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Nutrition is now well recognized to be an environmental factor which positively 
or negatively influences the risk to develop neurological and psychiatric disorders. 
The gut microbiota has recently been shown to be an important actor mediating 
the relationship between environmental factors, including nutrition, and brain 
function. While its composition has been widely studied and associated with the 
risk of brain diseases, the mechanisms underlying the relationship between the gut 
and brain diseases remain to be explored. The wide range of bioactive molecules 
produced by the gut microbiota, called gut-derived metabolites (GDM), represent 
new players in the gut to brain interactions and become interesting target to 
promote brain health. The aim of this narrative review is to highlight some GDMs 
of interest that are produced in response to healthy food consumption and to 
summarize what is known about their potential effects on brain function. Overall, 
GDMs represent future useful biomarkers for the development of personalized 
nutrition. Indeed, their quantification after nutritional interventions is a useful 
tool to determine individuals’ ability to produce microbiota-derived bioactive 
compounds upon consumption of specific food or nutrients. Moreover, GDMs 
represent also a new therapeutic approach to counteract the lack of response to 
conventional nutritional interventions.
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1. Introduction

The influence of dietary habits on the incidence of non-communicable brain diseases such 
as psychiatric and neurodegenerative disorders, has been extensively reported by observational 
studies in humans (1–3). Regular consumption of foods rich in saturated fats and/or 
carbohydrates as well as ultra-processed foods and meat has been highlighted as potentially 
harmful for brain health. On the other side, regular consumption of vegetables, fruits and/or 
fish characteristic of Mediterranean (Medi-diet), “Dietary Approaches to Stopping 
Hypertension” (DASH) or Mediterranean-DASH Intervention for Neurodegenerative Delay 
(MIND) diets, has been associated with beneficial effects (4–6). The positive effects of these 
diets on the brain could be  due to the neurobiological effects of specific nutrients/
micronutrients contained in these foods. Several clinical and preclinical studies indicate that 
n-3 polyunsaturated fatty acids (PUFAs), polyphenols, and dietary fibers, which are present 
in fatty fish, fruits, and vegetables, have neuroprotective effects (7–9). In addition, B vitamins 
which are present in green leafy vegetables (an important component of the MIND diet), have 
been associated with a lower risk of dementia or aging-related brain atrophy (10, 11). Overall, 
insufficient vitamins intake has been associated with increased risk for neuropsychiatric 
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disorders or cognitive decline (12–14). However, the neurobiological 
mechanisms underlying the individual and/or added effects of these 
nutrients/micronutrients are still poorly understood, making 
translation to humans difficult. The clinical trials aiming at using 
dietary intervention (food or nutrients/micronutrients alone or in 
combination) in the management of brain diseases shows that there 
are substantial variations in the response of individuals to these 
dietary interventions (15). Here, it is considered that a responder to 
a dietary intervention is characterized by the improvement of mental 
health and/or brain functioning. This improvement is biologically 
defined by a specific GDM/CM profile in responder that is distinct 
to the one of non-responders who do not have brain health 
improvement. Individual response to food is influenced by 
physiological factors, such as gender and age, by metabolic factors 
such as weight status and exercise, and by genetics. It is important to 
mention that other behaviors, such as the practice of physical activity 
and contextual factors, are also key in this diversity of response (16, 
17). However, these aspects have not been really taken into account 
for the understanding of the relationship between diet and brain 
health which is crucial to establish dietary recommendations 
adapted to the individuals. A novel important actor participating to 
the individual response to food is the gut microbiota. Indeed, the 
latter turns out to be not only influenced by diet but also to influence 
host’s health (18, 19). Recent reports indicate that the interaction 
between the intestinal microbiota and the individual’s physiology 
could possibly influence brain health (20). These nutrition-
microbiota-host physiology interactions lead to the production of a 
wide range of molecules that reach the different organs through the 
bloodstream including the brain. Thus, distinct individual 
neurobiological response to food could depend on the ability to 
produce these gut-derived molecules.

The circulating metabolome contains molecules directly derived 
from food (minerals, some vitamins) and from the digestion of such 
food by the gut microbiota. These latter are termed gut-derived 
metabolites (GDM) and include several type of molecules like 
bioactive lipids, bile acids, short-chain fatty acids (SCFA), phenolic 
compounds and neurotransmitters (21). These GDM can give rise to 
phase II metabolites or co-metabolites (CM) under the metabolization 
of host enzymes like glucuronidation, sulfatation, methylation. 58% 
of blood metabolites variability can be  explained by the gut 
microbiota composition (22). Bar et al. (23), have elegantly shown 
that gut microbiota composition, dietary habits as well as the clinical 
profile are major factors influencing the circulating metabolome. 
Deciphering the respective contribution of nutrition, gut microbiota 
and the subsequent metabolic and inflammatory conditions on brain 
health is crucial to adapt nutrition-based interventions to individuals. 
Recent clinical studies addressed this important question. Indeed, the 
potential causal link between gut microbiota disturbances and 
neurodevelopmental disorders (like autism) (24–26) has been 
challenged by a recent study from Yap et  al. (27). In this study 
conducted in autistic children, authors revealed that the restricted 
diet adopted by the patients, rather than a shift in gut microbiota 
composition, is predictive of the symptoms (27). This illustrate the 
importance of considering not only gut microbiota composition but 
also dietary habits as well as clinical profile and the GDM/CM 
circulating signature of patients suffering of brain diseases. This is 
crucial to design efficient nutritional or gut microbiota 
targeting interventions.

The aim of this scoping review is to summarize current knowledge 
on the potential role of GDM and CM as biological mediators of the 
effect of nutrition and gut microbiota on brain health. Indeed, 
we bring in this review a collection of selected data from the literature 
to feed the new concept that a part of the effect of nutrition on brain 
function relies on these bioactive compounds. In addition, we bring 
new angles of data interpretation to feed the concept that molecular 
mechanisms underlying the inter-individual differences in the 
response towards nutrition-based interventions at the behavioral level. 
First, we will present some diets and food components that have been 
shown to be protective against brain disorders. Then, we will discuss 
the possible role of GDM and CM in mediating the beneficial effects 
of above-mentioned diets on brain function.

2. Diets promoting brain health

Several types of healthy diets have been associated with the 
promotion of brain health and the protection toward neuropsychiatric 
and neurological diseases. These diets include plant-based diet, the 
Medi-diet, the DASH and the diet. These diets follow some of the 
world health organization (WHO) eating guidelines that advice to 
increase consumption of vegetables, fruits, whole grain and dietary 
fibers while decreasing consumptions of fats, sugars and salt (28). The 
Medi and MIND diets have been shown to improve cognition and 
morphological brain parameters, such as cortical thickness and white 
matter integrity in healthy elderly or inferior frontal gyrus surface in 
obese women (29–31). In normal aging process, the consumption of 
green Medi-diet, which consist in a Medi-diet coupled to a 
supplementation on two sources polyphenols (green tea and Wolffia 
globosa duckweed also called “Mankai”) has been shown to slow the 
age-related brain atrophy (32). Greater adherence to a dietary pattern 
consistent with a plant-based diet was related to better performance 
on all cognitive tasks in older adults (33). The anti-inflammatory and 
antioxidant properties of some foods present in these diets have been 
proposed to be  the biological contributors of their brain health-
promoting effects (3, 33, 34). In addition to its pro-cognitive activity, 
the Medi-diet is associated with a decreased risk of developing mood 
disorder in adults and elderly as shown by several observational 
studies (35–41). Moreover, the Medi-diet alleviated depression risks 
or symptoms in two interventional studies (42, 43) while another 
intervention based on dietary advice resulting in increased 
consumption of fibers and polyunsaturated fatty acids (PUFAs) led to 
a decrease in perceived stress (44). Of note, two studies highlighted 
that the protective role of Medi-diet against depression is noticeable 
in cross sectional studies while it is less clear in longitudinal studies 
warranting more studies to understand the short vs long-term impact 
of Medi-diet adherence (45, 46). From all the aforementioned studies 
it appears that diet quality (intake of fruits, vegetables, fish, whole 
grain) may have a protective role towards neurological and psychiatric 
disorders (47, 48).

However, the large variability in the response towards nutritional 
interventions is a potential limitation in the use of dietary interventions 
to protect and/or counteract brain disorders. It is therefore crucial to 
better understand the parameters which define the response of 
individual as it could on several parameters that remain poorly 
characterized. The gut microbiota function (i.e.:, its ability to process 
foods and to produce a wide range of bioactive molecules) is an 
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interesting target to better understand this variability. Even if out of the 
scope of this review several other parameters can be important in the 
inter-individual variability towards nutritional interventions. They 
include genetic factors (49), metabolic health or underlying conditions 
like diabetes or kidney diseases (50–52). The production of GDM or 
CM from several types of nutrients highlighted in the previous part has 
been shown to be largely variable between individuals (53–56). This is 
notably the case for the production of the bioactive derivatives of 
polyphenols (53, 57, 58). For example, the association between coffee 
consumption and a lower dementia risk in elderly is affected by inter-
individual differences in coffee metabolism (49), which has been shown 
to be influenced by gut microbiota composition and activity (59). Also 
urolithin A, a GDM from polyphenols, is produced by less than half of 
those consuming ellagic acid found in berries and walnuts (54). In 
response to Flavan-3-ol consumption (enriched in coffee and cocoa), 
three different populations or “metabotypes” have been reported based 
on the presence of the metabolites trihydroxyphenyl-γ-valerolactones, 
dihydroxyphenyl-γ-valerolactones (DPVL) or hydroxyphenylpropionic 
acids (60, 61). The pivotal role of the gut microbiota in these 
metabotypes has been highlighted and some bacteria has been found to 
be responsible for the ability to produce these polyphenol-derived GDM 
(62). Inter-individual differences in the response toward other food or 
nutrients of special interest for brain health has been described. For 
example, the prebiotic effect of different dietary fibers, measured by 
assessing the changes in the production of the short chain fatty acids 
(SCFAs), is controlled by the gut microbiota and the habitual dietary 
fiber intake (63). Moreover, the emotional improvements in response to 
dietary fiber intervention in obese subjects has been shown to 
be associated with differences in the prior gut microbiota composition 
(15) further illustrating the difficulties to predict the response to a 
dietary intervention. One actual challenge in human nutrition is to 
identify relevant biomarkers predictive of a positive response to 
nutritional intervention for the promotion of brain health (Figure 1). 
Besides this objective, the use of GDM or CM to overcome the inter-
individual variability in nutritional intervention is appealing. Indeed, 
these compounds, alone and in combination, can be responsible for 
beneficial effects of healthy food in preventing neuropsychiatric and 
neurological illnesses. Thus, observational studies help to identify 
potential GDM or CM candidates while preclinical and clinical 
intervention allow to test their potential protective effects in different 
neuropathological conditions.

3. Gut-derived metabolites as 
mediators of healthy food effects on 
the brain

In this section, GDM and CM produced in response to fibers, 
polyphenols and PUFAs and their brain effects will be  presented 
(Table 1). The focus on these GDM and CM relies on the fact that their 
parent nutrients are enriched in fruits, vegetables or fish which 
consumption is associated with beneficial effects on brain pathological 
processes both in preclinical and clinical settings (7, 125, 126). GDM 
that are not derived from the aforementioned nutrients will not 
be included in this review despite potent action on brain. GDM that 
are not derived from the aforementioned nutrients will not be included 
in this review despite potential effect on brain functions. For example, 
in the context of aging and dementia it has been shown that 

disturbances of the vasculature and BBB integrity can promote 
pathological processes (127). Recently, trimethylamine N-oxide 
(TMAO) or the p-cresol glucuronide, two GDM originating from 
choline and tyrosine respectively, has been shown to promote BBB 
function (128, 129) while at the opposite the p-cresol was associated 
with several detrimental effects such as inducing autistic-like behavior 
or impairing synaptic function in preclinical models (130, 131).

Dietary fibers are complex carbohydrates found in fruits, 
vegetables, legumes and whole grain. The soluble fibers are not 
digested by human enzymes but are fermented by the gut microbiota 
(132). Observational studies have shown that dietary fiber intake is 
associated with better cognitive performance in children aged 
7–9 years old (133) and in elderly (134, 135). High consumers of fibers 
have a lower risk to develop anxiety, psychological distress or 
depression (7, 136). Dietary fibers intervention with inulin (found 
notably in onion, chicory, banana, garlic, Jerusalem artichoke and 
leek) in alcohol use disorder patients improves sociability score and 
increases circulating levels of brain derived neurotrophic factor 
(BDNF) during withdrawal (137). The gut microbiota fermentation of 
soluble dietary fiber stimulates the production of SCFAs that reach the 
bloodstream and influence the function of several organs (64). If 
SCFA can cross the blood brain barrier when administered 
systemically in different animal models, the brain uptake in humans 
seems to be minimal (64). In rodents, a fiber-deprived diet impairs 
cognition and SCFA blood levels (138). Moreover, the genetic ablation 
of GPR 41 and 43 which are SCFA receptors leads to cognitive 
alteration (138). In a mice model of Alzheimer’s disease (AD), fructans 
stimulates the release of SCFA and improves cognition, an effect lost 
upon antibiotic treatment (139). Besides inulin and fructans, other 
fibers like pectins (found notably in apple) or arabinoxylan (found in 
cereal) has been found to improve cognition and depressive-like 
behavior in rodents (140, 141). The SCFAs propionate and butyrate 
alter astrocyte metabolism which could be  involved in cognitive 
alteration (139). SCFA dietary supplementation also attenuates 
anhedonia, intestinal permeability and stress responsiveness in 
chronically stressed mice (142). In mice, inulin-rich diet and butyrate 
protect against aging-associated brain inflammation (143). SCFAs are 
essential for the maturation of microglia, which are brain resident 
immune cells (67). In particular, acetate improves microglia 
transcriptomic signature and mitochondrial activity that is altered in 
germ-free mice (66). This was associated with a lower engulfment of 
amyloid deposits in a mice model of AD (66). In healthy men, 
supplementation with SCFA attenuates the cortisol response to 
psychosocial stress (144). Levels of SCFA actually reaching the brain 
are quite low (64), thus further studies clarifying the mechanisms 
through which SCFAs modulate neurobiological processes are 
required. Moreover, comparison of the effectiveness of the different 
type of soluble fiber in counteracting emotion or cognitive 
disturbances in preclinical or clinical settings would be interesting. It 
could be useful to decipher the mechanisms through which dietary 
fiber may improve brain health besides their stimulating effect on 
SCFA production.

Medi-diet or MIND diets are particularly rich in fruits, vegetables, 
olive oil, wine which are particularly rich in polyphenols. Numerous 
clinical studies and meta-analysis report that polyphenols and 
polyphenol rich-food dietary interventions have both beneficial effects 
on cognition and/or emotional symptoms in healthy or diseased 
(obese, depressed, cognitively impaired population) cohorts (9, 
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145–155). Despite the efficiency of polyphenols on several 
psychological and cognitive dimensions, more work is needed to 
precisely determine how it affects brain activity (156). Interestingly, 
dietary polyphenols are poorly absorbed and are metabolized through 
a collaboration between host and its gut microbiota improving their 
absorption and their ability to cross the blood–brain barrier thus 
resulting in an increased bioactivity (BBB) (99, 157, 158). Of note, the 
structure of the polyphenols and especially the degree of 
polymerization has been shown to modulate the production of GDM 
from polyphenols (159).

Polyphenols encompass two families (flavonoids and 
non-flavonoids) including several subgroups such as anthocyanins, 
flavanols, phenolic acids or lignans among others (58). Dietary 
supplementation containing high levels of flavonoids improves 
cognitive performances and increases serum BDNF in adult men aged 
from 26 to 70 years old and aged women (160). Interestingly, 
polyphenols are potent modulators of the gut microbiota composition. 
In turn, microbiota is essential to metabolize polyphenolic compounds 
into bioactive molecules (161). Actually, polyphenols are poorly 
absorbed in the upper part of the gastrointestinal tract and 90% reach 
the colon where the gut microbiota metabolizes them (162, 163). 
Polyphenols affect gut microbiota composition through their prebiotic 
effect. They stimulate the growth of health-promoting bacteria such 
as Akkermansia muciniphila, Faecalibacterium prausnitzii, 
Bifidobacteria and Lactobacilli while they inhibit the growth of 
bacteria with reported detrimental effects through antimicrobial 

activity, leading to the concept of “duplibiotics” (58). Catechins and 
epicatechins, which are flavanols enriched in cocoa and tea are 
metabolized by the gut microbiota (161, 164) into dihydroxyphenyl-
γ-valerolactones (DPVL) which ultimately reach the brain and 
stimulate neuritogenesis (71, 73). The chlorogenic acid, one of the 
main bioactive compounds of coffee, is converted into caffeic acid 
which is absorbed or metabolized into dihydrocaffeic acid (DHCA) 
by gut bacteria (59). DHCA improves behavioral deficits and reduces 
infarct volume in the brain of rat with cerebral ischemia (72). It also 
decreases the production of interleukin (IL)-6 and counteracts 
depressive-like behavior in a mice model of stress (79). Hippurate is a 
CM product of phenolic compound first metabolized into benzoate 
by gut microbiota and further conjugated to glycine in the liver (165). 
Hippurate levels increases with intake of fruit and vegetable (165–168) 
and gut microbiota diversity (167). In a mice model of obesity, its 
peripheral administration improves metabolic health (169). It has 
been reported that hippurate reaches the brain (81, 82) and promotes 
neuritogenesis in the thalamo-cortical pathway during development 
(82). As previously reported, urolithin A is produced by gut bacteria 
from hydrolysable tannin, especially gut-derived ellagic acid (91, 170). 
Pomegranate, which is particularly rich in ellagic acid has been shown 
to be protective in several rodent models of neurodegeneration (171). 
Urolithin A is among the pomegranate metabolites with the highest 
ability to cross the BBB, making this GDM a good candidate for 
pomegranate’ neuroprotective effects (95). In addition, urolithin A 
alleviates neuroinflammation in vitro (89), in rodent models of AD 

FIGURE 1

Potential of gut-derived metabolites (GDM) and co-metabolites (CM) to improve the effect of nutritional intervention on the neurological and 
psychiatric disorders. Numerous reports of associations between nutrition and beneficial or harmful consequences on the brain have been published 
over the last decades but the nutritional interventions displayed limited effects. Several factors interact with each other’s to influence the response 
toward food intervention including the gut microbiota composition, genetic and clinical status and we postulate that the GDM and CM production 
from food can be a pivotal factor explaining such differences. Thus, the understanding of factors that characterize the positive response toward 
nutritional intervention is crucial to (1) decipher the role of GDM and CM in the beneficial effect of healthy food on brain health, and (2) to define 
population to target for nutritional intervention aiming to promote brain health. The so-called “non-responders” could benefit from intervention based 
on GDM or CM. These approaches can be combined with medications, pre or probiotics to achieve a synergistic effect. But the main goal here is to 
being able to understand and bypass the “resistance” to nutritional intervention to define personalized strategy according to clinical profile of subjects.
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TABLE 1 Gut-derived metabolites, their precursors and their effects both in the CNS and at the periphery.

Metabolites SCFA DPVL DHCA Hippurate

Food sources Fibers Catechins and 

epicatechins

Chlorogenic acid Phenolic 

compounds

BBB permeability Yes Yes Not reported Yes

CNS  • Microglial maturation (via FFAR2)

 • Anti-inflammatory (via reduced IL-1b, IL-9, TNF expression 

and NF-kB signaling pathway inhibition in microglia)

 • Anti-depressant (via HDAC inhibition)

 • Promotes learning and memory (via HDAC inhibition)

 • Attenuates social deficits

 • Modulates levels of neurotransmitters and neurotrophic factors

 • Anti-oxidant

 • Anti-apoptotic (via FOXM1, BRCA2 and p53 expression)

 • Maintains integrity of the BBB (via NFE2L2, tight junction 

occluding expression)

 • Promotes remyelination

 • Promotes 

neuritogenesis

 • Improves behavioral 

deficits and reduces 

infarct volume

 • Limits BBB damage (via 

MMP-2 and 

MMP-9 inhibition)

 • Anti-oxidant

 • Anti-depressant

 • Promotes fetal 

thalamocortical 

axogenesis

Other potential 

targets  • Maintains intestinal barrier integrity (via AMPK, MUC2 

expression, via STAT3 signaling)

 • Gut hormonal regulation (via FFAR2/3; GLP1, PYY and 

leptin expression)

 • Influences gastrointestinal motility (via SCFA receptors)

 • Promotes intestinal gluconeogenesis (via FFAR3 and G6PC and 

PCK1 expression)

 • Release of 5-HT (via tryptophan 5-hydroxylase 1 expression)

 • Anti-cancer

 • Anti-oxidant (via SOD and CAT expression)

 • Modulates immune function and anti-inflammatory (via 

FFAR2/3, HCAR 2/GPR109A and HDAC inhibition)

 • 

Cardioprotective effect

 • Anti-inflammatory 

(via inhibition NF-kB)

 • Anti-oxidant

 • Anti-oxidant (via 

eNOS activity)

 • Inhibits amyloid 

formation of human islet 

amyloid polypeptide

 • Inhibits bone 

resorption and 

regulation of 

osteoclastogenesis 

(via HCAR2/

GPR109A)

References (64–70) (71–74) (75–79) (80–84)

Metabolites Urolithin A Enterolactones Resveratrol-derived 
metabolites

Food sources Ellagic acid Lignans Resveratrol

BBB permeability Yes Yes Not reported

CNS  • Protects against ischemic brain injury (via autophagy and ER 

stress suppression)

 • Prevents learning and memory deficits and reduces Aβ levels (via 

autophagy and Sirt1)

 • Anti-inflammatory (via AhR and NF-kB pathway inhibition)

 • Improves associative memory and neuronal survival

 • Reduces white matter demyelination

 • Anti-inflammatory and anti-oxidant

Other potential 

targets  • Alleviates myocardial ischemia/reperfusion injury (via PI3K/

Akt pathway)

 • Anti-cancer (via estrogen receptors)

 • Anti-inflammatory (via AhR and NF-kB pathway inhibition)

 • Anti-oxidant

 • Increases mitophagy (via PINK1-Parkin) and mitochondrial function

 • Increases skeletal muscle function (via Sirtuin1 and Pgc1a)

 • Anti-cancer and anti-metastatic (via 

IGF1/IGF-1R system inhibition and 

via estrogen receptors)

 • Inhibit Akt signaling pathway

 • Inhibit carbonic anhydrase 

and acetylcholinesterase

 • Anti-diabetic (via AMPK signaling)

 • Anti-cancer (anti-

estrogenic activity)

 • Anti-oxidant

 • Anti-inflammatory (inhibit 

COX (−2) and QR2 enzymes)

References (85–95) (96–101) (102–104)

(Continued)
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and multiple sclerosis (91, 92, 170) and modulates microglia 
phagocytosis activity and mitophagy as well as AMP-activated protein 
kinase (AMPK) and the nuclear factor-kappa B (NFκB) signaling (88). 
Urolithin A activity is mediated by its binding to Aryl Hydrocarbon 
Receptor (AhR) (88). The enterolactones are produced through the 
metabolization of lignans by gut bacteria including Ruminococcus 
species (172). These compounds exert anticholinesterase activity and 
thus have been proposed as candidates to tackle neurodegenerative 
disorders like AD (172). Even if the molecular mechanisms remain 
unknown, preclinical findings have shown that enterolactones are 
neuroprotective in AD and Parkinson disease (PD) animal models 
(98, 173). Dihydroresveratrol (DHR), lunularin (LUN) and 3,4′–
dihydroxy-trans-stilbene have been identified as gut microbiota-
derived metabolites of resveratrol (53) with some having more potent 
anti-inflammatory effects than resveratrol (102). Interestingly, these 
GDM and the resveratrol itself can be transported within extracellular 
vesicles which represent a very interesting pathway to study in order 
to better understand how GDM and CM can influence the brain (62). 
The isoflavones like daidzein is metabolized by gut bacteria into equol 
that exhibits, as its precursor, neuroprotective effects in vitro possibly 
through its ability to activate oestrogen receptors (106, 174). Overall, 
a large amount of polyphenols-derived GDM and CM deserve more 
attention as their bioactive properties can be responsible for the widely 
recognized health-promoting effects of polyphenols (58, 175). 
Regarding the neurobiological/behavioral response toward food 
intervention, taking into account the interindividual differences in 
both gut microbiota and host metabolism of nutrients like polyphenols 
is crucial. Indeed, individual may not be able to produce polyphenols-
derived metabolites for several reasons (lacking the appropriate 
bacteria or disturbances in phase II metabolites producing enzymes) 
which may introduce a bias in the interpretation of the efficacy of 
nutritional intervention. Of note, the structure of the polyphenols and 
especially the degree of polymerization has been shown to modulate 

the production of GDM from polyphenols which underline the 
importance of the food sources and the choice of the compounds 
selected in nutritional intervention (159). Thus, studying GDM and 
CM would allow to select individuals that may benefit from the 
nutritional supplementation, to select the better compounds and to 
adapt the strategy by using symbiotic or postbiotic approach in 
individual who are not able to produce the GDM/CM of interest.

Several type of GDM and CM can be produced upon n-3 PUFA 
consumption (113, 124, 176). The 3-carboxy-4-methyl-5-propyl-2-
furanpropanoic acid (CMPF) is a GDM produced in response to fatty 
fish intake or dietary supplementation (113, 177, 178). This GDM has 
been associated with a slower cognitive decline in middle-aged men 
(179). Its bioactive potential has been shown especially in the context 
of steatosis where it mediates the beneficial effects of n–3 PUFA (113). 
The gut microbiota also produces some conjugated compounds like 
the conjugated linoleic acid (CLA) or the conjugated linolenic acid 
(CLNA) from n–6 and n–3 PUFA precursors, respectively, (176). 
When administered through the diet, CLA alleviates several markers 
of brain ageing in a mice model of lupus (114, 115). As a result, CLA 
improves synaptic markers and BDNF decrease as well as acetylcholine 
esterase activity and oxidative stress in the brain of aged mice (114). 
CLA administered to mice during pregnancy and lactation triggers 
anxiolytic and antioxidant effects in offspring (119). Of note, the brain 
effect of CNLA can involve changes in the level of long-chain PUFAs 
in the brain which is known to influence several neurobiological 
mechanisms (8, 182–185). Indeed, several studies have shown that 
these metabolites can change the level of long-chain PUFA in the liver 
and in the brain (114, 118). Finally, the 10-hydroxy-cis-12-
octadecenoic acid (HYA) which is produced by some Lactobacillus has 
been shown to protect from obesity related alterations like insulin-
resistance and adipose tissue inflammation (124). It also attenuates 
neuroinflammatory processes by inhibiting ERK phosphorylation in 
activated microglia in vitro (123).

TABLE 1 (Continued)

Metabolites Equol CMPF CLA/CLNA HYA

Food sources Daidzein Fatty fish (furan acid and/or 

long chain n–3 PUFAs)

Linoleic and linolenic acid linoleic acid

BBB permeability Yes Not reported Yes Not reported

CNS
 • Neuroprotective (via estrogen receptors, NO 

production inhibition in astrocytes 

via GPR30)

 • Anti-inflammatory (inhibition NF-kB 

pathway in microglia)

 • Neuroprotective

 • Anti-depressant (via Nrf2 pathway)

 • Anti-oxidant

 • Anxiolytic and reduction lipid 

peroxidation in the offspring

 • Neuroprotective 

(via ERK)

Other potential 

targets  • Estrogenic activity

 • Anti-oxidant (via ER receptors, modulates 

NO release via Akt, attenuates ER stress 

via Nrf2)

 • Anti-cancer (via Akt pathway, via mitophagy)

 • Cardioprotective effect (improves 

arterial stiffness)

 • Anti-diabetic (via cAMP pathway and 

preventing GLP-1 secretion)

 • Prevents steatosis (via 

ACC inhibition and 

induction of FGF21)

 • Induces β cell 

dysfunction

 • Anti-cancer (via PPAR, 

inhibition COX-1)

 • Inhibits adipogenesis (via PPAR)

 • Anti-inflammatory (via NF-kB)

 • Mediates insulin release (FFA1/

GPR40 activation)

 • Anti-inflammatory 

(via GPR40)

References (105–112) (50, 113) (114–122) (123, 124)
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4. Concluding remarks and future 
challenges

Although the molecular mechanisms are largely unexplained, 
several GDM/CM seem to be  neuroactive compounds. Thus, 
exploring further their role in the crosstalk between nutrition, gut 
microbiota and brain function may help to improve nutritional 
intervention by giving new possibilities to intervene in people who are 
not able to respond to food or nutrients-based supplementation. 
Several challenges arise from the complex relationship between the 
GDM/CM and nutrition, gut microbiota, clinical status as well as their 
pleiotropic effect. Indeed, GDM/CM production is controlled by 
several parameters (22, 23). A first challenge is therefore to unravel the 
mechanisms through which GDM and CM affect brain function. As 
discussed in this review, understanding the mechanisms involved in 
the inter-individual differences in the ability to produce GDM/CM in 
humans will allow to better select the target population that would 
benefit from nutritional intervention. For this, it is necessary to study 
the production of GDM/CM of interest in response to dietary intake 
of specific healthy food (nuts, fish, dark leaf vegetables …) or a specific 
precursor (lignans, tannins, fibers, PUFA) in healthy and diseased 
populations. To confirm that GDM/CM may mediate the effect of 
nutrition and gut microbiota on brain function, more mechanistic 
studies are needed. They should aim at (1) decipher how GDM/CM 
reach the brain, (2) test the specificity of the effect of these molecules 
on different brain structures and brain cell types, and (3) elucidate 
their receptors and molecular targets. To achieve these goals, it is 
necessary to combine dietary habits assessments and circulating 
GDM/CM measurements especially in clinical studies. The use of 
predictive models may help to select a pool of metabolites associated 
with beneficial effects on neurobiological process or behavior rather 
than a single GDM. It would allow to design innovative intervention 
with postbiotics alone or in combination which efficiency could then 
be  tested in preclinical models. In vitro, the use of fermentation 
models (159, 184) can help to decipher the bacteria and the molecular 
machinery involved in the production of GDM.
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