older adults, but whether dietary
selenium supplementation can attenuate age-related declines in
muscle strength remains inconclusive (52). Consistent with the
study by Perri et al. (53), which demonstrated that lower selenium
intake is common in older populations and is associated with poor
musculoskeletal function, this study did not find an association
between selenium intake and HGS in female (similar results were
also found in our study). A systematic review by van Dronkelaar
et al. (54) confirmed that an important potential antioxidant for
the adverse health physiological effects associated with sarcopenia is
“selenium,” which showed a positive relationship between selenium
and muscle strength in four representative studies included in
the article (54–59). The above studies are consistent with the
results of this study. Related research theory believes that lower
serum selenium levels will limit the synthesis of selenoproteins
in skeletal muscle, and lower selenoproteins in skeletal muscles
will increase oxidative stress and oxidative damage in muscle
tissue, decreased muscle strength through the upregulation of
inflammatory cytokines, whereas lower concentrations of selenium
in serum directly induced higher concentrations of biomarkers of
oxidative stress (F2-isoprostane) (60–64).

Yongjae et al. (65) found that lower levels of serum vitamin
E were associated with lower HGS through a cross-sectional
survey. It was recommended that people with lower HGS levels
be supplemented with vitamin E to prevent the risk of sarcopenia,
but gender subgroup analysis showed no significant association

between vitamin E intake and HGS in women. Richard et al.
(19) confirmed in a survey of sarcopenia among community
women that vitamin E was independently associated with HGS
and knee muscle strength, confirming the hypothesis that oxidative
stress is associated with sarcopenia in the elderly. Oxidative stress
is believed to play an important role in the aging rate and is
an important component in the aging process and pathological
pathway. Vitamin E can effectively be an antioxidant and regulate
the REDOX balance in the body (66, 67). A cross-sectional survey
by Welch et al. (68) found a positive association between dietary
vitamin E and lean body mass index, further supporting the
association between vitamin E and skeletal muscle health, but
similar to our findings in this study, the study concluded that
vitamin E intake is not related to female HGS. An earlier study
by Benedetta et al. (69) provided valuable evidence that low
vitamin E concentrations were associated with the subsequent
decline in physical function in a population-based sample of
community-based older adults. Despite the controversial views (55,
70), we can still explore the potential contribution of vitamin
E to the improvement of muscle strength through the existing
relevant theory (71). Vitamin E is a fat-soluble vitamin that exerts
antioxidant properties by reducing oxidative damage by scavenging
reactive oxygen species (ROS) and enhancing cellular antioxidant
capacity. Vitamin E, a tocotrienol-rich fraction (TRF), was found
to reverse myoblast senescence in a stress model, suggesting a
potential therapeutic effect of vitamin E on muscle cells (72, 73).
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Relevant animal experiments have demonstrated that ROS and
inflammation can directly aggravate the deterioration of muscle
atrophy, and vitamin E can reduce the pro-inflammatory cytokine
response, regulate the inflammatory response, and improve
muscle mass and strength by inhibiting the increase of NF-κB
(inflammatory transcription factor) and its chemokines (72–81). In
addition, studies have found that mitochondrial dysfunction and
apoptosis are closely related to ROS and muscle atrophy. Vitamin
E alleviates the effects of hypoxia on mitochondrial function and
apoptosis signaling pathway, further reducing apoptosis under
stress conditions and thus preventing muscle atrophy and muscle
strength decline (82–85). It can be known that vitamin E can
not only play a role in the plasma membrane disorder caused
by oxidative stress, and reduce muscle oxidative damage, but also
play an important role in preventing chronic inflammation and
non-oxidative apoptosis.

Research on the relationship between dietary zinc and muscle
strength is still relatively scarce. In a recent animal experiment, it
was found that reducing the dietary intake of antioxidants such as
vitamin A, E, B6, and zinc in aged mice led to a decrease in oxidative
capacity, and had a major impact on muscle health by reducing
muscle function and physical activity in mice (86). A cohort survey
by Nishikawa et al. (87) found that serum zinc concentration was
positively correlated with HGS in patients with chronic kidney
disease, and zinc deficiency patients with chronic kidney disease
had a higher susceptibility to sarcopenia. The study by Xu et al. (88)
found that the serum zinc content of people without sarcopenia
was much higher than that of people with sarcopenia and was
positively correlated with relative skeletal muscle mass index
(RSMI), indicating that zinc and iron may play an important role
in the development and progression of sarcopenia. As we all know,
zinc, as an essential trace element, is crucial to human growth
and development, immunity, metabolism, and other physiological
functions. Zinc deficiency not only leads to immune function
suppression but also regulates the release of inflammatory cytokines
(89–97). Although there is currently a lack of clear physiological
mechanism research to provide a sufficient explanation for the
findings of this study, the impact of zinc on skeletal muscle
health may be supplemented by anti-inflammatory effects. The
concentration of zinc in monocytes can activate or inhibit the
release of pro-inflammatory cytokines, and lower serum zinc
concentrations will lead to immune function suppression, which
in turn stimulates the release of pro-inflammatory factors such as
TNF-α and IL-6, while a large number of studies have shown that
chronic inflammation mediated by inflammatory factors or stress
directly leads to lower muscle strength and muscle mass, leading to
sarcopenia over time (54, 87, 89, 91, 98).

In this study, vitamin A, C, and carotenoids were not
significantly associated with HGS. Bruno et al. (18) confirmed that
serum α-carotene was positively correlated with muscle strength
in the elderly, but did not find an association between carotenoids
and the HGS of the elderly. Recently, a prospective cohort study
found that vitamin B12 intake improved muscle strength loss in
elderly people with type 2 diabetes, but vitamin A intake was not
associated with muscle strength (99). The findings of Li et al. (48)
are consistent with the above studies, which found that vitamin A
was associated with adult quality of life, but it was not associated
with muscle strength in different age groups (100). A cohort study
by Sahni et al. (14) found that dietary vitamin C intake was not

associated with HGS and gait speed in adults, and the study argues
that previous studies have focused more on baseline concentrations
of serum antioxidants (carotenoids, vitamin C, E, etc.), but the
concentration of serum antioxidants will fluctuate greatly over time
(especially the intake of vitamin C and carotenoids is prone to
seasonal changes), compared with a single blood test, additional
valuable information can be provided through dietary nutrition
surveys (100). The above studies provide support for the results of
this study. Controversial research views can be explained by the
differences in the relevant research design, participants, and the
inclusion of control variables (14). However, this study is consistent
with previous research suggesting that dietary antioxidant intake is
helpful in improving muscle strength.

This study is the first to explore its potential association with
muscle strength through a new composite dietary antioxidant
index. Based on previous studies, we added control variables such
as physical activity level and sedentary time that may affect the
research results. In addition, NHANES has further improved the
objectivity of the research results based on its survey methods,
personnel professionalism, experimental control, and scientific
data collection and other factors. The index for evaluating muscle
strength in this study did not use the commonly used absolute value
of HGS, but a more accurate relative value of HGS for correlation
analysis (28).

The NHANES database is limited in its investigation of
nutrients in dietary recalls. Dietary antioxidant intake has
traditionally been assessed using the Dietary Antioxidant Quality
Score (DAQS) (6). DAQS shows the combined antioxidant capacity
of vitamins A, C, E, Se, Mn, and Zn in six grades ranging
from very poor (0) to high antioxidant quality (6). The score
relates to the ratio of the daily intake of these nutrients to the
corresponding recommended intake. However, this section ignores
secondary plant compounds (101). In addition, authors studying
the relationship between DAQS and major OS biomarkers did
not report any significant relationship, namely with urinary F2-
is prostaglandin, PGE-2, or other OS or inflammatory markers
(101). The CDAI contains similar nutrients to DAQS but uses a
different calculation method derived from the Dietary Antioxidant
Index originally developed by Wright et al. (20). The latter
index combines the intake of vitamins A, C, E, carotenoids, zinc,
and selenium. Scores are based on principal component analysis
and summary construction of retained principal component
scores. Carotenoids include α-β-and γ-carotene, as well as β-
cryptoxanthin, lutein, zeaxanthin, and lycopene. Vitamin E consists
of α- and β-tocopherol and α- and γ-tocopherol. Moreover, studies
have confirmed that CDAI is significantly associated with many
adverse health effects (13, 22–24, 27, 102). Therefore, compared
with traditional dietary antioxidant indexes, CDAI has proved its
application advantages and effectiveness in epidemiological studies.
According to the main purpose of this study and the structure of
this paper, no other dietary antioxidant indexes were included for
horizontal comparison.

However, there are still some limitations in this study. (1) The
evaluation indicators used in this study are more obtained through
subjective questionnaires rather than objective measurement
indicators of blood biochemistry; (2) Although individual dietary
recall in NHANES is conducted using two separate 24-hour dietary
recall interviews, measurement error cannot be avoided; (3) This
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study tried to control social confounding factors that may affect
CDAI and muscle strength, but based on source data and existing
theoretical limitations, it is not possible to include all control
variables that might have influenced the results of the study. (4)
The gender difference between dietary antioxidants and HGS in
this study is supported by relevant studies, but no effective basic
theoretical support has been found for the reasons and mechanisms
of this result, it is necessary to carry out further research on the
relevant physiological mechanisms in the future.

5. Conclusion

In conclusion, the results of this study support that there is
an association between the CDAI and HGS, but there is a gender
difference. There is an association between the CDAI and HGS
in male, but this association is not significant in female. Intake
of the dietary antioxidants vitamin E, selenium, and zinc was
associated with HGS in male, but only zinc was associated with
HGS among dietary antioxidants in female. Therefore, research
encourages attempts to consume more dietary antioxidants to
improve muscle strength.

Most of the previous studies were cross-sectional or cohort
investigations, and more randomized controlled trials should
be carried out in the future to further explain the physiological
mechanism association between dietary antioxidants and
muscle strength.
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