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The SARS-CoV-2 outbreak has infected a vast population across the world, 
causing more than 664 million cases and 6.7 million deaths by January 2023. 
Vaccination has been effective in reducing the most critical aftermath of this 
infection, but some issues are still present regarding re-infection prevention, 
effectiveness against variants, vaccine hesitancy and worldwide accessibility. 
Moreover, although several old and new antiviral drugs have been tested, we still 
lack robust and specific treatment modalities. It appears of utmost importance, 
facing this continuously growing pandemic, to focus on alternative practices 
grounded on firm scientific bases. In this article, we  aim to outline a rigorous 
scientific background and propose complementary nutritional tools useful toward 
containment, and ultimately control, of SARS-CoV-2 infection. In particular, 
we review the mechanisms of viral entry and discuss the role of polyunsaturated 
fatty acids derived from α-linolenic acid and other nutrients in preventing the 
interaction of SARS-CoV-2 with its entry gateways. In a similar way, we analyze 
in detail the role of herbal-derived pharmacological compounds and specific 
microbial strains or microbial-derived polypeptides in the prevention of SARS-
CoV-2 entry. In addition, we highlight the role of probiotics, nutrients and herbal-
derived compounds in stimulating the immunity response.
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1. Introduction

The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory 
syndrome coronavirus 2 (SARS-CoV-2), has triggered a devastating global health, social and 
economic crisis, with more than 664 million cases and 6.7 million deaths (1). Coronaviruses are 
a group of enveloped, positive-sense, single-stranded RNA viruses that are able to cause a range 
of diseases in several species including humans (2).

Several different strains of human coronaviruses (HCoV) have been identified to date (3). 
Among them, SARS-CoV, MERS-CoV, and SARS CoV-2 are highly pathogenic and have resulted 
in three life-threatening severe respiratory disease outbreaks in the past two decades. Other 
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HCoV strains [i.e., HCoV-229E (an alpha CoV), HCoV  NL63 (an 
alpha CoV), HCoV-OC43 (a beta CoV), and HCoV  HKUI (a beta 
CoV)] usually cause only common-cold-like mild upper respiratory 
tract illnesses in humans (3, 4). As these human coronaviruses have a 
zoonotic origin, it is increasingly likely that there will be more HCoV 
outbreaks in the future (5). The envelope spike (S) protein of SARS-
CoV-2 plays a crucial role in coronavirus pathogenesis, mediating 
receptor binding, membrane fusion and promoting viral entry into 
target cells (6). The S protein of coronaviruses is functionally divided 
into the S1 domain, the receptor binding domain (RBD), and the S2 
domain responsible for cell membrane fusion. Virus entry requires S 
protein priming by cellular proteases which determine the cleavage of 
S1/S2 domains and allow fusion of the viral envelope with the cellular 
membrane. SARS-CoV-2 engages angiotensin-converting enzyme 2 
(ACE2) as the entry receptor and uses the cellular transmembrane 
serine protease 2 (TMPRSS2) for S protein priming. ACE2 and 
TMPRSS2 are expressed in several human cells, including cells of the 
respiratory and digestive tracts (7, 8).

Original data suggest that the downregulation of TMPRSS2 and/
or ACE2 expression on the cell surface could avert viral entry into the 
host cell and, consequently, infection spreading. It has been shown 
that knocking out ACE2 expression can block SARS-CoV-2 infection 
of murine epithelial cells (9), and that ACE inhibition blocks SARS-
CoV-2 infection in vitro (10, 11).

This review is focused on natural products, including nutrients, 
bacterial strains, molecules or herbal extracts that target virus entry 
by interfering with ACE2 binding and/or by preventing TMPRSS2 
cleavage. In addition, considering the hyperinflammation rise often 
associated with SARS-CoV-2 infection (12), we highlight also the anti-
inflammatory properties associated with several natural products.

2. Virus structure, biology

The RNA genome of SARS-CoV-2 (29.9 kb) encodes 29 proteins 
(13). Of these, only four proteins, namely S protein, membrane (M), 
envelope (E), and nucleocapsid (N), make up the whole virus structure 
(14). The remaining proteins are non-structural proteins (n = 16) and 
accessory proteins (n = 9) that are pivotal in the replication of the virus 
and the escape of host immunity (15). Similar to SARS-CoV, SARS-
CoV-2 utilizes the cell surface receptor ACE2 for cellular entry. Firstly, 
the SARS-CoV-2 S glycoprotein interacts with surface ACE2 to enter 
the target cell; in addition, invasion also needs proteolytic activation 
of the S protein, which is helped by the TMPRSS2 and lysosomal 
cysteine proteases, cathepsins, available in the target host cell (7, 8). 
Newly made envelope proteins are inserted into endoplasmic 
reticulum and Golgi membranes, and the nucleocapsid is formed by 
the assimilation of nucleocapsid protein with genomic RNA. Then, 
viral particles are produced into the endoplasmic-reticulum-Golgi 
intermediate compartment and the virus particles are released by 
exocytosis. Any of the steps in this viral life cycle are a potential target 
for anti-SARS-CoV-2 drug discovery.

To rationally target the SARS-CoV-2 life cycle, it is important 
to better outline at least the more general steps of virus entry. The 
S protein of SARS-CoV-2 is not only the main mediator of initial 
virus attachment on the cell surface, but also ignites the complex 
machinery that allows viral RNA entry into the host cytoplasm by 
triggering pore formation, both during membrane fusion and 

endocytosis. Similarly to HIV-1 and Ebola viruses, the preliminary 
step for S protein priming occurs in the infected cells, during the 
production of new viral particles (16). During this stage, cellular 
proteases like furin cleave S proteins into two not-covalently-
associated S1 and S2 subunits. The S1 subunit is responsible for the 
attachment to the obligate SARS-CoV-2 receptor, the ACE2 protein, 
which in the human body is expressed at high levels in the small 
intestine, testis, kidney, heart muscle, colon and thyroid gland (17). 
When the viral and the host cell membrane are proximal, the 
docking of S1 to ACE2 determines ACE2-dependent 
conformational changes at the S2 sequence. From this moment, 
TMPRSS2 becomes pivotal in determining the modalities of virus 
entry. Sufficient expression or activity of TMPRSS2 at cell surface 
level allows for S2 cleavage, exposure of fusion peptide sequences, 
followed by the process by which enveloped viruses merge their 
membrane with the host cell membrane in a way that the virus can 
move its genome inside the cell, resulting in the potential 
production of new virions (18). Of note, membrane fusion is not a 
spontaneous process, as there are high energy requirements to 
bring the membranes close together (19, 20). Alternatively to 
membrane fusion, SARS-CoV-2 can take advantage also from 
endocytic pathways to reach the cytosol of the host cell. In the 
absence of S1 priming, the virus binding to one or more copies of 
ACE2 can trigger the endocytic route. After internalization, and 
presumably at the stage of late endosome, cathepsin protease 
activity on S2 determines the exposure of S2 sequences which allow 
the fusion of viral and endosomal membranes, followed by 
liberation of viral RNA into the cytoplasm. Interestingly, not only 
naïve but also opsonized virions can be  internalized by the 
endocytic mechanism. Opsonized SARS-CoV-2 virions are coated 
with antibodies that mask viral proteins, but the virus can still bind 
the cell surface and be endocytosed due to the presence of receptors 
for antibody Fc regions (21).

Of note, as SARS-CoV-2 circulated globally, the viral genome 
acquired new mutations, some of which have become widespread. 
Until late 2020, the most notable was the S protein mutation 
D614G. This variant quickly became dominant, and this rapid spread 
seems to have been due to increased infectivity, stability, and 
transmissibility over the ancestral D614 form (22, 23), resulting from 
a shift to the open configuration of the S protein trimer, which is 
required for binding to the host ACE2 receptor (23) and host cell 
entry. Not surprisingly, there are many variants of SARS-CoV-2. Some 
are believed or have been stated to be of particular importance, due to 
their potential for increased transmissibility (24), increased virulence, 
or reduced effectiveness of vaccines against them (25, 26). Studies have 
demonstrated reductions in neutralizing activity of vaccine-elicited 
antibodies against a range of SARS-CoV-2 variants, against the 
Omicron variants in particular, exhibiting partial immune escape. 
However, evidence suggests that T-cell responses are preserved across 
vaccine platforms, regardless of the variant of concern (26, 27). As of 
March 2023, only the Omicron variants are designated as a circulating 
variant of concern by the World Health Organization (28).

Mechanistic details of these pathways may vary considerably 
between cell types. Regarding SARS-CoV-2’s most important cell 
target, it is worth noting that the diversity of endocytosis in airway 
epithelium is currently poorly understood. Dissecting the mechanisms 
of endocytic viral entry in the respiratory tract may therefore offer a 
promising therapeutic strategy to treat viral infections.
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3. COVID-19 pathogenesis and 
pathophysiology

The SARS-CoV-2 virus is able to infect a wide range of cells and 
organs of the body. SARS-CoV-2 is most known for affecting the 
upper respiratory tract (sinuses, nose, and throat) and the lower 
respiratory tract (bronchi and lungs). The lungs are mostly affected by 
SARS-CoV-2 because ACE2 is most abundant on the surface of type 
II alveolar pneumocytes of the lungs (29, 30). Three common patterns 
of symptoms have been recognised: one respiratory symptom cluster 
with cough, sputum, shortness of breath, and fever; a musculoskeletal 
symptom cluster with muscle and joint pain, headache, and fatigue; a 
cluster of digestive symptoms with abdominal pain, vomiting, and 
diarrhea (31).

Genetic predisposition may have a role in COVID-19 
pathogenesis. The receptor-binding domain (RBD) of the SARS-
CoV-2 S protein binds with high affinity with ACE2 receptor to enter 
cells. Consequently, ACE2 genetic variants that could affect its gene 
expression, protein conformation, and protein stability are the one of 
most uncertain factors involved genetic predisposition to SARS-
CoV-2 infection (32). ACE2 is an X-linked gene that harbors a strong 
variant with tendency to an X-linked dominant inheritance pattern in 
severely affected patients. It might be a clue to the reason for the 
higher prevalence and severity of COVID-19 in men than in women 
(33). Furthermore, the immune-related genetic variants associated 
with the prior strain of coronavirus, namely SARS-CoV, are suspected 
to have roles in the genetic predisposition to SARS-CoV-2 infection 
(34), since SARS-CoV-2 has 80% genetic identity to SARS-CoV (35). 
Focusing on the genes of the human immune system and relating 
them to SARS-CoV-2 susceptibility, several lines of evidence strongly 
support the role of the interferon system (and related cytokines) as the 
most important determinant of infection control versus infection 
severity in humans (36–38).

3.1. COVID-19 and calcium metabolism

An important issue in the pathogenesis of SARS-CoV-2 infection 
is the role of calcium signaling. Of note, at the cellular level, 
coronavirus infection has been shown to modulate calcium 
metabolism. The SARS-CoV-2 S protein has two FP domains, FP1 and 
FP2, and binds to two Ca2+ ions for host cell entry (39). SARS-CoV-2 
appears to affect cellular function by altering the host Ca2+ homeostasis 
in ways that promote viral infection and reproduction. One 
mechanism is through disruption of calcium channels and pumps 
(e.g., voltage-gated calcium channels (VGCCs), receptor-operated 
calcium channels, store-operated calcium channels, transient receptor-
potential ion channels, and Ca2+-ATPase) (40). Furthermore, the E 
and ORF3a proteins of coronaviruses impact Ca2+ homeostasis in the 
host, by acting as calcium ion channels, enhancing the virion’s entry 
and replication potential (41).The SARS-CoV-2-E protein is a 
76-amino-acid (aa) integral membrane protein with one 
transmembrane domain (TMD) that allows the E protein to form 
protein-lipid channels in membranes that promote permeability to 
Ca2+ ions. The alteration of Ca2+ homeostasis by SARS-CoV-2 proteins 
promotes SARS-CoV-1/2 fitness and elicits the production of 
chemokines and cytokines, contributing to pathogenesis. Ion channel 
activity modulation by the SARS-CoV-1-ORF3a protein also 

modulates viral release (42). Therefore, when SARS-CoV-2 infects the 
human body, the resultant dysregulation of Ca2+ homeostasis may 
contribute to morbidity and mortality. COVID-19 patients have been 
noted to have low serum calcium levels overall (43).

3.2. COVID-19 and oxidative balance

In addition to calcium homeostasis alteration, imbalance between 
oxidative species and antioxidants also has a proven role in COVID-19 
pathogenesis. The presence of oxidative stress in COVID-19 patients 
was recently assessed in studies that observed a significant reduction 
in free sulfhydryl groups from patient serum (44), and a mortality-
related increase in damaged albumin (45). In addition, several other 
markers like glial fibrillary acidic protein (GFAP), the receptor for 
advanced glycation end products (RAGE), high mobility group box-1 
protein (HMGB1) and cyclo-oxygenase-2 (COX-2) were found 
increased in patients with severe COVID-19 (46). Another study 
outlined, in COVID-19 patients, inflammasome activation correlated 
with mitochondrial superoxide and lipid peroxidation, suggesting that 
oxidative stress and inflammation are two sides of the same coin, 
where inflammation and oxidative stress reinforce each other (47). In 
particular, high reactive oxygen species (ROS) levels, originating from 
improper oxidative metabolism and the action of defensive enzymes 
such as NADPH oxidase, could lead to the formation of oxidized 
forms of proteins, DNA and lipids that in turn could act as damage-
associated molecular patterns (DAMPs) which could trigger further 
inflammatory reaction (48), ultimately unbalancing antiviral response 
and inflammation regulation, to unleash a dysregulated cytokine 
production normally known as cytokine storm (49). So, the 
pathological oxidative response, followed by reduced nitric oxide 
production and increased endothelial dysfunction, hyperpermeability 
and hypercoagulability, leads to a scenario of hyperinflammation and 
thrombosis, that, together with immunosuppression, constitute the 
core of COVID-19 disease.

3.3. Host cytokine response

Subjects with severe COVID-19 have symptoms of systemic 
hyperinflammation and dysregulated immune response. Laboratory 
findings of increased interleukin-2 (IL-2), interleukin-7 (IL-7), 
interleukin-6 (IL-6), granulocyte-macrophage colony-stimulating 
factor (GM-CSF), C-X-C Motif Chemokine Ligand 10 (CXCL10), 
monocyte chemoattractant protein-1 (MCP1), macrophage 
inflammatory protein-1 α (MIP1α), and tumor necrosis factor α 
(TNF-α) are indicative of cytokine release syndrome and are 
suggestive of an underlying immunopathology (36, 50–52). The 
severity of the inflammation can be linked to the severity of what is 
known as the cytokine storm. Combatting the cytokine storm has 
been proposed as an effective treatment since it is one of the leading 
causes of morbidity and mortality in COVID-19 (36, 53, 54). A 
cytokine storm is caused by an acute hyperinflammatory response that 
is responsible for clinical illness in an array of diseases; and in COVID-
19, it is related to a worse prognosis and increased fatality. The storm 
causes acute respiratory distress syndrome and blood clotting events 
such as thrombosis, strokes, myocardial infarction, encephalitis, acute 
kidney injury, and vasculitis. The production of IL-1, IL-2, IL-6, 
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TNF-α, and interferon-gamma (IFN-γ), all crucial components of 
normal immune responses, become the causes of a cytokine storm.

In addition, key transcriptional factors, such as tumor protein 53 
(p53) and nuclear factor kappa-light-chain-enhancer of activated B 
cells (NF-kB) and their reciprocal balance, are altered upon SARS-
CoV-2 infection (55). Of note, interferon alpha (IFN-α) plays a 
complex, multi-faceted role in the pathogenesis of COVID-19. 
Although it promotes the elimination of virus-infected cells, it also 
upregulates the expression of ACE2, thereby facilitating the SARS-
CoV2 virus to enter cells and replicate. A competition of negative 
feedback loops (via protective effects of IFN-α) and positive feedback 
loops (via upregulation of ACE2) is assumed to determine the fate of 
patients suffering from COVID-19 (37, 56, 57). Additionally, subjects 
with COVID-19 and acute respiratory distress syndrome (ARDS) 
have classical serum biomarkers of cytokine release syndrome, 
including elevated C-reactive protein lactate dehydrogenase D-dimer 
and ferritin levels (36, 58). Systemic inflammation results in 
vasodilation, allowing inflammatory lymphocytic and monocytic 
infiltration of the lung and the heart. Of note, pathogenic GM-CSF-
secreting T cells were linked to the recruitment of pro-inflammatory 
IL-6-secreting monocytes and severe lung pathology in COVID-19-
infected subjects (36). Wide-spread lymphocytic infiltrates have also 
been reported at autopsy (59).

3.4. COVID-19 and the central nervous 
system

Loss of smell, a common symptom, results from infection of the 
cells of the olfactory epithelium, with subsequent damage to the 
olfactory neurons. The involvement of both the central and peripheral 
nervous system in COVID-19 has been reported (60, 61). The virus is 
not detected in the central nervous system (CNS) of the majority of 
COVID-19 patients with neurological issues. However, SARS-CoV-2 
has been detected at low levels in the brains of those who have died 
from COVID-19, but these results need to be confirmed (60, 61). 
While the virus has been detected in cerebrospinal fluid in autopsies, 
the exact mechanism by which it invades the CNS remains unclear, 
and it could involve invasion of peripheral nerves due to the low 
expression levels of ACE2 in the brain (60, 61). The virus may also 
enter the bloodstream from the lungs and cross the blood–brain 
barrier to gain access to the CNS, possibly within infected white blood 
cells (61). Observed individuals infected with SARS-CoV-2 (most 
with mild cases) experienced an additional 0.2–2% of brain tissue lost 
in regions of the brain connected to the sense of smell compared with 
uninfected individuals; infected individuals also scored lower on 
several cognitive tests. All effects were more pronounced among 
elderly individuals (61).

3.5. COVID-19 and the gastrointestinal 
tract

The virus also involves gastrointestinal (GI) organs, since ACE2 is 
expressed in the glandular cells of gastric, duodenal and rectal 
epithelia as well in the enterocytes of the small intestine (62). Potential 
mechanisms on how SARS-CoV-2 can cause damage to the GI tract 
include a direct virus-induced cytopathic effect through cell entry via 

ACE2, indirect immune-mediated injury triggered by a systemic 
inflammatory response to SARS-CoV-2, and disruption of the 
intestinal microecological “milieu” leading to excessive systemic 
inflammation which may lead to a cytokine storm. Of particular 
interest, in our opinion, is the role of direct mucosal damage and the 
role of the intestinal microbiota. SARS-CoV-2 infection of gut 
epithelial cells is able to trigger dysbiosis, intestinal inflammation, and 
GI symptoms (63). The cytopathic viral effect on target intestinal cells 
leads to the generation of inflammatory signals known as pathogen-
associated molecular patterns (PAMPs) and intracellular DAMPs, 
which stimulate pattern recognition receptors (PRRs) such as toll-like 
receptors (TLRs), retinoic acid-inducible gene I (RIG-I) and other 
RIG-I-like receptors (RLRs). DAMPs and PAMPs trigger, through the 
recruitment of specific adaptors, the innate immune response which 
implicates the production of cytokines and chemokines such as 
TNF-α, interleukin-1 beta (IL-1β), IFNs, IL-6, CXCL10, MIP1α, 
MIP1β and MCP1.

3.6. COVID-19 and the cardiovascular 
system

Additionally, the virus can cause acute myocardial injury and 
chronic damage to the cardiovascular system. An acute cardiac injury 
was found in 12% of infected people admitted to the hospital in 
Wuhan, China, and it is more frequent in severe disease. Rates of 
cardiovascular symptoms are high, in accordance with the systemic 
inflammatory response and any immune system disorders during 
disease progression. However, acute myocardial injuries may also 
be related to the high expression of ACE2 receptors in the heart (64).

A high incidence of thrombosis and venous thromboembolism 
occurs in people transferred to intensive care units with SARS-CoV-2 
infections and may be  related to poor prognosis. Blood vessel 
dysfunction and clot formation (as suggested by high D-dimer levels 
caused by blood clots) are likely playing a significant role in mortality, 
with the incidence of clots leading to pulmonary embolisms, and 
ischaemic events within the brain (found as complications) leading to 
death in people infected with SARS-CoV-2. Infection may trigger a 
chain of vasoconstrictive responses within the body, including 
pulmonary vasoconstriction, decreasing oxygenation. Moreover, 
microvascular and capillary damage was found in the brain tissue of 
people who died from COVID-19 (65–67).

3.7. COVID-19 and blood cells changes

SARS-CoV-2 is also able to cause structural changes to blood cells, 
in some cases persisting for months after hospital discharge. A low 
level of blood lymphocytes may result from the virus acting through 
ACE2-related entry into lymphocytes.

One of the most notable changes seen in patients with COVID-19 
is the alteration in their blood cell counts (68). During SARS-CoV-2 
infection, there is a decrease in the number of white blood cells, 
particularly lymphocytes. The decrease in lymphocyte count is 
associated with the severity of the disease, and patients with severe 
COVID-19 tend to have lower lymphocyte counts (52). Of note, 
patient’s T cell compartment shows several alterations involving naïve, 
central memory, effector memory and terminally differentiated cells, 
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as well as regulatory T cells and PD1 + CD57+ exhausted T cells (52). 
T cells exhibit indications of exhaustion, such as increased expression 
of inhibitory receptors like PD-1. This state of exhaustion is marked 
by functional unresponsiveness, which serves to prevent extensive 
immune activation and the resultant tissue damage from autoimmune 
reactions. As a result, it is plausible that activation of these cells in 
COVID-19 patients not only results in a lack of clonal expansion, as 
evidenced by decreased proliferation, but also leads to the production 
of molecules that promote inflammation (52). The levels of 
immunoglobulin classes and antibodies against common antigens or 
vaccines in COVID-19 patients’ plasma were found to be normal. 
However, the number of total and naïve B cells decreased, along with 
decreased percentages and numbers of memory switched and 
unswitched B cells. Conversely, there was a significant increase in 
IgM+ and IgM-plasmablasts. B lymphocytes showed normal 
proliferation index and number of dividing cells per cycle during in 
vitro cell activation. The principal component analysis (PCA) 
indicated that B-cell number, naïve and memory B cells, but not 
plasmablasts, clustered with patients who were discharged. On the 
other hand, plasma IgM level, C-reactive protein, D-dimer, and 
sequential organ failure assessment (SOFA) score clustered with those 
who died. In patients with pneumonia, the deterioration of the B-cell 
compartment could be one of the reasons for immunological failure 
in controlling SARS-CoV2 (52). During SARS-CoV-2 infection, there 
is a decrease in the number of red blood cells, leading to anemia (69). 
Anemia can cause fatigue, shortness of breath, and other symptoms. 
The decrease in red blood cell count is also associated with the severity 
of the disease (69). Overall, structural and functional alterations of the 
blood cell compartment have an important role in the pathogenesis of 
SARS-CoV-2 infection; recent data highlight the predictive role of 
these alterations in prognosis and in the long COVID clinical setting 
(70–72).

4. The role of nutrients in preventing 
SARS-CoV-2 infection

4.1. Dietary omega-3 fatty acids as a tool to 
prevent COVID-19

The nutritional status of the host represents a pivotal discriminant 
influencing the ability of SARS-CoV-2 to enter cells and replicate. In 
this regard, dietary nutrients are emerging as a potential modulator of 
SARS-CoV-2 infections. Of these, bioactive fatty acids, like omega-3, 
may play a role in this context. Omega-3 are polyunsaturated fatty 
acids derived from α-linolenic acid which represents the precursor of 
eicosapentaenoic (EPA) and docosahexaenoic acid (DHA). While 
α-linolenic acid is an essential fatty acid, and therefore can only 
be  obtained from the diet, EPA and DHA can be  endogenously 
synthesised from the mutual precursor or obtained mainly via the 
consumption of fatty fish or fish oil. Regarding their role as potential 
nutraceuticals to tackle the COVID-19 pandemic, the supplementation 
of omega-3 fatty acids has been associated with a lower risk of SARS-
CoV-2 infection, at least in women (73). This is supported by the 
ability of these polyunsaturated fatty acids to protect against viral 
infections by inhibiting viral entry, localization and replication (74). 
The impact of omega-3 fatty acids on viral entry into the cells is 
dictated by their capacity to modulate membrane fluidity and protein 

complex formation in lipid rafts. In turn, the entry gateway for SARS-
CoV-2, ACE2 and TMPRSS2, is most commonly found in lipid rafts 
(75). Additionally, the size and number of lipid rafts may impact the 
abundance as well as enzymatic activity of ACE2 and TMPRSS2 (74). 
Thus, the modulation of lipid rafts by omega-3 fatty acids may affect 
viral entry into the cells (76). Furthermore, polyunsaturated omega-3 
fatty acids interfere with the virus binding to ACE2, with linolenic 
acid and EPA significantly blocking the entry of SARS-CoV-2 (77).

Aside from representing a nutritional tool potentially inhibiting 
SARS-CoV-2 entry into the cells, omega-3 fatty acids may also 
interfere with virus-mediated activation of sterol regulatory element 
binding proteins (SREBPs) which in turn are pivotal for viral 
replication. They facilitate viral replication, and modulate cellular lipid 
metabolism, leading to increased availability of lipid substrates 
directed towards virion replication membrane formation. Considering 
the central role of SREBP  1/2  in promoting lipogenesis and its 
involvement in the virus-mediated rewiring of lipid metabolism, this 
transcription factor has been proposed as a broad-spectrum anti-viral 
target (78). Not surprisingly, omega-3 fatty acids have been widely 
reported to influence lipid metabolism (79), an effect that also relies 
on their ability to inhibit SREBP1 activation and downregulate 
SREBP1c (80). Considering this, omega-3 may hinder virus-induced 
SREBP activation, thereby interfering with viral replication. 
Additionally, the regulation of cholesterol metabolism by SREBP may 
represent an additional mechanism explaining the potential role of 
omega-3 fatty acids in inhibiting SARS-CoV-2 infection. Indeed, 
cholesterol is also a key component of lipid rafts, and as such, it is 
crucial in mediating the entry of the virus into the cells (81). Thus, it 
appears that the ability of omega-3 fatty acids to counter SARS-CoV-2 
infection relies on their impact upon lipid metabolism. This possibility 
is further supported by the fact that lipogenesis modulator drugs, able 
to hamper fatty acid and cholesterol synthesis, also alter SARS-CoV-2 
replication cycle in vitro (82). In light of this, the therapeutic potential 
of lipogenesis modulators against COVID-19 may also apply to 
nutrients able to affect lipid metabolism, such as omega-3 which may 
therefore represent a promising nutritional tool to tackle SARS-CoV-2 
infection. Despite this, direct evidence gathered through clinical trials, 
on the ability of omega-3 fatty acids to prevent or at least limit SARS-
CoV-2 infection, is still lacking.

Another potential mechanism by which omega-3 fatty acids may 
interfere with SARS-CoV-2 infection is via the modulation of the 
activity of the immune system. Particularly, the fatty acid composition 
of the plasma membranes of phagocytic cells modulates their 
phagocytic capacity (83), which in turn represents an important step 
in the immune response against foreign pathogens. In support of this, 
while omega-3 fatty acids have the potential to enhance the phagocytic 
activity of neutrophils and monocytes, this effect is negatively 
correlated with palmitic acid content in the plasma membrane of these 
cells [84; 85]. Considering that the fatty acid composition of cell 
membranes closely reflects dietary fatty acid intake, it is plausible that 
increasing the intake of omega-3 fatty acids may result in an increase 
of phagocytic activity. Indeed, the supplementation of DHA and EPA 
at a dose of 1.5 g/day results in an increase in the phagocytic activity 
of both neutrophils and monocytes (84, 85).

Another mechanism by which omega-3 fatty acids, but also other 
unsaturated fatty acids, may dampen viral infection is via the 
disruption of the virus envelope. Aside from the aforementioned 
unsaturated fatty acids, this effect is also elicited by medium-chain 

https://doi.org/10.3389/fnut.2023.1152254
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Romani et al. 10.3389/fnut.2023.1152254

Frontiers in Nutrition 06 frontiersin.org

fatty acids, while short-and long-chain saturated fatty acids do not 
show anti-viral activity against enveloped viral particles (86).

Additionally, apart from their ability to potentially combat SARS-
CoV-2 infection, omega-3 fatty acids may also play a role in 
dampening the severity of the health complications secondary to the 
infection (74). Omega-3 fatty acids, given their anti-inflammatory 
role, represent a valuable aid in countering COVID-19-induced 
inflammation and therefore prevent the cytokine storm (87). However, 
these effects are not within the scope of this review, as they are not 
directly linked with the ability of these fatty acids to hinder SARS-
CoV-2 infection and are reviewed elsewhere (74).

4.2. Vitamins and minerals as tools to 
mitigate the risk of SARS-CoV-2 infection

Vitamin and mineral status, and consequently their intake, are 
crucial for the host to mount effective defence responses against 
COVID-19. In this regard, vitamin D has been proposed as a putative 
preventative or therapeutic nutritional tool in the battle against SARS-
CoV-2 infection (88). This paradigm is also supported by the fact that 
low levels of 25-hydroxyvitamin D3 have been associated with 
increased susceptibility to acute respiratory tract infections (89). In 
line with this, emerging evidence points to vitamin D as a potential 
nutritional tool able to lower the risk of SARS-CoV-2 infection and 
improve disease outcomes. Indeed, vitamin D supplementation was 
associated with a 9% decrease in the risk of SARS-CoV-2 infection, an 
effect that, as described for omega-3 fatty acids, was specific to females 
(73). On the contrary, low vitamin D status has been associated with 
a higher susceptibility to SARS-CoV-2 infection (90). From a 
mechanistic perspective, these effects may be dependent on the ability 
of vitamin D to support innate antiviral immune responses, including 
the induction of autophagy and the production of antimicrobial 
components of the innate immune system, such as cathelicidin (91). 
In further support of the antiviral effects of vitamin D, its active form, 
calcitriol, has shown an inhibitory effect against SARS-CoV-2 
infection in an in vitro model of human nasal epithelial cells (92). 
Furthermore, vitamin D supplementation, aside from lowering the 
incidence of the infection, may decrease the severity of the 
symptomatology as well as the risk of death from COVID-19 (93). 
Nevertheless, despite the potential benefit of vitamin D 
supplementation in mitigating the risk of SARS-CoV-2 infection, also 
supported by the protective effects of this vitamin against acute 
respiratory infections (94), the data generated up to date do not infer 
a cause-effect relationship between vitamin D intake and prevention 
of SARS-CoV-2 infection (88). Additionally, the supplementation of 
cod oil providing 10 μg of vitamin D daily did not affect the incidence 
of SARS-CoV-2 infection (95), supporting the possibility that vitamin 
D supplementation, at least at the dosage provided as part of this 
study, may not be  sufficient to mitigate the risk of SARS-CoV-2 
infection. Thus, despite observational studies supporting the role of 
vitamin D in lowering the risk of SARS-CoV-2 infection (73, 96), the 
evidence gathered to date do not imply a direct causality between 
vitamin D status and lower SARS-CoV-2 infection incidence.

Vitamin E may also represent a potential molecule to fight off 
SARS-CoV-2 infection, as demonstrated by the relationship between 
α-tocopherol supplementation and the decrease in upper respiratory 
tract infection (97). The antiviral effects ascribed to vitamin E may 

be dependent upon its capacity to increase the number of T cells, and 
their ability to produce IL-2 and enhance the activity of natural killer 
cells (98). Despite its immunomodulatory potential, possibly involved 
in lowering the risk of SARS-CoV-2 infection, direct evidence of the 
role of vitamin E in preventing SARS-CoV-2 infection is still lacking.

Vitamin C is well known for its immune-boosting effects, and as 
such represents another micronutrient with the potential to lower the 
risk of SARS-CoV-2 infection. In this regard, vitamin C has been 
shown to elicit antiviral immune responses underlaid by an increase 
in IFN-α/β as demonstrated in the early stages of influenza virus 
infection (99). The antiviral effects exerted by vitamin C also relay on 
the upregulation of natural killer cells and the induction of cytotoxic 
T-lymphocyte activity (100, 101). Moreover, supplementation of 
vitamin C at doses of 1-2 g/day was effective in lowering the risk of 
upper respiratory tract infections (102). It is not surprising indeed that 
the highest rate of SARS-CoV-2 infection affected low-middle income 
countries where there is also a high prevalence of hypovitaminosis C 
(103), suggesting a putative relationship between vitamin C status and 
SARS-CoV-2 infection. In further support to the role of vitamin C in 
the battle against COVID-19, the deficiency of this vitamin has been 
reported in patients suffering from respiratory infections and patients 
with pneumonia, relative to healthy controls (104). Interestingly, there 
is an overlapping between vitamin C deficiency and many risk factors 
for SARS-CoV-2 infection and severity. Indeed, African-Americans, 
individuals affected by diabetes, hypertension and chronic obstructive 
pulmonary disease, not only are at high risk of developing severe, life-
threatening symptoms due to SARS-CoV-2 infection, but also 
experience vitamin C deficiency (105). Moreover, scurvy, the direct 
consequence of vitamin C deficiency, is associated with defective 
immune function and increased susceptibility of infections like 
pneumonia (100, 106). Thus, the rationale for using vitamin C as a 
nutritional strategy to mitigate SARS-CoV-2 infection risk, is 
supported by the role of this vitamin as an immune-booster. 
Additionally, the anti-inflammatory, anti-oxidant and anti-thrombotic 
effects of this vitamin provide the rationale for its use to decrease the 
severity of the symptomatology in patients. This notion is supported 
by fact that individuals with lower serum vitamin C are at higher risk 
of severe COVID-19 (104), whereas intravenous administration of 
vitamin C in critically ill COVID-19 patients improved the 
symptomatology, lowered IL-6 circulating levels (107) potentially 
countering the cytokine storm, decreased mortality (104) and 
shortened the stay in the intensive care unit (108). Thus, vitamin C 
may represent a valuable tool not only to prevent the complications of 
the infection, but also to dampen the risk of SARS-CoV-2 infection 
given its antiviral and immunomodulatory properties (109). However, 
despite its immune boosting effects, which make it promising for 
primary prevention of viral infections, the direct relationship between 
vitamin C status and risk of SARS-CoV-2 infection remains to 
be fully elucidated.

Along with vitamins, some minerals have also been implicated in 
the prevention of SARS-CoV-2 infection. Of these, zinc may play a 
crucial role in this context, given its role in antiviral immunity (110). 
Zinc exploits an immunomodulatory role, as it regulates inflammatory 
responses, and the proliferation, differentiation and function of 
leucocytes and lymphocytes; it also promotes the secretion of IFN-α 
and-γ by leucocytes (111–113). In further support, its deficiency leads 
to decreased natural killer cell activity and impaired cytokine 
production by monocytes (114). Furthermore, zinc antiviral effects 
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also rely on the inhibition of virus-host cell interaction as well as viral 
replication (110). Zinc, in a concentration-dependent fashion, also 
dampens ACE2 activity, possibly inhibiting its interaction with the 
SARS-CoV-2 S protein (115). High intracellular zinc concentration or 
agents able to enhance intracellular zinc influx inhibit the replication 
of several RNA viruses (116), which may also include SARS-CoV-2, 
possibly via inhibition of viral RNA polymerase activity (110). 
However, the latter effect has only been demonstrated on SARS-CoV 
in vitro (116). The role of zinc in supporting the immune system may 
also have implications for SARS-CoV-2 infection. In support of this, 
in a case–control study, symptomatic COVID-19 was significantly 
lower in individuals receiving zinc supplementation compared to 
controls (i.e., individuals not receiving zinc supplementation) (117). 
This suggests that maintaining an adequate zinc status may 
be  instrumental in preventing and mitigating the severity of 
COVID-19 symptomatology (117). Not surprisingly, indeed, zinc 
deficiency was associated with acute respiratory distress syndrome 
and higher mortality rates (118). Thus, the prevention of zinc 
deficiency represents a promising strategy to support the immune 
system and possibly prevent the deleterious health consequences 
linked with COVID-19. However, as reported for the aforementioned 
nutrients, direct clinical evidence on the ability of zinc to counter 
SARS-CoV-2 infection is still lacking, which highlights the need for a 
prudent approach in the supplementation of zinc as a prophylaxis or 
treatment of COVID-19 (119).

5. Microbiome and COVID-19

5.1. Lung and gastrointestinal microbiome

The positive effect of probiotics on the human health is part of the 
more general interaction between human beings and the 
microorganisms populating the surfaces of the external part of the 
body or the internal cavities. At the intestinal level, the microbiota in 
a healthy individual is represented by an enormous number of 
microorganisms, consisting of bacteria, fungi, viruses, archaea and 
protozoa. Bacteria are represented by five major phyla, namely, 
Firmicutes, Bacteroidetes, Actinobacteria, Verrucomicrobia, and 
Proteobacteria. In the gut, the taxonomic composition, in terms of 
different genus and species and of their relative abundances, displays 
considerable variability among individuals (120).

A resident microbiota is present also in the respiratory tract, 
although the lower part was formerly believed to be sterile. Here, as 
reported by Magryś et al. (121), the microbial community is mainly 
represented by Bacteroides, Firmicutes and Proteobacteria, but the 
overall microorganism number is enormously reduced with respect 
to the intestinal bacterial population, and the species diversity is 
lower too.

The GI resident microbiota exerts several outstanding functions 
on human health. Generally, the commensal microorganisms 
participate in digestive processes, provided that hydrolytic enzymes 
are able to complete the demolition of otherwise non-digestible foods, 
and they are a source of several nutrients essential for the host, like 
vitamins and other nutrients (see below). In addition to the nutritional 
contribution, resident microorganisms exert both direct and indirect 
protective roles against exogenous or endogenous opportunistic 
pathogens integrating the host’s natural defenses.

Both intestinal and lung lumina are, in fact, hostile environments 
for both commensal and pathogen microorganisms. Goblet cells in 
ciliary and intestinal epithelia secrete a mucus layer, which interferes 
with the attachment of microorganism populations, and is further 
enriched by immunoglobulin A (IgA) secretion. In the gut, Paneth 
cells are characteristic epithelial elements that produce bactericidal 
substances like lysozyme, secretory phospholipase A2, defensins, 
defensin-like peptides, and cathelicidins (122). Altogether, mucus and 
bactericidal substances control and sharpen the survival of 
microorganisms at the epithelial surface and constitute an actual 
barrier defending underlying tissues from the aggression of pathologic 
microorganisms including viruses.

The microorganisms composing the customary commensal 
microbiome integrate passive host immunity defenses in several ways. 
First, they limit the adhesion and growth of pathogens to the 
epithelium surface, because commensals occupy the potential 
adhesion niches, competing for nutrients, and producing waste 
metabolites able to interfere with pathogen growth. Moreover, 
microorganisms continuously stimulate the production of mucus, IgA 
secretion and integrity of intraepithelial adhesion structures, which 
represent the first line of immunity defense against pathobionts.

Remarkably, the resident microorganisms entertain continuous 
crosstalk with the host immunity system which receives continuous 
stimulation. Members of innate and adaptive immunity, like alveolar 
or GI macrophages, dendritic cells, and regulatory T cells, are 
continuously challenged, until they reach a homeostatic state of 
interactive equilibrium. Importantly, this equilibrium is influenced by 
the reciprocal interaction between the lung and GI tract, and relative 
microbiome. This interaction, termed as the gut-lung axis, implies a 
reciprocal communication that occurs in different ways. Both organs 
can prime the local immune system whose components can 
be  exchanged trough lymphatic and circulatory vessels. Mainly 
through the same routes, whole bacteria, bacterial fragments and 
microbiome-derived metabolites can be exchanged, making it possible 
to stimulate the immune system in diverse anatomical districts.

Of note, GI microorganisms release a wide number of metabolites 
including metabolized bile salts, short-chain fatty acids (SCFA), 
branched-chain amino acids, trimethylamine N-oxide, tryptophan 
and indole-derivative metabolites and imidazole propionate (123). 
Among them, SCFAs, (i.e., acetate, lactate, propionate, and butyrate) 
represent the end products of fermentative microbial metabolism, and 
at the same time, an important source of energy for colonocytes and 
a relevant caloric integration for the whole body. More importantly, 
SCFAs regulate immune cell division and metabolism in peripheral 
regulatory T cells, macrophages and granulocytes, antigen 
presentation by dendritic cells, and interleukin and cytokine 
production, often at distant locations (124–126). SCFAs can regulate 
genomic transcription, by both binding to specific free fatty acid 
receptors (FFARs) and inhibiting histone deacetylases (127, 128).

The importance of this stimulation by the microbiome on the 
immune system is attested by the finding that the use of probiotics has 
been associated with a reduced risk to develop illnesses with a high 
inflammatory background such as non-alcoholic fatty liver disease, 
cancer, obesity, cardiovascular diseases, or diabetes (129). Consistently, 
mice growing under sterile conditions had macrophages and dendritic 
cells unable to produce IFN-α, IFN-β, IL-6, TNF, IL-12, and IL-18 
when challenged with microbial ligands, highlighting the importance 
of the resident microorganisms in immune system priming (130).
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5.2. COVID-19 and microbiome dysbiosis

During SARS-CoV-2 infection, the microbiota, both at gut and 
lung level, faces a deep alteration in microorganism composition. In 
particular, the lung microbiota has been reported to undergo a 
diminution of the diversity and abundance of several beneficial genera 
which normally colonize the airways and lungs, such as 
Corynebacterium, Streptococcus, Dolosigranulum, Fusobacterium 
periodonticum; among them, Dolosigranulum and Corynebacterium 
were found to be  significantly more abundant in COVID-19 
asymptomatic subjects or those with moderate disease (131). On the 
other hand, several potential pathogens (such as Pseudomonaceae, 
Salmonella, Serratia, Haemophilus influenzae, Moraxella catarrhalis, 
Prevotella, Veillonella, Staphylococcus, Peptostreptococcus, Clostridium) 
appear to be enriched during COVID-19 (131); and in particular, 
Prevotella salivae was found to be a good predictor of respiratory 
support need in COVID-19 patients (132). Again, the amplitude of 
the microbial dysbiosis correlates with COVID-19 severity (133, 134).

Although SARS-CoV-2 mainly targets the respiratory system, it 
also affects several organs, including the digestive system. Here, the 
ACE2 receptor is expressed not only in the endothelial cells of the GI 
capillary bed, but also in the brush border of enterocytes and in gastric 
and colon epithelia which can be a target and replication site of the 
virus (135). Of note, the symptoms of COVID-19 can include nausea, 
diarrhea, vomiting and abdominal pain, and detection of SARS-
CoV-2  in the feces occurs up to 5 weeks after the resolution of 
respiratory symptoms (136). Again, an association between the 
presence of GI symptoms, the severity of lung impairment, and the 
need for ventilatory support has been proposed. COVID-19 is also 
associated with alteration of the GI microbiota, mainly showing a 
diminution of the taxonomical variability of microbial species, with 
an increase of opportunistic or pathologic species, and a decrease of 
beneficial species, in particular Ruminococcaceae and Lachnospiraceae 
families (137). Some alterations, like the diminution of 
Faecalibacterium prausnitzii, inversely correlate with the severity of 
COVID-19 (138).

Noteworthily, a direct cause of microbiome dysbiosis could 
be represented by the downregulation of ACE2 operated by SARS-
CoV-2 at the GI epithelial level. In fact, it has been proposed that the 
relative abundance of ACE2 in the GI tract is joined to ACE2 capacity 
to heterodimerize with amino acid transporters, warranting normal 
amino acid supply to enterocytes. SARS-CoV-2-dependent ACE2 
deficiency could lead to an insufficient entry of tryptophan, and 
should in turn lead to scarce synthesis of antimicrobial peptides, 
affecting microbiome homeostasis and loss of epithelial integrity (135, 
139). On the other hand, ACE2 downregulation can have positive 
consequences: Zuo et  al. (138) observed that several Bacteroides 
species (Bacteroides dorei, Bacteroides thetaiotaomicron, Bacteroides 
massiliensis, and Bacteroides ovatus) are already known to be able to 
downregulate ACE2 expression in mice, inversely correlated with 
SARS-CoV-2 content in the feces of COVID-19 patients, suggesting a 
protective role of Bacteroides against SARS-CoV-2. An ACE2 receptor 
docking study suggested that ACE2 downregulation may have both 
positive and negative roles at the intestinal level; however, further 
research is needed to better characterize this dual effect.

Gut microbiota dysbiosis, typically also characterizing obesity 
(140), may also underpin the increased risk of COVID-19 severity 
observed in obese individuals (141, 142). Particularly, this increased 

susceptibility to develop severe symptoms in response to SARS-CoV2 
infection may be dictated by the ability of gastrointestinal microbiota 
dysbiosis to trigger and sustain chronic inflammation (143). The latter 
not only typically occurs in obese individuals, but also represents one 
of the putative pathophysiological mechanisms linking obesity, gut 
microbiota dysbiosis, and COVID-19 severity (144). Indeed, obesity-
related gastrointestinal microbiota dysbiosis, in concert with increased 
gut permeability (145), contributes to inflammation by promoting 
systemic endotoxemia which is the direct consequence of the leak of 
lipopolysaccharides (LPS) through the dysfunctional gut barrier 
(146). Ultimately, this inflammatory status, fueled by gut microbiota 
dysbiosis, amplifies the so-called “cytokine storm,” thereby 
predisposing subjects with obesity to more severe COVID-19 
symptoms and increased risk of death (147).

Altogether, these data depict a scenario where the microbiome 
could act as an important environmental factor strongly contributing 
to the wide variability in the patient response to SARS-CoV-2. On this 
basis, a preventive and therapeutic approach to SARS-CoV-2 infection 
appears reasonable and promising, based on probiotic and prebiotic 
administration. The use of probiotics is aimed to positively stimulate 
the immunity system, reinforcing the passive barriers to prevent or 
reduce the possibility of viral and opportunistic pathogen entry both 
at lung and GI level, and to reduce the disease outcomes, preventing 
the cytokine storm.

5.3. Probiotics and prebiotics in COVID-19 
treatment

The microorganism geni most frequently used as probiotics are 
Lactobacillus, Bifidobacterium, Lactococcus, Streptococcus, 
Enterococcus, and Bacillus, together with some strains of the genus 
Saccharomycetes. Anyway, the probiotic behavior is not linked to the 
whole bacterial or fungine genus. In fact, the Joint FAO/WHO 
Working Group Report on Drafting Guidelines for the Evaluation of 
Probiotics in Food in 2002 states that probiotics are “live strains of 
strictly selected microorganisms which, when administered in 
adequate amounts, confer a health benefit on the host” (148). This 
definition reserves the health benefit to specifically selected strains, 
that in addition are required to not have, nor propagate, antibiotic 
resistance and to be able to maintain the health benefit for the whole 
process of production, conservation, and distribution of the probiotic.

Probiotics improve the host’s health using the same strategies as 
the microbiome, but in a more effective and often targeted and 
detectable way. It has been clearly shown that probiotics can modulate 
the human microbiome and interfere with the growth of opportunistic 
COVID-19-related pathogens, by competing for docking sites at the 
epithelial surface. Furthermore, probiotics can interfere with the viral 
cycle, stimulating innate immunity by activating the inflammasome 
and the production of interferons and inflammatory cytokines which 
represent a first line of antiviral defense. Consistently, Lacticaseibacillus 
rhamnosus GG has been used in a neonatal mouse model of influenza 
as a preventive intranasal treatment. In fact, Kumova et al. showed that 
intranasal administration of Lacticaseibacillus rhamnosus GG can have 
immunoregulatory functions at the lung level, triggering the type-I 
IFN pathways via the Toll-like receptor (149).

Andrade et al. showed that, in in vitro systems, specific strains like 
Lactobacillus plantarum MPL16 and CRL1506, and Dolosigranulum 
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pigrum 040417, increased the resistance of cultured respiratory 
epithelial cells to SARS-CoV-2 by inducing the production of type-I 
and type-III IFNs and transcription of IFN-stimulated genes, thereby 
potentially improving the innate antiviral response and affecting the 
early phases of SARS-CoV-2 infection. They noted also that the same 
strains could reduce cytokine production, contributing to the control 
of immune cell recruitment to the infection site, and subsequent of 
inflammatory damage. These strains appear to be promising tools to 
re-modulate respiratory microbiota and to counteract SARS-CoV-2 
infection in the early stages (150).

Another interesting possibility is the capacity of certain probiotics 
to interfere with viral internalization. Silvestre Ortega-Peña et  al. 
noted that Staphylococcus epidermidis is a commensal bacterium 
abundant in the anterior part of the nose, whose abundance is 
inversely correlated to serious respiratory infections. The authors not 
only highlighted that Staphylococcus epidermidis could, directly or 
indirectly, eliminate a wide number of pathogens, but also proposed 
its use as a probiotic able to prevent the development of COVID-19. 
Interestingly, they reported that S. epidermidis acts not only through 
the production of type-I and-III IFN pathways, but also by regulating 
the surface expression of the ACE2 receptor and TMPRSS2 protease 
(151). The importance of this finding is underlined by reports 
indicating that other bacteria can both release peptides able to interact 
with ACE2 receptors, and produce enzyme homologs to ACE2, which 
potentially can behave as decoy receptors for SARS-CoV-2, attenuating 
its entry into target cells (152).

In addition to intranasal administration, oral administration of 
specific probiotic strains has also been shown to be effective in the 
treatment of COVID-19 disease. The commercial kit Lactibiane Iki, 
which mixes three different strains (Bifidobacterium lactis LA 304, 
Lactobacillus salivarius LA 302, and Lactobacillus acidophilus LA 201) 
has been proposed to significantly reduce inflammatory markers in 
patients infected by COVID-19 and interstitial pneumonia (153). 
Another commercial product, containing three strains of 
Bifidobacterium genus and specific prebiotics, was found to reduce 
inflammatory markers, normalize gut microbiota composition, and 
increase antibody formation in 25 COVID-19 patients (154). 
Consistently, amelioration of antibody production is reported also by 
other researchers. In fact, oral administration of Loigolactobacillus 
coryniformis K8 CECT 5711 to a group of healthcare workers showed 
a positive effect on anti-SARS-CoV-2 vaccination, leading to 
significantly higher antibody production after 81 days of probiotic 
treatment (154).

Oral administration of nisin, a food-grade peptide obtained from 
Lactococcus lactis, seems to be useful also in preventing the interaction 
between SARS-CoV-2 and the human ACE2 receptor. Nisin is a 
pentacyclic antibacterial peptide, present in several natural variants 
and widely used for cheese manufacturing and preservative. Several 
nisin variants appear to be able to efficiently interact with the ACE2 
receptor and diminish SARS-CoV-2 internalization (155). As stated 
above, further research is needed to clarify the side effects of potential 
ACE2 downregulation.

Additionally, beneficial effects on human health can come from 
the administration of prebiotics (Figure  1). These are not living 
organisms, but represent types of not-digestible foods, which mainly 
include oligosaccharides, unsaturated fatty acids, dietary fibers, and 
polyphenols, and can be fermented by specific gut microorganisms, 
stimulating their growth and so reprogramming microbiome 

composition. Prebiotics can be beneficial when administered alone, 
because they can positively modify the distribution of resident 
microorganisms. As a note, they can also sustain the growth and 
survival of probiotic strains and species, with further although not 
easily predictable additive benefits for host health. On the other hand, 
large amounts of prebiotic fiber can stimulate their utilization by 
intestinal microorganisms, generating a large amount of gas, bloating, 
and discomfort.

6. Bioactive herbal products 
interfering with SARS-CoV-2 entry

Many phytochemicals with different mechanisms of action have 
been proposed to possess antiviral activity against SARS-CoV-2 (156). 
Several natural compounds, like flavonoids, steroids, coumarins, and 
alkaloids, were reported before the COVID-19 outbreak to possess 
ACE2 modulatory activity (157), encouraging this research field 
during the pandemic. Many studies focused on in silico molecular 
docking analysis (158–160), but relatively few molecules have been 
tested so far on biological systems. For this reason, in this section, 
we aim to resume the results obtained after assessing herbal products 
in vitro on cell line models.

Glycyrrhizic acid (GA), the main active compound of the root of 
Glycyrrhiza uralensis (licorice), was suggested as a possible candidate 
for COVID-19 treatment, based on its ability to reduce SARS-CoV-2 
invasion by blocking the ACE2-S protein binding, as reported in 
human embryonic kidney 239 T cells (161). GA is also known for its 
anti-inflammatory properties, evidenced by the inhibition of NF-kB 
expression and cytokines secretion (162). In vitro, Zhao and colleagues 
confirmed the anti-inflammatory action of GA using an encapsulated 
formulation of nanoparticles to treat human monocytes (THP-1) and 
PBMC from healthy donors, stimulated with nucleocapsid (N) protein 
of SARS-CoV-2. They reported significantly reduced mRNA and 
protein expression of IL-1α, IL-1β and IL-6 (163).

Stachytarpheta cayennensis, an herbaceous plant from tropical and 
subtropical areas, was reported to significantly inhibit virus entry in 
HEK-293 T ACE2 cells (164). The characterization of the extract 
evidenced the presence of β caryophyllene (BCP), thymol, citral, 
1,8-cineole, carvone, and limonene. BCP and limonene were 
previously proposed by docking studies to bind the S protein and 
ACE2 (160). BCP is a cannabinoid present in essential oil from 
common spices (e.g., cinnamon, oregano, black pepper, basil), that has 
been reported as one of the components with antiviral activity; 
however, its action tested alone was less effective compared to the total 
extract from Stachytarpheta cayennensis in countering SARS-CoV-2 S 
pseudovirus infection of HEK-293 T-ACE2 cells. This suggests a 
combined effect of different molecules in the total extract (164). BCP 
is also known for its anti-inflammatory proprieties, acting on different 
pathways including cytokine and chemokine signalling (165). Based 
on that, Jha and colleagues proposed BCP as a candidate for 
COVID-19 treatment, even if other studies are needed to verify its 
anti-inflammatory action (165). In agreement, limonene, the main 
component of essential oil from Citrus limon, was reported to reduce 
ACE2 protein levels and downregulate ACE2 and TMPRSS2 
expression in colorectal adenocarcinoma cell line HT-29 (166). The 
same action was also shown by geranium essential oils (from 
Pelargonium graveolens), and a significant reduction of ACE2 mRNA 
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and protein levels were also confirmed via major components: 
citronellol and geraniol tested as single molecules (166). Similarly, the 
herbal extracts of Spatholobus suberectus dunn (SSP) and Polygonum 
cuspidatum root and rhizome showed concentration-dependent entry 
inhibition in HEK293T cells (167, 168).

Asparagus officinalis extracts, already known for their action in 
counteracting breast cancer progression (169), were reported to 
inhibit ACE, with a positive correlation to their content in hydrophobic 
amino acids and gallic acid (170), suggesting a possible action also on 
the homolog ACE2. In addition, Asparagus officinalis stem extracts 
evidenced anti-inflammatory action through the inhibition of IL-6 
and IL-1β transcription on S1-protein-stimulated macrophages (171). 
Inhibition of ACE2 and TMPRSS2 transcription and protein 
expression were also reported in 293 T cells treated for 24 h with 50 μg/
mL of Theaflavin extracted from Camellia sinensis (172).

A molecular docking study evidenced repression of TMPRSS2 
expression by withanone, a withanolide tripertenoid extracted from 
the root, stems, and leaves of Withania somnifera, a medical plant 
known also as Indian ginseng or winter cherry. In vitro, Kumar and 
colleagues showed that withanone causes a 40–50% reduction in 
TMPRSS2 expression in breast cancer cells (MCF7) (173). However, 
it has also been reported that this antiviral effect is associated with 
cytotoxicity when used at the same dose (40 μM for 48 h). In 
agreement, cytotoxicity was also reported in hepatocarcinoma 
(HepG2), breast cancer (MCF7), and normal mammary epithelium 
(MCF-10) cells when treated with withanone 50 μM for 72 h, while 
lower concentrations (20 μM) did not evidence cell viability reduction 

(174). For this reason, studies for possible applications for SARS-
CoV-2 treatment should investigate the antiviral efficacy at a 
concentration of withanone that does not evidence side effects.

Scutellaria barbata (SB) is a widely used herb in Asia, known for 
its various pharmacological properties including anti-inflammatory 
and antiviral activities. The anti-inflammatory action of ethanol and 
ethyl acetate extracts of SB is sustained by phenols, flavonoids, 
chlorophylls, and carotenoids. These extracts significantly inhibit IL-6 
and IL-1β secretion in the macrophage cell line RAW264.7 in a dose-
dependent manner (175). Huang et  al. reported that aqueous SB 
extracts, characterized by neo-clerodane diterpenoids and flavonoids 
followed by polysaccharides, volatile oils and steroids, inhibited the 
enzymatic activity of TMPRSS2 (176). In particular, 4 mg/mL of 
extract reduced 54.8% of TMPRSS2 protease activity. Kidney epithelial 
cell line Vero E6, which express high ACE2 and low TMPRSS2 levels, 
and human lung carcinoma cells Calu-3, which express high 
TMPRSS2 levels, were used as cell models to test SB activity. 
Pre-treatment with SB extract and then infection with SARS-CoV-2 
pseudovirus reduced infection in Calu-3 cells but not in VeroE6, 
suggesting that SB affects TMPRSS2, ultimately reducing virus 
entry (176).

The same cellular models were used also by Kim et al. (177) to 
demonstrate that platycodin D (PD), a glycosylated triterpenoid 
saponin extract from the root of Platycodon grandiflorum, inhibited 
virus entry both in Calu-3 (TMPRSS2-high/positive) and Vero E6 
cells (TMPRSS2-low/negative). In this case, the mechanism is still 
unknown; however, the authors suggested that PD interferes with 

FIGURE 1

Schematic representation of intestinal mucosa exposed to SARS-CoV-2 infection (left panel) and positive effects of pro-and pre-biotic dietary 
supplementation (right panel). SARS-CoV-2 infection promote intestinal dysbiosis enhancing severity of the disease. Supplementation with probiotics 
and/or prebiotics is suggested as strategy to efficiently counteract the virus infection with better disease outcome. Created with BioRender.com.

https://doi.org/10.3389/fnut.2023.1152254
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
http://BioRender.com


Romani et al. 10.3389/fnut.2023.1152254

Frontiers in Nutrition 11 frontiersin.org

virus entry by interacting with cholesterol and preventing virus 
fusion to the host cells. They demonstrated that cholesterol depletion 
in host cells decreases 2.5 times the PD effects, supporting the 
hypothesis that cholesterol facilitates PD action in host cells (177). 
The same research group, taking advantage of these results, identified 
the three chemical groups presented on the PD structure that were 
essential for inhibition of virus entry into the cells, to develop new 
synthetic saponins. The new molecules efficiently inhibit the fusion 
to the ACE/TMPRSS2-positive cells (H1299, lung carcinoma cells) 
with a 2-fold increase in potency compared to the initial natural 
compound (178). Additionally, phenolic components from 
Platycodon grandiflorum extracts were reported to possess anti-
inflammatory activity by reducing IL-6 and TNF-α production in 
LPS-stimulated macrophage cell lines (RAW 264.7) (179), suggesting 
multiple bioactive components in the total extract could be useful for 
COVID-19 treatment.

Similarly to saponin PD, even for astersaponin I  (AI), a 
triterpenoid saponin in Aster koraiensis, the observed inhibition of 
SARS-CoV-2 infection was dependent on effects on cholesterol (180). 
In this work, the authors demonstrated that treatment with AI 
induces increasing cholesterol content in the cell and in the 
endosomal membranes, and that this interferes both with the entry 
of the virion as well as with syncytium formation. Results of fusion 
experiments performed in H1299 cells demonstrated that 5 μM of AI 
inhibited entry and prevented syncytia of more than 90%. The effects 
were shown for wild-type and D614G variant SARS-CoV-2 and led 
authors to propose AI as a broad-spectrum agent also against other 
enveloped viruses.

Following a similar reasoning, epigallocatechin gallate (EGCG), 
the green tea catechin, has been proposed as a future 
pan-coronavirus attachment inhibitor due to its effects on cell-
surface glycans, as demonstrated by LeBlanc and Colpitts (181). In 
their work, EGCG treatment of Huh7 and A459 inoculated with 
seasonal human CoVs, HCoV-229E and HcoV-OC43, inhibited 
infectivity at low micromolar concentrations (IC50 < 1 μM), with 
minimal effects on cell viability. Furthermore, they showed that 
EGCG was able to inhibit entry of SARS-CoV-1, SARS-CoV-2 and 
its delta and omicron variants, and WIV1-CoV (a bat coronavirus 
able to bind human ACE-2) with 15 μM < IC50 < 25 μM. Finally, they 
demonstrated that the antiviral effect of EGCG was caused by the 
heparan sulfate blocking of virions binding to the cell membrane, 
with the same mechanism as heparin. Considering that interactions 
with membrane glycans are shared by many viruses to initiate the 
infection, and that heparan sulfate proteoglycans are necessary for 
SARS-CoV-2, the authors conclude that EGCG can be an efficient 
antiviral, but its low stability and rapid metabolism are important 
limitations. Nonetheless, other authors have observed a partial 
reduction of SARS-CoV-2 replication in vivo in C57BL/6 mice 
infected intranasally and treated orally with 10 mg/kg daily of 
EGCG for 2 weeks (182), indicating a possible future application. 
Other studies have focused on EGCG and ACE2, observing 
inhibition of S protein binding to ACE2 receptor by neutralization 
(183), ELISA (184), and entry or infectivity (184, 185) assays, testing 
EGCG in the range 0–100 μM on several cellular models. 
Interestingly, the work of Liu et colleagues reported an efficient 
reduction of infection when using live SARS-CoV-2 and HcoV-
OC43 viruses on Calu-3, HEK-293 T-ACE, and HCT-8 cells, 
indicating that pre-treatment is fundamental for a significant effect 

(185). Collectively, these results indicate that EGCG can work both 
specifically on ACE2, as well as via unspecific interference with 
heparan sulfates.

Another phenolic compound that was reported to reduce SARS-
CoV-2 infection in TMPRSS2-negative Vero E6 cells was the 
resveratrol tetramer hopeaphenol, a compound extracted from various 
plants including Hopea, Vitis, and Shorea, that was suggested to 
be acting without affecting TMPRSS2. Further studies are required to 
elucidate its mechanism of action (186).

An herbal mixture called virofree, containing active compounds 
including quercitin, hesperidin, genistein, daidzein, and resveratrol, 
was reported to repress protein S binding to ACE2 by in vitro 
biochemical-binding ELISA assay. Tested on Calu-3 cells, virofree 
dose-dependently decreases the protein expression of ACE2 and 
TMPRSS2, suggesting an antiviral activity through inhibition of virus 
entry into the cells (187).

Overall, many phytochemical compounds present in herbs or 
herbal extracts might be potentially used for relieving SARS-CoV-2 
infection, limiting virus entry, or reducing inflammation (Figure 2). 
However, the identification of bioactive compounds in extract 
mixtures, the efficient non-toxic antiviral range of concentrations, and 
the specific mechanisms of action remain as open questions in many 
cases; thus, further in vitro and in vivo deepening are needed before 
moving to clinical trials investigations.

Furthermore, innovative approaches considering the use of 
nanoparticles to ameliorate the bioavailability of the investigated 
compound could reconsider some molecules and improve in 
vivo results.

7. Conclusion

The COVID-19 pandemic appears to be  a global threat 
unfortunately lacking robust medical treatments. Several tools have 
been used to manage COVID-19 symptoms and the clinical aftermath 
of this illness, including old and new antiviral drugs, and plasma from 
convalescent patients or purified antibodies. But the most promising 
medical approach relies upon massive vaccination. Anyway, despite 
the success of vaccine trials and the presence of different vaccine 
platforms, several concerns exist, reducing vaccine massive utilization 
and limiting their efficacy. Social concerns, like logistic and economic 
issues, together with vaccine hesitancy, can severely limit the 
dissemination of vaccination. In addition, the quite-fast appearance of 
new virus variants, together with the wide variability of genetic, health 
and nutritional status of human beings, can influence the severity of 
viral illness and consequently interfere with the effectiveness of 
vaccination in protecting people from severe aftermath of viral 
infection. In a similar scenario, it seems reasonable that COVID-19 
therapeutics can include some supplementary nutritional approaches. 
In particular, vitamins and nutrients, like vitamins A, E and D, other 
polyunsaturated lipids and minerals like zinc, can be lowered in at 
least some part of the population, such as the elderly, or patients 
suffering from long-lasting subclinical or full-blown inflammatory 
and oxidative conditions, e.g., arthritis, obesity, diabetes, hypertension, 
cardiopathies, and cancer. Adequate nutrient supplementation could 
not only boost the immune system, but also has been shown to 
prevent viral entry, as reported above, interfering with the process of 
membrane fusion subsequent to ACE2 docking and TMPRSS2 action.
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Supplementation of prebiotics and probiotics has been largely 
shown to strongly prompt and reshape the immune system, ultimately 
also ameliorating antibody production and vaccine effectiveness. 
Similarly, herbal-derived compounds or extracts from herbal mixtures 
offer a wide panel of immunoactive substances able to sustain the anti-
viral response. An interesting feature, shared by probiotics and herbals, 
is represented by the ability to reduce viral entry, preventing SARS-
CoV-2 infection. The entry strategy implicates several interactions with 
the cell surface, including S protein priming, ACE2 binding and 
membrane fusion, or, in absence of TMPRSS2 activity, vesicle-mediated 
endocytosis. Independent of the exact mechanism for viral RNA 
liberation into the cytoplasm, interaction with the ACE2 protein 
appears to be the crucial event for viral infection. Of note, extracts from 
licorice, Stachytarpheta cayennensis, Spatholobus suberectus dunn (SSP) 
and Polygonum cuspidatum have been shown in vitro to inhibit virus 
entry, in particular blocking receptor docking or downregulating ACE2 
expression. On the other hand, Theaflavin extracted from Camellia 
sinensis and withanone from Withania somnifera have been shown to 
reduce the level of TMPRSS2, while other plants like as Scutellaria 
barbata are effective in reducing TMPRSS2 activity, and consequentially, 
S protein priming. This latter finding is of particular interest, because 
TMPRSS2 activity appears to be higher in the respiratory airways and 
lungs where SARS-CoV-2 exerts its main infectious effects. Also, 
several strains of probiotics have been shown to reduce viral infection, 
through both nasal and oral administration. They can act through 

different but often complementary mechanisms. Probiotics can 
specifically interfere with viral access to the cell surface, and/or produce 
peptides able to reduce the interaction between virus and ACE2, like 
nisin and its derivatives. Decrease of the surface expression of ACE2 
receptor and TMPRSS2 protease appears to be an important tool in 
probiotic antiviral activity. Concurrent triggering of immune reactions 
represents an important tool in antiviral defense, although IFN 
activation, which represents a branch of the antiviral action, can 
paradoxically increase ACE2 expression. This occurrence can in 
principle increase virus replication, but at the time, evidence for an 
IFN-mediated increase in COVID-19 severity is lacking; in addition, it 
has been reported that interferons induce a truncated isoform of ACE2 
not supporting virus replication (188). On the other hand, with ACE2 
having a role in amino acid transport, at least in the intestine and 
kidney, its downregulation can potentially imply undesired side effects. 
This urges further research to clarify all the positive and negative 
implications of potential ACE2 downregulation.

Lastly, polyunsaturated lipids can alter membrane structure at 
lipid rafts where ACE2 is localized, thereby influencing viral entry. Of 
note, several lipids, including polyunsaturated omega-3 fatty acids, 
linolenic acid, and eicosapentaenoic acid, can directly interfere with 
virus-binding to ACE2, thereby significantly reducing viral entry. In 
addition, several bioactive herbal products, including saponins, such 
as triterpenoid platycodin D and astersaponin I, act on the cholesterol 
content of lipid rafts, interfering with viral internalization routes. In a 

FIGURE 2

Representation of the major cellular events that can be inhibited by natural products in contrasting SARS-CoV-2 infection. Their effects can limit the 
virus entry, directly interfering with cellular receptor binding (1), or indirectly changing the membrane fluidity (2), and/or can affect some pathways 
driven by virus. Intracellularly, involved mechanisms can be the downregulation of NF-kB, ACE2 or TMPRSS2 gene expression (3), the inhibition of 
cytokines release (4), to control the inflammatory process, and the downregulation of ACE2 and/or TMPRSS2 protein levels (5). AI, astersaponin I; BCP, 
β caryophyllene; EGCG, epigallocatechin gallate; GA, glycyrrhizic acid; PD, platycodin D; SB, Scutellaria barbata. Created with BioRender.com.
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similar way, the green tea catechin epigallocatechin gallate can inhibit 
viral binding to cell surface glycan and ACE2.

New Omicron variants seem to prefer the endocytosis pathway to 
TMPRSS2 /ACE2 and membrane fusion (189). Again, further research 
is needed to explore the contribution of different entry routes for each 
viral variant. These caveats notwithstanding, the world of natural 
products represents a huge reservoir of biochemical and biological 
variability, that appears wide enough to offer efficient and hopefully 
decisive tools to cover, in the general population, the need to 
counteract viral entry in all its different forms.
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